भूतल मेट्रोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 83: Line 83:
{| class="wikitable" style="text-align:center"
{| class="wikitable" style="text-align:center"
|+Table of useful surface metrics
|+Table of useful surface metrics
!Parameter !! Name !! Description !! Type !! Formula
!पैरामीटर !! नाम !! विवरण !! प्रकार !! सूत्र
|-
|-
|R<sub>a</sub>, R<sub>aa</sub>, R<sub>yni</sub>
|R<sub>a</sub>, R<sub>aa</sub>, R<sub>yni</sub>
|[[arithmetic average]] of [[absolute value]]s
|[[निरपेक्ष मूल्यों का अंकगणितीय औसत]]
|''Mean of the absolute values of the profile heights measured from a mean line averaged over the profile''
|''प्रोफ़ाइल पर औसत औसत रेखा से मापी गई प्रोफ़ाइल ऊँचाई के निरपेक्ष मानों का माध्य के रूप में होती है''  
|Amplitude
|आयाम
|<math>R_a = \frac{1}{n} \sum_{i=1}^{n} \left | y_i \right |</math>
|<math>R_a = \frac{1}{n} \sum_{i=1}^{n} \left | y_i \right |</math>
|-
|-
|R<sub>q</sub>, R<sub>RMS</sub>
|R<sub>q</sub>, R<sub>RMS</sub>
|[[root mean square]]d
|[[root mean square|रुट मतलब स्क्वायर]]  
|
|
|Amplitude
|आयाम
|<math>R_q = \sqrt{ \frac{1}{n} \sum_{i=1}^{n} y_i^2 }</math>
|<math>R_q = \sqrt{ \frac{1}{n} \sum_{i=1}^{n} y_i^2 }</math>
|-
|-
|R<sub>v</sub>
|R<sub>v</sub>
|maximum valley depth
|अधिकतम घाटी गहराई
|''Maximum depth of the profile below the mean line with the sampling length''
|''नमूना लंबाई के साथ औसत रेखा के नीचे प्रोफ़ाइल की अधिकतम गहराई के रूप में होती है''
|Amplitude
|आयाम
|<math>R_v = \min_{i} y_i</math>
|<math>R_v = \min_{i} y_i</math>
|-
|-
|R<sub>p</sub>
|R<sub>p</sub>
|maximum peak height
|अधिकतम शिखर ऊंचाई
|''Maximum height of the profile above the mean line within the sampling length''
|''नमूना लंबाई के भीतर औसत रेखा के ऊपर प्रोफ़ाइल की अधिकतम ऊंचाई के रूप में होती है''
|Amplitude
|आयाम
|<math>R_p = \max_{i} y_i</math>
|<math>R_p = \max_{i} y_i</math>
|-
|-
|R<sub>t</sub>
|R<sub>t</sub>
|Maximum Height of the Profile
|प्रोफ़ाइल की अधिकतम ऊंचाई
|''Maximum peak to valley height of the profile in the assessment length''
|''मूल्यांकन लंबाई में प्रोफ़ाइल की अधिकतम चोटी से घाटी की ऊंचाई के रूप में होती है''
|Amplitude
|आयाम
|<math>R_t = R_p - R_v</math>
|<math>R_t = R_p - R_v</math>
|-
|-
|R<sub>sk</sub>
|R<sub>sk</sub>
|[[Skewness]]
|[[Skewness|तिरछापन]]
|''Symmetry of the profile about the mean line''  
|''माध्य रेखा के बारे में प्रोफ़ाइल की समरूपता के रूप में होती है''
|Amplitude
|आयाम
|<math>R_{sk} = \frac{1}{n R_q^3} \sum_{i=1}^{n} y_i^3 </math>
|<math>R_{sk} = \frac{1}{n R_q^3} \sum_{i=1}^{n} y_i^3 </math>
|-
|-
|R<sub>ku</sub>
|R<sub>ku</sub>
|[[Kurtosis]]
| [[Kurtosis|करटोसिस]]
|''Measure of the sharpness of the surface profile''
|''सतह प्रोफ़ाइल के तीखेपन का माप करती है''
|Hybrid
|हाइब्रिड
|<math>R_{ku} = \frac{1}{n R_q^4} \sum_{i=1}^{n} y_i^4 </math>
|<math>R_{ku} = \frac{1}{n R_q^4} \sum_{i=1}^{n} y_i^4 </math>
|-
|-
|RS<sub>m</sub>
|RS<sub>m</sub>
|Mean Peak Spacing
|मीन पीक स्पेसिंग
|''Mean Spacing between peaks at the mean line''
|''मीन लाइन पर चोटियों के बीच मीन स्पेसिंग होती है''
|Spatial
|स्थानिक
|<math>RS_{m} = \frac{1}{n} \sum_{i=1}^{n} S_i </math>
|<math>RS_{m} = \frac{1}{n} \sum_{i=1}^{n} S_i </math>
|}
|}

