प्रतिलोम वक्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 63: Line 63:
फ़र्मेट वक्र पर किसी भी परिमेय बिंदु का इस वक्र पर संगत परिमेय बिंदु होता है। जो फ़र्मेट के अंतिम प्रमेय के समान सूत्रीकरण प्रदर्शित करता है।
फ़र्मेट वक्र पर किसी भी परिमेय बिंदु का इस वक्र पर संगत परिमेय बिंदु होता है। जो फ़र्मेट के अंतिम प्रमेय के समान सूत्रीकरण प्रदर्शित करता है।


== विशेष ==
== विशेष स्थितियाँ ==
सरलता के लिए निम्नलिखित में व्युत्क्रम का वृत्त इकाई वृत्त होगा। व्युत्क्रमण के अन्य वृत्तों के परिणाम मूल वक्र के अनुवाद और आवर्धन द्वारा प्राप्त किए जा सकते हैं।
सरलता के लिए निम्नलिखित स्थितियों में व्युत्क्रम का वृत्त इकाई वृत्त होगा। व्युत्क्रमण के अन्य वृत्तों के परिणाम मूल वक्र के अनुवाद और आवर्धन द्वारा प्राप्त किए जा सकते हैं।


=== रेखाएँ ===
=== रेखाएँ ===
मूल बिंदु से गुजरने वाली रेखा के लिए, ध्रुवीय समीकरण है {{math|''θ'' {{=}} ''θ''<sub>0</sub>}} कहाँ {{math|''θ''<sub>0</sub>}} निश्चित है। यह व्युत्क्रम के अनुसार अपरिवर्तित रहता है।
मूल बिंदु से निकलने वाली रेखा के लिए ध्रुवीय समीकरण {{math|''θ'' {{=}} ''θ''<sub>0</sub>}} है। जहाँ {{math|''θ''<sub>0</sub>}} निश्चित है। यह व्युत्क्रम के अनुसार अपरिवर्तित रहता है।


मूल बिंदु से न गुजरने वाली रेखा के लिए ध्रुवीय समीकरण है
मूल बिंदु से न होकर जाने वाली रेखा के लिए ध्रुवीय समीकरण है।


:<math>r\cos\left(\theta-\theta_0\right) = a</math>
:<math>r\cos\left(\theta-\theta_0\right) = a</math>
और व्युत्क्रम वक्र का समीकरण है
और व्युत्क्रम वक्र का समीकरण है।


:<math>r = a\cos\left(\theta-\theta_0\right)</math>
:<math>r = a\cos\left(\theta-\theta_0\right)</math>
जो मूल बिंदु से गुजरने वाले एक वृत्त को परिभाषित करता है। व्युत्क्रम को फिर से लागू करने से पता चलता है कि मूल बिंदु से गुजरने वाले वृत्त का व्युत्क्रम एक रेखा है।
जो मूल बिंदु से होकर जाने वाले एक वृत्त को परिभाषित करता है। व्युत्क्रम को पुनः संचालित करने से यह ज्ञात होता है कि मूल बिंदु से होकर जाने वाले वृत्त का व्युत्क्रम एक रेखा होती है।


=== मंडलियां ===
=== गोले ===
ध्रुवीय निर्देशांक में, एक वृत्त के लिए सामान्य समीकरण जो मूल से नहीं गुजरता है (अन्य मामलों को कवर किया गया है) है
ध्रुवीय निर्देशांक में वृत्त के लिए सामान्य समीकरण, जो मूल से होकर नहीं जाता है (अन्य स्थितियों को कवर किया गया है।) है-


:<math>r^2 - 2r_0 r\cos\left(\theta-\theta_0\right) + r_0^2 - a^2 = 0,\qquad(a>0,\ r>0,\ a \ne r_0)</math>
:<math>r^2 - 2r_0 r\cos\left(\theta-\theta_0\right) + r_0^2 - a^2 = 0,\qquad(a>0,\ r>0,\ a \ne r_0)</math>
कहाँ {{mvar|a}} त्रिज्या है और {{math|(''r''<sub>0</sub>, ''θ''<sub>0</sub>)}} केंद्र के ध्रुवीय निर्देशांक हैं। व्युत्क्रम वक्र का समीकरण तब है
जहाँ {{mvar|a}} त्रिज्या है और {{math|(''r''<sub>0</sub>, ''θ''<sub>0</sub>)}} केंद्र के ध्रुवीय निर्देशांक हैं। व्युत्क्रम वक्र का समीकरण तब है-


