डायलिसिस (रसायन विज्ञान): Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 7: Line 7:
डायलिसिस की अवधारणा 1861 में स्कॉटिश रसायनज्ञ थॉमस ग्राहम (रसायनज्ञ) द्वारा पेश की गई थी।<ref name=EB1911>{{cite EB1911 |wstitle=Dialysis |volume=8 |page=157}}</ref> उन्होंने इस तकनीक का इस्तेमाल जलीय घोल में सुक्रोज (छोटे अणु) और गोंद अरबी विलेय (बड़े अणु) को अलग करने के लिए किया। उन्होंने विसरणीय विलेय को क्रिस्टलॉयड कहा और वे जो झिल्ली कोलॉइड से नहीं गुजरेंगे।<ref name=":4" />
डायलिसिस की अवधारणा 1861 में स्कॉटिश रसायनज्ञ थॉमस ग्राहम (रसायनज्ञ) द्वारा पेश की गई थी।<ref name=EB1911>{{cite EB1911 |wstitle=Dialysis |volume=8 |page=157}}</ref> उन्होंने इस तकनीक का इस्तेमाल जलीय घोल में सुक्रोज (छोटे अणु) और गोंद अरबी विलेय (बड़े अणु) को अलग करने के लिए किया। उन्होंने विसरणीय विलेय को क्रिस्टलॉयड कहा और वे जो झिल्ली कोलॉइड से नहीं गुजरेंगे।<ref name=":4" />


इस अवधारणा से डायलिसिस को अर्ध पारगम्य झिल्ली के माध्यम से भंग आयनों या छोटे आयामों के अणुओं से निलंबित कोलाइडल कणों की एक सहज पृथक्करण प्रक्रिया के रूप में परिभाषित किया जा सकता है। सबसे आम डायलिसिस मेम्ब्रेन सेलूलोज़, संशोधित सेलूलोज़ या सिंथेटिक बहुलक (सेलूलोज़ एसीटेट या नाइट्रोसेल्यूलोज़) से बने होते हैं।<ref>{{Cite book |last1=Ninfa |first1=A.J. |last2=Ballou |first2=D. P. |last3=Benore |first3=M. |title=जैव रसायन और जैव प्रौद्योगिकी के लिए मौलिक प्रयोगशाला दृष्टिकोण|year=2009 |isbn=978-0-470-08766-4 |pages=45}}</ref>
इस अवधारणा से डायलिसिस को अर्ध पारगम्य झिल्ली के माध्यम से भंग आयनों या छोटे आयामों के अणुओं से निलंबित कोलाइडल कणों की एक सहज पृथक्करण प्रक्रिया के रूप में परिभाषित किया जा सकता है। सबसे आम डायलिसिस झिल्ली सेलूलोज़, संशोधित सेलूलोज़ या सिंथेटिक बहुलक (सेलूलोज़ एसीटेट या नाइट्रोसेल्यूलोज़) से बने होते हैं।<ref>{{Cite book |last1=Ninfa |first1=A.J. |last2=Ballou |first2=D. P. |last3=Benore |first3=M. |title=जैव रसायन और जैव प्रौद्योगिकी के लिए मौलिक प्रयोगशाला दृष्टिकोण|year=2009 |isbn=978-0-470-08766-4 |pages=45}}</ref>




Line 19: Line 19:
[[असमस]] एक और सिद्धांत है जो डायलिसिस का काम करता है। परासरण के दौरान, द्रव उच्च जल सांद्रता वाले क्षेत्रों से अर्ध-पारगम्य झिल्ली के माध्यम से कम जल सांद्रता की ओर संतुलन तक चलता है। डायलिसिस में, अतिरिक्त तरल पदार्थ एक झिल्ली के माध्यम से नमूने से डायलीसेट की ओर तब तक जाता है जब तक नमूना और डायलीसेट के बीच द्रव का स्तर समान नहीं हो जाता।
[[असमस]] एक और सिद्धांत है जो डायलिसिस का काम करता है। परासरण के दौरान, द्रव उच्च जल सांद्रता वाले क्षेत्रों से अर्ध-पारगम्य झिल्ली के माध्यम से कम जल सांद्रता की ओर संतुलन तक चलता है। डायलिसिस में, अतिरिक्त तरल पदार्थ एक झिल्ली के माध्यम से नमूने से डायलीसेट की ओर तब तक जाता है जब तक नमूना और डायलीसेट के बीच द्रव का स्तर समान नहीं हो जाता।


अंत में, [[अल्ट्राफिल्ट्रेशन]] पानी का संवहन प्रवाह है और जलस्थैतिक बलों या आसमाटिक बलों के कारण दबाव प्रवणता के नीचे घुला हुआ पदार्थ घुल जाता है। डायलिसिस में, अल्ट्राफिल्ट्रेशन नमूने से अपशिष्ट और अतिरिक्त तरल पदार्थ के अणुओं को हटा देता है।<ref name=":6" /><ref name=":5" />
अंत में, [[अल्ट्राफिल्ट्रेशन]] जल का संवहन प्रवाह है और जलस्थैतिक बलों या आसमाटिक बलों के कारण दबाव प्रवणता के नीचे घुला हुआ पदार्थ घुल जाता है। डायलिसिस में, अल्ट्राफिल्ट्रेशन नमूने से अपशिष्ट और अतिरिक्त तरल पदार्थ के अणुओं को हटा देता है।<ref name=":6" /><ref name=":5" />