Revision as of 01:52, 21 April 2023

भूतल मैट्रोलोजी सतहों पर छोटे पैमाने की विशेषताओं का माप के रूप में होती है और मेट्रोलॉजी की एक शाखा के रूप में है। भूतल प्राइमरी फॉर्म, भूतल फ्रैक्टेलिटी, और भूतल फिनिश सतह खुरदरापन सहित क्षेत्र से सबसे अधिक जुड़े हुए मापदण्ड के रूप में होते है। यह कई विषयों के लिए महत्वपूर्ण रूप में होते है और इन्हे ज्यादातर त्रुटिहीन भागों और असेंबली के मशीनिंग के लिए जाना जाता है जिसमें समागम सतहें होती हैं, जिन्हें उच्च आंतरिक दबावों के साथ काम करना चाहिए।

भूतल फिनिश को दो विधियों से मापा जा सकता है, संपर्क और गैर-संपर्क विधियों में मापन लेखनी को सतह पर माप स्टाइलस को खींचना सम्मलित है, इन उपकरणों को प्रोफिलोमीटर कहा जाता है। गैर-संपर्क विधियों के रूप में सम्मलित हैं और इस प्रकार इंटरफेरोमेट्री, डिजिटल होलोग्राफिक माइक्रोस्कोपी, संनाभि माइक्रोस्कोपी, फोकस भिन्नता, संरचित प्रकाश, विद्युत समाई, इलेक्ट्रॉन माइक्रोस्कोपी, फोटोग्राममिति और गैर-संपर्क प्रोफिलोमीटर के रूप में होते है।

अवलोकन

डायमंड स्टाइलस प्रोफिलोमीटर का उपयोग करना सबसे सामान्य विधि के रूप में होती है। स्टाइलस को सतह की परत के लंबवत रखा जाता है।[1] और इस प्रकार जांच अतिरिक्त एक सपाट सतह पर या एक बेलनाकार सतह के चारों ओर एक गोलाकार चाप में सीधी रेखा के साथ होती है। यह जिस पथ की लंबाई का पता लगाता है उसे माप लंबाई कहा जाता है। और इस प्रकार डेटा का विश्लेषण करने के लिए उपयोग किए जाने वाले सबसे कम आवृत्ति फ़िल्टर की तरंग दैर्ध्य को अतिरिक्त नमूना लंबाई के रूप में परिभाषित किया जाता है। अधिकांश मानक अनुशंसा करते हैं कि माप की लंबाई नमूना लंबाई से कम से कम सात गुना अधिक होनी चाहिए और निक्विस्ट-शैनन नमूनाकरण प्रमेय के अनुसार यह रोचक विशेषताओं के तरंग दैर्ध्य से कम से कम दो गुना अधिक होना चाहिए। मूल्यांकन की लंबाई या मूल्यांकन की लंबाई डेटा की लंबाई होती है जिसका उपयोग विश्लेषण के लिए किया जाता है। और इस प्रकार माप लंबाई के प्रत्येक छोर से अतिरिक्त एक नमूना लंबाई को हटा दिया जाता है। जो सतह पर एक 2डी क्षेत्र पर स्कैन करके एक प्रोफिलोमीटर के साथ 3डी मापन के रूप में किया जा सकता है।