:<math>1 - 2r_0 r\cos\left(\theta-\theta_0\right) + \left(r_0^2 - a^2\right)r^2 = 0,</math>
:<math>1 - 2r_0 r\cos\left(\theta-\theta_0\right) + \left(r_0^2 - a^2\right)r^2 = 0,</math>
Line 87: Line 87:


:<math>r^2 - \frac{2r_0}{r_0^2 - a^2} r\cos\left(\theta-\theta_0\right) + \frac{1}{r_0^2 - a^2} = 0.</math>
:<math>r^2 - \frac{2r_0}{r_0^2 - a^2} r\cos\left(\theta-\theta_0\right) + \frac{1}{r_0^2 - a^2} = 0.</math>
यह त्रिज्या वाले वृत्त का समीकरण है
यह त्रिज्या वाले वृत्त का समीकरण प्रदर्शित करता है।


:<math>A = \frac{a}{\left|r_0^2 - a^2\right|}</math>
:<math>A = \frac{a}{\left|r_0^2 - a^2\right|}</math>
और केंद्र जिसके ध्रुवीय निर्देशांक हैं
और केंद्र जिसके ध्रुवीय निर्देशांक निम्नलिखित हैं।


:<math>\left(R_0, \Theta_0\right) = \left(\frac{r_0}{r_0^2 - a^2}, \theta_0\right).</math>
:<math>\left(R_0, \Theta_0\right) = \left(\frac{r_0}{r_0^2 - a^2}, \theta_0\right).</math>
ध्यान दें कि {{math|''R''<sub>0</sub>}} नकारात्मक हो सकता है।
ध्यान दें कि {{math|''R''<sub>0</sub>}} हो सकता है।


यदि मूल वृत्त इकाई वृत्त के साथ प्रतिच्छेद करता है, तो दो वृत्तों के केंद्र और प्रतिच्छेदन बिंदु पक्षों के साथ एक त्रिभुज बनाते हैं {{math|1, ''a'', ''r''<sub>0</sub>}} यह एक समकोण त्रिभुज है, अर्थात त्रिज्याएँ समकोण पर हैं, ठीक जब
यदि मूल वृत्त इकाई वृत्त के साथ प्रतिच्छेद करता है। तो दो वृत्तों के केंद्र और प्रतिच्छेदन बिंदु {{math|1, ''a'', ''r''<sub>0</sub>}} पक्षों के साथ एक त्रिभुज  हैं। यह एक समकोण त्रिभुज है अर्थात त्रिज्याएँ समकोण पर हैं। ठीक जब


:<math>r_0^2 = a^2 + 1.</math>
:<math>r_0^2 = a^2 + 1.</math>

Revision as of 08:16, 21 April 2023

धराशायी घेरा में लाल परवलय को उल्टा करके हरा कारडायोड प्राप्त किया जाता है।

प्रतिलोम ज्यामिति में दिए गए वक्र का प्रतिलोम वक्र C व्युत्क्रम ज्यामिति संक्रिया को सचालित करने का परिणाम है। विशेष रूप से केंद्र C के साथ एक निश्चित वृत्त O के संबंध में और त्रिज्या k बिंदु Q का व्युत्क्रम बिंदु है। P जिसके लिए किरण OQ पर स्थित है और OP·OQ = k2। वक्र C का व्युत्क्रम तब P का स्थान है क्योंकि Q, C पर चलता है। बिंदु O इस निर्माण में व्युत्क्रम का केंद्र कहा जाता है। वृत्त को व्युत्क्रम का वृत्त कहा जाता है और k व्युत्क्रम की त्रिज्या है।

एक व्युत्क्रम दो बार संचालित किया गया पहचान परिवर्तन है। इसलिए एक ही वृत्त के संबंध में व्युत्क्रम वक्र का व्युत्क्रम मूल वक्र है। व्युत्क्रम के वृत्त पर बिंदु व्युत्क्रम द्वारा निर्धारित किए जाते हैं। इसलिए इसका व्युत्क्रम स्वयं है।

