नो-स्लिप प्रतिबंध: Difference between revisions
(TEXT) |
(TEXT) |
||
Line 1: | Line 1: | ||
{{Short description|Concept in fluid dynamics}} | {{Short description|Concept in fluid dynamics}} | ||
द्रव गतिकी में, श्यान द्रव पदार्थों के लिए नो-स्लिप प्रतिबंध यह | द्रव गतिकी में, श्यान द्रव पदार्थों के लिए नो-स्लिप प्रतिबंध यह मानता है कि एक ठोस सीमा पर, द्रव पदार्थ की सीमा के सापेक्ष शून्य वेग होता है। | ||
सभी द्रव-ठोस सीमाओं पर द्रव का वेग ठोस सीमा के समान होता है।<ref>{{Cite journal | last = Day | first = Michael A. | year = 2004 | title = द्रव गतिकी की नो-स्लिप स्थिति|journal=[[Erkenntnis]] | pages = 285–296 |doi=10.1007/BF00717588 | volume = 33 | issue = 3| s2cid = 55186899 }}</ref> संकल्पनात्मक रूप से, द्रव पदार्थ के सबसे बाहरी अणुओं के बारे में सोचा जा सकता है जो उन सतहों से चिपके रहते हैं जिनसे यह प्रवाहित होता | सभी द्रव-ठोस सीमाओं पर द्रव का वेग ठोस सीमा के समान होता है।<ref>{{Cite journal | last = Day | first = Michael A. | year = 2004 | title = द्रव गतिकी की नो-स्लिप स्थिति|journal=[[Erkenntnis]] | pages = 285–296 |doi=10.1007/BF00717588 | volume = 33 | issue = 3| s2cid = 55186899 }}</ref> संकल्पनात्मक रूप से, द्रव पदार्थ के सबसे बाहरी अणुओं के बारे में सोचा जा सकता है जो उन सतहों से चिपके रहते हैं जिनसे यह प्रवाहित होता है क्योंकि समाधान दिए गए स्थानों पर निर्धारित किया गया है, डिरिचलेट सीमा प्रतिबंध का एक उदाहरण है। | ||
== शारीरिक औचित्य == | == शारीरिक औचित्य == | ||
Line 9: | Line 9: | ||
== अपवाद == | == अपवाद == | ||
अधिकांश अभियांत्रिकी अनुमानों के साथ, नो-स्लिप प्रतिबंध हमेशा वास्तविकता में नहीं | अधिकांश अभियांत्रिकी अनुमानों के साथ, नो-स्लिप प्रतिबंध हमेशा वास्तविकता में नहीं होता है। उदाहरण के लिए, बहुत कम दबाव पर (जैसे उच्च ऊंचाई पर), यहां तक कि जब सातत्य सन्निकटन अभी भी आयोजित है, तो सतह के पास इतने कम अणु हो सकते हैं कि वे सतह के नीचे <nowiki>''</nowiki>उच्छलन<nowiki>''</nowiki> करते हैं। द्रव सर्पण के लिए एक सामान्य सन्निकटन है: | ||
:<math>u - u_\text{Wall} = \beta \frac{\partial u}{\partial n}</math> | :<math>u - u_\text{Wall} = \beta \frac{\partial u}{\partial n}</math> | ||
Line 20: | Line 20: | ||
|pmid=9908755 |bibcode = 1992PhRvA..46.5279M }}</ref> कुछ अत्यधिक [[ जल विरोधी |जलविरागी पृष्ठ]] को गैर-शून्य लेकिन नैनो पैमाने सर्पण लंबाई के रूप में भी देखा गया है। | |pmid=9908755 |bibcode = 1992PhRvA..46.5279M }}</ref> कुछ अत्यधिक [[ जल विरोधी |जलविरागी पृष्ठ]] को गैर-शून्य लेकिन नैनो पैमाने सर्पण लंबाई के रूप में भी देखा गया है। | ||
जबकि[[ श्यानता ]]प्रवाह के मॉडलिंग में नो-स्लिप प्रतिबंध का उपयोग लगभग सार्वभौमिक रूप से किया जाता है, इसे कभी-कभी 'नो-अंतर्वेधन प्रतिबंध' के पक्ष में उपेक्षित किया जाता है (जहां प्राचीर के लिए सामान्य द्रव वेग इस दिशा में प्राचीर वेग पर समुच्चय | जबकि[[ श्यानता ]]प्रवाह के मॉडलिंग में नो-स्लिप प्रतिबंध का उपयोग लगभग सार्वभौमिक रूप से किया जाता है, इसे कभी-कभी 'नो-अंतर्वेधन प्रतिबंध' के पक्ष में उपेक्षित किया जाता है (जहां प्राचीर के लिए सामान्य द्रव वेग इस दिशा में प्राचीर वेग पर समुच्चय होते है, लेकिन प्राचीर के समानांतर द्रव वेग अप्रतिबंधित है) [[अदृश्य प्रवाह]] के प्रारंभिक विश्लेषण में, जहां [[सीमा परत|सीमा परतों]] के प्रभाव की उपेक्षा की जाती है। | ||