एक प्रोफिलोमीटर का नुकसान यह है कि जब सतह की विशेषताओं का आकार स्टाइलस के समान आकार के नजदीक होता है, तो यह त्रुटिहीन रूप में नहीं होता है। एक और नुकसान यह है कि प्रोफिलोमीटर को सतह के खुरदरेपन के समान सामान्य आकार की खामियों का पता लगाने में कठिनाई होती है।[1] गैर-संपर्क उपकरणों की भी सीमाएँ होती है। उदाहरण के लिए ऑप्टिकल हस्तक्षेप पर भरोसा करने वाले उपकरण ऑपरेटिंग तरंगदैर्ध्य के कुछ अंश से कम सुविधाओं को हल नहीं कर सकते हैं। यह सीमा सामान्य वस्तुओं पर भी खुरदुरेपन को त्रुटिहीन रूप से मापना कठिन बना सकती है, क्योंकि रोचक विशेषताएं प्रकाश की तरंग दैर्ध्य से बहुत अधिक नीचे हो सकती हैं। लाल प्रकाश की तरंग दैर्ध्य लगभग 650 एनएम होती है,[2] जबकि औसत खुरदरापन, (Ra) ग्राउंड शाफ्ट का 200 एनएम हो सकता है।

विश्लेषण का पहला चरण बहुत उच्च आवृत्ति डेटा को हटाने के लिए कच्चे डेटा को फ़िल्टर करना होता है जिसे सूक्ष्म खुरदरापन कहा जाता है, क्योंकि इसे अधिकांशतः सतह पर कंपन या मलबे के लिए जिम्मेदार ठहराया जाता है। किसी दिए गए कट-ऑफ थ्रेशोल्ड पर माइक्रो-खुरदरापन को फ़िल्टर करना भी विभिन्न स्टाइलस बॉल रेडियस वाले प्रोफिलोमीटर का उपयोग करके किया जाता था खुरदरेपन के आकलन को नजदीक लाने की अनुमति देता है। और इस प्रकार 2 माइक्रोमीटर और 5 माइक्रोमीटर त्रिज्या के रूप में डेटा को खुरदरापन लहर रूप में अलग किया जाता है। यह संदर्भ रेखाओं लिफाफा विधियों, डिजिटल फिल्टर, फ्रैक्टल्स या अन्य प्रोद्योगिकीय का उपयोग करके पूरा किया जा सकता है। अंत में डेटा को एक या एक से अधिक खुरदरापन मापदंडों या एक ग्राफ का उपयोग करके संक्षेपित किया जाता है। और इस प्रकार अतीत में सतह समाप्ति पर हाथ से विश्लेषण किया जाता था। खुरदरापन ट्रेस ग्राफ पेपर पर प्लॉट किया जाता था और एक अनुभवी मशीनर ने तय किया कि किस डेटा को अनदेखा करना है और मीन लाइन को कहां रखना है। आज मापा गया डेटा एक कंप्यूटर पर संग्रहीत किया जाता है और सिग्नल विश्लेषण और सांख्यिकी के विधियों का उपयोग करके विश्लेषण किया जाता है।[3]


उपकरण

संपर्क (स्पर्श माप)

Rugosimetro portatile.jpg

स्टाइलस-आधारित संपर्क उपकरणों के निम्नलिखित लाभ हैं

  • प्रणाली बहुत ही सरल और मौलिक खुरदरापन, लहरदारपन या प्रपत्र माप के लिए पर्याप्त रूप में है, जिसके लिए केवल 2डी प्रोफाइल की आवश्यकता होती है उदाहरण के लिए आरए मान की गणना की जाती है।
  • प्रणाली कभी भी नमूने के ऑप्टिकल गुणों से आकर्षित नहीं होती है, जैसे अत्यधिक परावर्तक, पारदर्शी, सूक्ष्म-संरचित गुणों से आकर्षित नहीं होती है
  • स्टाइलस अपनी औद्योगिक प्रक्रिया के समय कई धातु घटकों को कवर करने वाली आयल फिल्म की उपेक्षा करता है।

टेक्नोलॉजीज

  • कॉन्टैक्ट प्रोफिलोमीटर - मूल रूप से डायमंड स्टाइलस का उपयोग करते हैं और ग्रामोफ़ोन की तरह काम करते हैं।
  • परमाणु बल सूक्ष्मदर्शी को कभी-कभी परमाणु पैमाने पर संचालित संपर्क प्रोफाइलर के रूप में जाना जाता है।

गैर-संपर्क (ऑप्टिकल माइक्रोस्कोप)