समीकरण

बिंदु (x, y) का उलटा इकाई वृत्त के संबंध में (X, Y) है। जहाँ-

या समकक्ष

तो वक्र का व्युत्क्रम f(x, y) = 0 द्वारा निर्धारित इकाई वृत्त के संबंध में है

इससे स्पष्ट है कि n डिग्री के एक बीजगणितीय वक्र का उलटा होना वृत्त के संबंध में अधिक से अधिक 2n डिग्री का बीजगणितीय वक्र उत्पन्न करता है।

इसी प्रकार वक्र के व्युत्क्रम को पैरामीट्रिक समीकरणों द्वारा परिभाषित किया जाता है।

यूनिट सर्कल के संबंध में पैरामीट्रिक रूप से दिया गया है।

इसका अर्थ यह है कि परिमेय वक्र का वर्तुल व्युत्क्रम भी परिमेय होता है।

अधिक सामान्यतः द्वारा निर्धारित वक्र का व्युत्क्रम f(x, y) = 0 केंद्र (a, b) वाले वृत्त के संबंध में और त्रिज्या k है।

पैरामीट्रिक रूप से परिभाषित वक्र का व्युत्क्रम-

उसी सर्कल के संबंध में पैरामीट्रिक रूप से दिया गया है।

ध्रुवीय निर्देशांक में समीकरण सरल होते हैं। जब व्युत्क्रम का चक्र इकाई चक्र होता है। बिंदु (r, θ) का उलटा इकाई वृत्त के संबंध में (R, Θ) है। जहाँ-

अतः वक्र का प्रतिलोम f(r, θ) = 0 इसके f(1/R, Θ) = 0 द्वारा निर्धारित किया जाता है और r = g(θ) वक्र का व्युत्क्रम r = 1/g(θ) है।

डिग्री (कोटि)

जैसा कि ऊपर उल्लेख किया गया है कि n डिग्री के वक्र के वृत्त के संबंध में व्युत्क्रम के पास अधिकतम डिग्री 2n है। डिग्री 2n रियल है। जब तक कि मूल वक्र व्युत्क्रम बिंदु से होकर नहीं निकलता है या यह वृत्ताकार बीजीय वक्र है। जिसका अर्थ यह है कि इसमें वृत्ताकार बिंदु (1, ±i, 0) हैं। जब जटिल प्रक्षेपी तल में वक्र के रूप में माना जाता है। सामान्यतः एक अनगिनत वक्र के संबंध में व्युत्क्रम आनुपातिक रूप से बड़ी डिग्री के साथ बीजगणितीय वक्र उत्पन्न कर सकता है।

विशेष रूप से यदि C पर p-डिग्री का वृत्त n है और यदि व्युत्क्रम का केंद्र C पर q क्रम की विलक्षणता है। तो व्युत्क्रम वक्र 2n − 2pq-डिग्री का वृत्ताकार वक्र (npq) और व्युत्क्रम का केंद्र n − 2p उलटे वक्र पर क्रम की विलक्षणता है। यहाँ q = 0, यदि वक्र में व्युत्क्रम का केंद्र नहीं है और q = 1, यदि व्युत्क्रम का केंद्र उस पर एक विलक्षण बिंदु है। इसी प्रकार C पर गोलाकार बिंदु (1, ±i, 0) क्रम p की विलक्षणताएं हैं। मूल्य k को इन संबंधों से हटाकर यह प्रदर्शित किया जा सकता है कि का समुच्चय p-डिग्री के वृत्ताकार वक्र p + k, जहाँ p भिन्न हो सकता है। किन्तु k एक निश्चित धनात्मक पूर्णांक है और यह व्युत्क्रम के अनुसार अपरिवर्तनीय होता है।

उदाहरण

उपरोक्त परिवर्तन को बर्नौली के लेम्निस्केट पर संचालित करना-

हमें प्राप्त होता है कि-

अतिपरवलय का समीकरण; चूँकि व्युत्क्रम द्विभाजित परिवर्तन है और अतिपरवलय परिमेय वक्र है। इससे यह ज्ञात होता है कि लेमनिस्केट भी परिमेय वक्र है। जिसे जीनस (गणित) शून्य का वक्र कहा जाता है।