नो-स्लिप प्रतिबंध संस्पर्श रेखा पर श्यान प्रवाह सिद्धांत में समस्या उत्पन्न | नो-स्लिप प्रतिबंध संस्पर्श रेखा पर श्यान प्रवाह सिद्धांत में समस्या उत्पन्न करते है: ऐसे स्थान जहां दो द्रव पदार्थों के मध्य एक अंतरापृष्ठ एक ठोस सीमा से मिलता है। यहां, नो-स्लिप सीमा प्रतिबंध का तात्पर्य है कि संपर्क रेखा की प्रतिबंध चलती नहीं है, जो वास्तव में देखी नहीं जाती है। सर्पण की प्रतिबंध के बिना चलती हुई संपर्क रेखा के विश्लेषण से अनंत तनाव उत्पन्न होते हैं जिन्हें एकीकृत नहीं किया जा सकता है। माना जाता है कि संपर्क रेखा की गति की दर उस कोण पर निर्भर करती है जो संपर्क रेखा ठोस सीमा के साथ बनाती है, लेकिन इसके पीछे का तंत्र अभी तक पूरी तरह से समझा नहीं गया है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 19:09, 23 April 2023
द्रव गतिकी में, श्यान द्रव पदार्थों के लिए नो-स्लिप प्रतिबंध यह मानता है कि एक ठोस सीमा पर, द्रव पदार्थ की सीमा के सापेक्ष शून्य वेग होता है।
सभी द्रव-ठोस सीमाओं पर द्रव का वेग ठोस सीमा के समान होता है।[1] संकल्पनात्मक रूप से, द्रव पदार्थ के सबसे बाहरी अणुओं के बारे में सोचा जा सकता है जो उन सतहों से चिपके रहते हैं जिनसे यह प्रवाहित होता है क्योंकि समाधान दिए गए स्थानों पर निर्धारित किया गया है, डिरिचलेट सीमा प्रतिबंध का एक उदाहरण है।
शारीरिक औचित्य
एक सतह के पास के कण एक प्रवाह के साथ नहीं चलते हैं जब आसंजन सामंजस्य (रसायन विज्ञान) से अधिक मजबूत होता है। द्रव-ठोस अंतरापृष्ठ पर, द्रव कणों और ठोस कणों (आसंजक बल) के मध्य का आकर्षण बल द्रव कणों (संसंजक बलों) के मध्य की तुलना में अधिक होता है। यह बल असंतुलन द्रव के वेग को शून्य कर देता है। नो-स्लिप प्रतिबंध को केवल श्यान प्रवाह के लिए परिभाषित किया गया है और जहां सातत्य अवधारणा मान्य है।
This section needs expansion. You can help by adding to it. (June 2008) |
अपवाद
अधिकांश अभियांत्रिकी अनुमानों के साथ, नो-स्लिप प्रतिबंध हमेशा वास्तविकता में नहीं होता है। उदाहरण के लिए, बहुत कम दबाव पर (जैसे उच्च ऊंचाई पर), यहां तक कि जब सातत्य सन्निकटन अभी भी आयोजित है, तो सतह के पास इतने कम अणु हो सकते हैं कि वे सतह के नीचे ''उच्छलन'' करते हैं। द्रव सर्पण के लिए एक सामान्य सन्निकटन है:
जहां प्राचीर के लिए सामान्य समन्वय है और को सर्पण लंबाई कहा जाता है। एक आदर्श गैस के लिए, सर्पण की लंबाई को प्रायः के रूप में अनुमानित किया जाता है, जहां माध्य मुक्त पथ है।[2] कुछ अत्यधिक जलविरागी पृष्ठ को गैर-शून्य लेकिन नैनो पैमाने सर्पण लंबाई के रूप में भी देखा गया है।
जबकिश्यानता प्रवाह के मॉडलिंग में नो-स्लिप प्रतिबंध का उपयोग लगभग सार्वभौमिक रूप से किया जाता है, इसे कभी-कभी 'नो-अंतर्वेधन प्रतिबंध' के पक्ष में उपेक्षित किया जाता है (जहां प्राचीर के लिए सामान्य द्रव वेग इस दिशा में प्राचीर वेग पर समुच्चय होते है, लेकिन प्राचीर के समानांतर द्रव वेग अप्रतिबंधित है) अदृश्य प्रवाह के प्रारंभिक विश्लेषण में, जहां सीमा परतों के प्रभाव की उपेक्षा की जाती है।
नो-स्लिप प्रतिबंध संस्पर्श रेखा पर श्यान प्रवाह सिद्धांत में समस्या उत्पन्न करते है: ऐसे स्थान जहां दो द्रव पदार्थों के मध्य एक अंतरापृष्ठ एक ठोस सीमा से मिलता है। यहां, नो-स्लिप सीमा प्रतिबंध का तात्पर्य है कि संपर्क रेखा की प्रतिबंध चलती नहीं है, जो वास्तव में देखी नहीं जाती है। सर्पण की प्रतिबंध के बिना चलती हुई संपर्क रेखा के विश्लेषण से अनंत तनाव उत्पन्न होते हैं जिन्हें एकीकृत नहीं किया जा सकता है। माना जाता है कि संपर्क रेखा की गति की दर उस कोण पर निर्भर करती है जो संपर्क रेखा ठोस सीमा के साथ बनाती है, लेकिन इसके पीछे का तंत्र अभी तक पूरी तरह से समझा नहीं गया है।
यह भी देखें
बाहरी संबंध
संदर्भ
- ↑ Day, Michael A. (2004). "द्रव गतिकी की नो-स्लिप स्थिति". Erkenntnis. 33 (3): 285–296. doi:10.1007/BF00717588. S2CID 55186899.
- ↑ David L. Morris; Lawrence Hannon; Alejandro L. Garcia (1992). "Slip length in a dilute gas". Physical Review A. 46 (8): 5279–5281. Bibcode:1992PhRvA..46.5279M. doi:10.1103/PhysRevA.46.5279. PMID 9908755.
.