ऑप्टिकल मापन यंत्रों के स्पर्शीय उपकरणों की तुलना में कुछ लाभ इस प्रकार होते है।

  • सतह को छूने से नमूना क्षतिग्रस्त नहीं हो सकता है।
  • माप की गति सामान्तया एक मिलियन 3D बिंदुओं तक बहुत अधिक होती है जिसे एक सेकंड में मापा जा सकता है
  • उनमें से कुछ वास्तव में डेटा के एकल अंशों के अतिरिक्त 3डी सतह स्थलाकृति के लिए बनाए गए हैं
  • वे कांच या प्लास्टिक की फिल्म जैसे पारदर्शी माध्यम से सतहों को माप सकते हैं
  • गैर-संपर्क माप कभी-कभी एकमात्र समाधान के रूप में हो सकता है जब मापने के लिए घटक बहुत नरम रूप में होता है जैसे प्रदूषण या बहुत कठोर अपघर्षक कागज के रूप में हो सकता है।

कार्यक्षेत्र स्कैनिंग,

क्षैतिज स्कैनिंग,

गैर स्कैनिंग

  • डिजिटल स्वलिखित माइक्रोस्कोपी

सही माप उपकरण का चुनाव

चूंकि प्रत्येक उपकरण के लाभ और नुकसान होते हैं, ऑपरेटर को माप अनुप्रयोग के आधार पर सही उपकरण के रूप में चुनना चाहिए। निम्नलिखित में मुख्य प्रोद्योगिकीय के कुछ लाभ और नुकसान को सूचीबद्ध किया गया है',