यदि हम xn + yn = 1 रूपांतरण को फर्मेट वक्र पर संचालित करते हैं। जहाँ n विषम है। हमें प्राप्त होता है कि-

फ़र्मेट वक्र पर किसी भी परिमेय बिंदु का इस वक्र पर संगत परिमेय बिंदु होता है। जो फ़र्मेट के अंतिम प्रमेय के समान सूत्रीकरण प्रदर्शित करता है।

विशेष स्थितियाँ

सरलता के लिए निम्नलिखित स्थितियों में व्युत्क्रम का वृत्त इकाई वृत्त होगा। व्युत्क्रमण के अन्य वृत्तों के परिणाम मूल वक्र के अनुवाद और आवर्धन द्वारा प्राप्त किए जा सकते हैं।

रेखाएँ

मूल बिंदु से निकलने वाली रेखा के लिए ध्रुवीय समीकरण θ = θ0 है। जहाँ θ0 निश्चित है। यह व्युत्क्रम के अनुसार अपरिवर्तित रहता है।

मूल बिंदु से न होकर जाने वाली रेखा के लिए ध्रुवीय समीकरण है।

और व्युत्क्रम वक्र का समीकरण है।

जो मूल बिंदु से होकर जाने वाले एक वृत्त को परिभाषित करता है। व्युत्क्रम को पुनः संचालित करने से यह ज्ञात होता है कि मूल बिंदु से होकर जाने वाले वृत्त का व्युत्क्रम एक रेखा होती है।

गोले

ध्रुवीय निर्देशांक में वृत्त के लिए सामान्य समीकरण, जो मूल से होकर नहीं जाता है (अन्य स्थितियों को कवर किया गया है।) है-

जहाँ a त्रिज्या है और (r0, θ0) केंद्र के ध्रुवीय निर्देशांक हैं। व्युत्क्रम वक्र का समीकरण तब है-

या

यह त्रिज्या वाले वृत्त का समीकरण प्रदर्शित करता है।

और केंद्र जिसके ध्रुवीय निर्देशांक निम्नलिखित हैं।

ध्यान दें कि R0 हो सकता है।

यदि मूल वृत्त इकाई वृत्त के साथ प्रतिच्छेद करता है। तो दो वृत्तों के केंद्र और प्रतिच्छेदन बिंदु 1, a, r0 पक्षों के साथ एक त्रिभुज हैं। यह एक समकोण त्रिभुज है अर्थात त्रिज्याएँ समकोण पर हैं। ठीक जब

किन्तु ऊपर दिए गए समीकरणों से, मूल वृत्त व्युत्क्रम वृत्त के समान होता है जब बिल्कुल

तो एक वृत्त का व्युत्क्रम एक ही वृत्त होता है यदि और केवल यदि यह इकाई वृत्त को समकोण पर काटता है।

इसे और पिछले अनुभाग को सारांशित और सामान्य बनाने के लिए:

  1. एक रेखा या एक वृत्त का व्युत्क्रम एक रेखा या एक वृत्त होता है।
  2. यदि मूल वक्र एक रेखा है तो व्युत्क्रम वक्र व्युत्क्रम के केंद्र से होकर गुजरेगा। यदि मूल वक्र व्युत्क्रम के केंद्र से होकर गुजरता है तो उलटा वक्र एक रेखा होगी।
  3. उलटा वक्र मूल के समान ही होगा जब वक्र समकोण पर व्युत्क्रम के वृत्त को काटता है।

शीर्ष पर व्युत्क्रम के केंद्र के साथ परवलय

एक पैराबोला का समीकरण, समानता तक, अनुवाद कर रहा है ताकि शीर्ष मूल पर हो और घूर्णन हो ताकि धुरी क्षैतिज हो, x = y2. ध्रुवीय निर्देशांक में यह बन जाता है

व्युत्क्रम वक्र में तब समीकरण होता है

जो डायोक्लेस का सिसॉइड है।

फोकस पर व्युत्क्रम के केंद्र के साथ शांकव खंड

मूल पर एक फोकस के साथ शंकु खंड का ध्रुवीय समीकरण समानता तक है

जहां e विलक्षणता है। तब इस वक्र का व्युत्क्रम होगा।

जो कि पास्कल के लिमाकॉन का समीकरण है। जब e = 0 यह व्युत्क्रम का चक्र है। जब 0 < e < 1 मूल वक्र एक दीर्घवृत्त है और व्युत्क्रम मूल में एक एकनोड के साथ एक साधारण बंद वक्र है। जब e = 1 मूल वक्र एक परवलय है और व्युत्क्रम कार्डियोइड है जिसके मूल में एक पुच्छ है। जब e > 1 मूल वक्र एक अतिपरवलय है और व्युत्क्रम मूल में एक क्रूनोड के साथ दो लूप बनाता है।


दीर्घवृत्त और अतिपरवलय एक शीर्ष पर व्युत्क्रम के केंद्र के साथ

दीर्घवृत्त या अतिपरवलय का सामान्य समीकरण है

इसका अनुवाद करना ताकि मूल शीर्षों में से एक हो

और पुनर्व्यवस्थित देता है

या, बदलते स्थिरांक,

ध्यान दें कि उपरोक्त परवलय अब इस योजना में डालकर फिट बैठता है c = 0 और d = 1. व्युत्क्रम का समीकरण है

या

यह समीकरण घटता के एक परिवार का वर्णन करता है जिसे डी स्लज का शंख कहा जाता है। इस परिवार में ऊपर सूचीबद्ध डायोक्लेस के सिसॉइड के अलावा, मैक्लॉरिन का ट्राइसेक्ट्रिक्स शामिल है (d = −c/3) और दायां स्ट्रॉफॉइड (d = −c).

केंद्र में व्युत्क्रम के केंद्र के साथ दीर्घवृत्त और अतिपरवलय

दीर्घवृत्त या अतिपरवलय के समीकरण को उलटना

देता है

जो हिप्पोपेड है। कब d = −c यह बरनौली का लेम्निस्केट है।

मनमाना व्युत्क्रम केंद्र वाले शांकव

उपरोक्त डिग्री सूत्र को लागू करते हुए, एक शंकु का व्युत्क्रम (एक वृत्त के अलावा) एक वृत्ताकार घन है यदि व्युत्क्रम का केंद्र वक्र पर है, और एक द्विवृत्ताकार चतुर्थांश है। शंकु परिमेय होते हैं इसलिए प्रतिलोम वक्र भी परिमेय होते हैं। इसके विपरीत, कोई भी परिमेय वृत्ताकार घन या परिमेय द्विवृत्ताकार चतुर्थक शांकव का व्युत्क्रम होता है। वास्तव में, ऐसे किसी भी वक्र में एक वास्तविक विलक्षणता होनी चाहिए और इस बिंदु को व्युत्क्रम के केंद्र के रूप में लेते हुए, व्युत्क्रम वक्र डिग्री सूत्र द्वारा एक शंकु होगा।[1][2]


एनालाग्मैटिक कर्व्स

एक अलग्मैटिक वक्र वह होता है जो अपने आप में उलट जाता है। उदाहरणों में शामिल हैं सर्कल, कार्डियोइड, कैसिनी का अंडाकार, strophoid और मैक्लॉरिन का ट्राइसेक्ट्रिक्स।

यह भी देखें

  • उलटा ज्यामिति
  • :de: उलटा (ज्यामितीय) | घटता और सतहों का उलटा (जर्मन)

संदर्भ

  • Stubbs, J. W. (1843). "On the application of a new Method to the Geometry of Curves and Curve Surfaces". Philosophical Magazine. Series 3. 23: 338–347.
  • Lawrence, J. Dennis (1972). A catalog of special plane curves. Dover Publications. pp. 43–46, 121. ISBN 0-486-60288-5.
  • Weisstein, Eric W. "Inverse Curve". MathWorld.
  • Weisstein, Eric W. "Anallagmatic Curve". MathWorld.
  • "Inversion" at Visual Dictionary Of Special Plane Curves
  • "Inverse d'une Courbe par Rapport à un Point" at Encyclopédie des Formes Mathématiques Remarquables


बाहरी संबंध