  • इंटरफेरोमेट्री: इस पद्धति में किसी भी ऑप्टिकल प्रोद्योगिकीय का उच्चतम ऊर्ध्वाधर के रूप में रिज़ॉल्यूशन होता है और कन्फ़ोकल को छोड़कर अधिकांश अन्य ऑप्टिकल प्रोद्योगिकीय के बराबर पार्श्व रिज़ॉल्यूशन होता है, जिसमें बेहतर पार्श्व रिज़ॉल्यूशन होता है। उपकरणों में उच्च स्तर पर पुनरावर्तन योग्यता वाली इंटरफेरोमेट्री (PSI) का प्रयोग करके बेहद चिकनी सतह को माप सकते हैं ऐसी प्रणालियों को बड़े भागों 300 मिमी तक या माइक्रोस्कोप-आधारित मापने के लिए समर्पित किया जाता है। और इस प्रकार वे मशीनी धातु, फोम, कागज और अन्य सहित खड़ी या खुरदरी सतहों को मापने के लिए एक सफेद-प्रकाश स्रोत के साथ स्कैनिंग इंटरफेरोमेट्री (सीएसआई) का उपयोग कर सकते हैं। जैसा कि सभी ऑप्टिकल प्रोद्योगिकीय के साथ होता है, तथा इस उपकरण के नमूने के साथ प्रकाश की क्रिया पूरी तरह से समझ में नहीं आती है। इसका मतलब है कि माप त्रुटियां विशेष रूप से खुरदरापन माप के लिए हो सकती हैं।[4][5]
  • डिजिटल होलोग्राफी: यह विधि इंटरफेरोमेट्री के समान रिज़ॉल्यूशन के साथ 3डी स्थलाकृति प्रदान करती है। इसके अतिरिक्त जैसा कि यह एक गैर-स्कैनिंग प्रोद्योगिकीय के रूप में होती है, यह चलती नमूनों, विकृत सतहों, एमईएमएस गतिशीलता, रासायनिक प्रतिक्रियाओं, नमूनों पर चुंबकीय या विद्युत क्षेत्र के प्रभाव और विशेष रूप से कंपन की उपस्थिति की माप के मापन के लिए आदर्श गुणवत्ता नियंत्रण के रूप में होती है।
  • फोकस भिन्नता: यह विधि रंग की जानकारी देती है और खड़ी किनारों पर माप कर सकती है और बहुत खुरदरी सतहों पर भी माप कर सकती है। और इस प्रकार नुकसान यह है कि यह विधि सतहों पर एक सिलिकॉन वेफर की तरह बहुत चिकनी सतह खुरदरापन के साथ नहीं माप सकती है। मुख्य अनुप्रयोग धातु मशीनी भागों और उपकरण प्लास्टिक या कागज के नमूने के रूप में होता है।
  • कॉन्फोकल माइक्रोस्कोपी: इस विधि में एक पिन होल के उपयोग के कारण उच्च पार्श्व विभेदन का लाभ होता है, लेकिन इसका नुकसान यह है कि यह खड़ी पार्श्वों पर माप नहीं कर सकता है। साथ ही बड़े क्षेत्रों को देखते समय यह जल्दी से लंबवत रिज़ॉल्यूशन को खो देता है क्योंकि लंबवत संवेदनशीलता उपयोग में माइक्रोस्कोप उद्देश्य पर निर्भर करती है।
  • कन्फोकल क्रोमैटिक विपथन: इस विधि में ऊर्ध्वाधर स्कैन के बिना कुछ ऊंचाई श्रेणियों को मापने का लाभ मिलता है और इस प्रकार आसानी से बहुत खुरदरी सतहों को माप सकता है और एकल एनएम सीमा तक चिकनी सतहों को माप सकता है। तथ्य यह है कि इन सेंसरों में कोई हिलने वाला भाग नहींहोता है, जो बहुत उच्च स्कैन गति की अनुमति देता है और उन्हें दोहराने योग्य बनाता है। उच्च संख्यात्मक एपर्चर वाले कॉन्फ़िगरेशन अपेक्षाकृत खड़ी किनारों पर माप कर सकते हैं। एक ही या अलग-अलग माप रेंज के साथ कई सेंसर का एक साथ उपयोग किया जा सकता है, जिससे अवकलन मेजरमेंट एप्रोच (टीटीवी) की अनुमति मिलती है तथा प्रणाली के उपयोग के स्थिति का विस्तार होता है।
  • संपर्क प्रोफिलोमीटर: यह विधि सबसे सामान्य सतह माप प्रोद्योगिकीयके रूप में होती है। और इस प्रकार लाभ यह है कि यह एक सस्ता उपकरण होता है और चयनित स्टाइलस टिप त्रिज्या के आधार पर ऑप्टिकल प्रोद्योगिकीय की तुलना में उच्च पार्श्व रिज़ॉल्यूशन के रूप में होता है। नई प्रणालियां 2डी निशानों के अतिरिक्त 3डी माप भी कर सकती हैं और फॉर्म और महत्वपूर्ण आयामों के साथ-साथ खुरदुरेपन को भी माप कर सकती हैं। चूंकि, नुकसान यह है कि स्टाइलस टिप को सतह के भौतिक संपर्क में होना चाहिए, जो सतह और स्टाइलस को बदल सकता है और संदूषण का कारण बन सकता है। इसके अतिरिक्त यांत्रिक संपर्क के कारण स्कैन की गति ऑप्टिकल विधियों की तुलना में बहुत अधिक धीमी होती है। स्टायलस शैंक कोण के कारण स्टायलस प्रोफिलोमीटर एक बढ़ती हुई संरचना के किनारे तक नहीं माप सकते हैं, जिससे एक छाया या अपरिभाषित क्षेत्र बनता है, जो अतिरिक्त ऑप्टिकल प्रणाली के लिए सामान्य रूप से बहुत बड़ा होता है।

संकल्प

वांछित माप का पैमाना यह तय करने में मदद करता है कि किस प्रकार के माइक्रोस्कोप का उपयोग किया जाएगा।

3डी मापन के लिए जांच को सतह पर 2डी क्षेत्र पर स्कैन करने का निर्देश दिया जाता है। और इस प्रकार डेटा बिंदुओं के बीच की दूरी दोनों दिशाओं में समान रूप में नहीं हो सकती है।

कुछ स्थितियों में मापने के उपकरण की भौतिकी डेटा पर बड़ा प्रभाव डाल सकती है। और यह बहुत चिकनी सतहों को मापते समय यह विशेष रूप से सच होता है। संपर्क मापन के लिए सबसे स्पष्ट समस्या यह है कि स्टाइलस मापी गई सतह को खरोंच सकता है। एक और समस्या यह है कि गहरी घाटियों की तली तक पहुँचने के लिए वर्तिका बहुत कुंद हो सकती है और यह तीक्ष्ण शिखरों के किनारों पर भी हो सकती है। इस स्थिति में जांच एक वास्तविक फ़िल्टर के रूप में होता है, जो उपकरण की सटीकता को सीमित करता है।

खुरदरापन पैरामीटर

वास्तविक सतह ज्यामिति इतनी जटिल रूप में होती है कि मापदंडों की एक सीमित संख्या पूर्ण विवरण प्रदान नहीं कर सकती है। यदि उपयोग किए गए मापदंडों की संख्या बढ़ जाती है, तो अधिक त्रुटिहीन विवरण प्राप्त किया जा सकता है। यह सतही मूल्यांकन के लिए नए मापदंडों को पेश करने के कारणों में से एक होता है। और इस प्रकार सतह खुरदरापन मापदंडों को अतिरिक्त इसकी कार्य क्षमता के अनुसार तीन समूहों में वर्गीकृत किया जाता है। इन समूहों को आयाम पैरामीटर, स्पेसिंग पैरामीटर और हाइब्रिड पैरामीटर के रूप में परिभाषित किया जाता है।[6]


प्रोफ़ाइल खुरदरापन पैरामीटर

सतहों का वर्णन करने के लिए उपयोग किए जाने वाले पैरामीटर सामान्यता सतह की ऊंचाई के कई नमूनों से प्राप्त सांख्यिकी संकेतक के रूप में होते है। कुछ उदाहरणों के रूप में सम्मलित हैं,

Table of useful surface metrics
पैरामीटर नाम विवरण प्रकार सूत्र
Ra, Raa, Ryni निरपेक्ष मूल्यों का अंकगणितीय औसत प्रोफ़ाइल पर औसत औसत रेखा से मापी गई प्रोफ़ाइल ऊँचाई के निरपेक्ष मानों का माध्य के रूप में होती है आयाम
Rq, RRMS रुट मतलब स्क्वायर आयाम
Rv अधिकतम घाटी गहराई नमूना लंबाई के साथ औसत रेखा के नीचे प्रोफ़ाइल की अधिकतम गहराई के रूप में होती है आयाम
Rp अधिकतम शिखर ऊंचाई नमूना लंबाई के भीतर औसत रेखा के ऊपर प्रोफ़ाइल की अधिकतम ऊंचाई के रूप में होती है आयाम
Rt प्रोफ़ाइल की अधिकतम ऊंचाई मूल्यांकन लंबाई में प्रोफ़ाइल की अधिकतम चोटी से घाटी की ऊंचाई के रूप में होती है आयाम
Rsk तिरछापन माध्य रेखा के बारे में प्रोफ़ाइल की समरूपता के रूप में होती है आयाम
Rku करटोसिस सतह प्रोफ़ाइल के तीखेपन का माप करती है हाइब्रिड
RSm मीन पीक स्पेसिंग मीन लाइन पर चोटियों के बीच मीन स्पेसिंग होती है स्थानिक

यह ASME B46.1 जैसे मानकों में वर्णित उपलब्ध मापदंडों का एक छोटा सा उपसमुच्चय है[7] और आईएसओ 4287।[8] इनमें से अधिकांश पैरामीटर प्रोफिलोमीटर और अन्य यांत्रिक जांच प्रणालियों की क्षमताओं से उत्पन्न हुए हैं। इसके अतिरिक्त , सतह के आयामों के नए उपाय विकसित किए गए हैं जो उच्च-परिभाषा ऑप्टिकल गेजिंग प्रौद्योगिकियों द्वारा संभव किए गए मापों से अधिक सीधे संबंधित हैं।

ImageJ के लिए SurfCharJ प्लगइन [1] का उपयोग करके इनमें से अधिकांश मापदंडों का अनुमान लगाया जा सकता है।

क्षेत्र सतह पैरामीटर

सतह खुरदरापन की गणना एक क्षेत्र पर भी की जा सकती है। इससे एसa आर केअतिरिक्त a मान। ISO 25178 श्रृंखला इन सभी खुरदुरेपन मूल्यों का विस्तार से वर्णन करती है। प्रोफ़ाइल मापदंडों पर लाभ हैं:

  • अधिक महत्वपूर्ण मूल्य
  • संभव वास्तविक कार्य से अधिक संबंध
  • वास्तविक उपकरणों के साथ तेज माप[clarification needed] संभव (ऑप्टिकल क्षेत्र आधारित उपकरण एक एस को माप सकते हैंa उच्च गति में फिर Ra.

सतहों में भग्न गुण होते हैं, बहु-स्तरीय माप भी किए जा सकते हैं जैसे कि लंबाई-पैमाने पर भग्न विश्लेषण या क्षेत्र-स्तर भग्न विश्लेषण।[9]


फ़िल्टरिंग

सतह की विशेषता प्राप्त करने के लिए लगभग सभी माप फ़िल्टरिंग के अधीन हैं। खुरदरापन, लहरदारपन और प्रपत्र त्रुटि जैसी सतह विशेषताओं को निर्दिष्ट करने और नियंत्रित करने की बात आती है तो यह सबसे महत्वपूर्ण विषयों में से एक है। सतह के विचलन के इन घटकों को सतह आपूर्तिकर्ता और सतह प्राप्तकर्ता के बीच प्रश्न में सतह की अपेक्षित विशेषताओं के बारे में स्पष्ट समझ प्राप्त करने के लिए माप में अलग-अलग अलग होना चाहिए। अतिरिक्त , या तो डिजिटल या एनालॉग फिल्टर का उपयोग माप से उत्पन्न होने वाली त्रुटि, लहराती और खुरदरापन को अलग करने के लिए किया जाता है। मुख्य बहु-स्तरीय फ़िल्टरिंग विधियाँ गॉसियन फ़िल्टरिंग, वेवलेट ट्रांसफ़ॉर्म और हाल ही में असतत मोडल अपघटन हैं। इन फ़िल्टरों की तीन विशेषताएँ हैं जिन्हें एक उपकरण द्वारा गणना किए जा सकने वाले पैरामीटर मानों को समझने के लिए जाना जाना चाहिए। ये स्थानिक तरंगदैर्घ्य हैं जिस पर एक फिल्टर खुरदरापन से खुरदरापन या लहरदारपन को प्रपत्र त्रुटि से अलग करता है, एक फिल्टर की तीक्ष्णता या फिल्टर कितनी सफाई से सतह के विचलन के दो घटकों को अलग करता है और एक फिल्टर की विकृति या फिल्टर एक स्थानिक को कितना बदल देता है पृथक्करण प्रक्रिया में तरंग दैर्ध्य घटक।[7]


यह भी देखें

बाहरी संबंध


संदर्भ

  1. 1.0 1.1 Degarmo, E. Paul; Black, J T.; Kohser, Ronald A. (2003). निर्माण में सामग्री और प्रक्रियाएं (9th ed.). Wiley. pp. 223–224. ISBN 0-471-65653-4.
  2. "What Wavelength Goes With a Color?". Archived from the original on 2011-07-20. Retrieved 2008-05-14.
  3. Whitehouse, DJ. (1994). Handbook of Surface Metrology, Bristol: Institute of Physics Publishing. ISBN 0-7503-0039-6
  4. Gao, F; Leach, R K; Petzing, J; Coupland, J M (2008). "वाणिज्यिक स्कैनिंग सफेद प्रकाश इंटरफेरोमीटर का उपयोग करते हुए भूतल मापन त्रुटियां". Measurement Science and Technology. 19 (1): 015303. Bibcode:2008MeScT..19a5303G. doi:10.1088/0957-0233/19/1/015303.
  5. Rhee, H. G.; Vorburger, T. V.; Lee, J. W.; Fu, J (2005). "चरण-स्थानांतरण और श्वेत-प्रकाश इंटरफेरोमेट्री के साथ प्राप्त खुरदरापन माप के बीच विसंगतियां". Applied Optics. 44 (28): 5919–27. Bibcode:2005ApOpt..44.5919R. doi:10.1364/AO.44.005919. PMID 16231799.
  6. Gadelmawla E.S.; Koura M.M.; Maksoud T.M.A.; Elewa I.M.; Soliman H.H. (2002). "खुरदरापन पैरामीटर". Journal of Materials Processing Technology. 123: 133–145. doi:10.1016/S0924-0136(02)00060-2.
  7. 7.0 7.1 ASME B46.1. Asme.org. Retrieved on 2016-03-26.
  8. ISO 4287 Archived January 19, 2004, at the Wayback Machine
  9. Surface Metrology Laboratory – Washburn Shops 243 – Scale-sensitive Fractal Analysis. Me.wpi.edu. Retrieved on 2016-03-26.