उदाहरण के लिए, डायलिसिस तब होता है जब एक सेलूलोज़ बैग में एक नमूना होता है और इसे डायलीसेट समाधान में डुबोया जाता है। डायलिसिस के दौरान, नमूने और डायलीसेट के बीच संतुलन प्राप्त किया जाता है क्योंकि केवल छोटे अणु ही सेल्युलोज झिल्ली को पार कर सकते हैं, केवल बड़े कण पीछे रह जाते हैं।
उदाहरण के लिए, डायलिसिस तब होता है जब एक सेलूलोज़ बैग में एक नमूना होता है और इसे डायलीसेट समाधान में डुबोया जाता है। डायलिसिस के दौरान, नमूने और डायलीसेट के बीच संतुलन प्राप्त किया जाता है क्योंकि केवल छोटे अणु ही सेल्युलोज झिल्ली को पार कर सकते हैं, केवल बड़े कण पीछे रह जाते हैं।
Line 42: Line 42:


==== रिवर्स इलेक्ट्रोडायलिसिस ====
==== रिवर्स इलेक्ट्रोडायलिसिस ====
रिवर्स इलेक्ट्रोडायलिसिस झिल्लियों पर आधारित एक तकनीक है जो विभिन्न [[लवणता]] वाली दो जल धाराओं के मिश्रण से बिजली प्राप्त करती है। यह आमतौर पर आयन एक्सचेंज मेम्ब्रेन (AEM) और कटियन एक्सचेंज मेम्ब्रेन (CEM) का उपयोग करता है। AEMs का उपयोग आयनों के पारित होने की अनुमति देने के लिए किया जाता है और cations के पारित होने में बाधा उत्पन्न होती है और CEMs का उपयोग इसके विपरीत करने के लिए किया जाता है। उच्च लवणता वाले पानी में धनायन और ऋणायन कम लवणता वाले पानी में चले जाते हैं, CEMs से गुजरने वाले धनायन और AEMs के माध्यम से आयन। इस घटना को बिजली में बदला जा सकता है।<ref>{{Cite journal |last1=Mei |first1=Y. |last2=Tang |first2=C.Y. |date=2018 |title=Recent developments and future perspectives of reverse electrodialysis technology: A review |journal=Desalination |volume=425 |pages=156–174 |doi=10.1016/j.desal.2017.10.021}}</ref>
रिवर्स इलेक्ट्रोडायलिसिस झिल्लियों पर आधारित एक तकनीक है जो विभिन्न [[लवणता]] वाली दो जल धाराओं के मिश्रण से बिजली प्राप्त करती है। यह आमतौर पर आयन एक्सचेंज झिल्ली (AEM) और कटियन एक्सचेंज झिल्ली (CEM) का उपयोग करता है। AEMs का उपयोग आयनों के पारित होने की अनुमति देने के लिए किया जाता है और cations के पारित होने में बाधा उत्पन्न होती है और CEMs का उपयोग इसके विपरीत करने के लिए किया जाता है। उच्च लवणता वाले जल में धनायन और ऋणायन कम लवणता वाले जल में चले जाते हैं, CEMs से गुजरने वाले धनायन और AEMs के माध्यम से आयन। इस घटना को बिजली में बदला जा सकता है।<ref>{{Cite journal |last1=Mei |first1=Y. |last2=Tang |first2=C.Y. |date=2018 |title=Recent developments and future perspectives of reverse electrodialysis technology: A review |journal=Desalination |volume=425 |pages=156–174 |doi=10.1016/j.desal.2017.10.021}}</ref>




==== इलेक्ट्रो-इलेक्ट्रोडायलिसिस ====
==== इलेक्ट्रो-इलेक्ट्रोडायलिसिस ====
इलेक्ट्रो-इलेक्ट्रोडायलिसिस तीन डिब्बों का उपयोग करने वाली एक इलेक्ट्रोमेम्ब्रेन प्रक्रिया है, जो इलेक्ट्रोडायलिसिस और [[इलेक्ट्रोलीज़]] को जोड़ती है। यह आमतौर पर AEM, CEM और इलेक्ट्रोलिसिस का उपयोग करके एक समाधान से एसिड को पुनर्प्राप्त करने के लिए उपयोग किया जाता है। तीन डिब्बों को दो बाधाओं से अलग किया जाता है, जो आयन एक्सचेंज झिल्ली हैं। बीच के डिब्बे में उपचारित करने के लिए पानी होता है। किनारों पर स्थित डिब्बों में साफ पानी होता है। आयन AEM से होकर गुजरते हैं, जबकि धनायन CEM से होकर गुजरते हैं। बिजली एच बनाती है<sup>+</sup> ऋणायन पक्ष में और OH<sup>−</sup> धनायन पक्ष में, जो संबंधित आयनों के साथ प्रतिक्रिया करता है।<ref name=":3" />
इलेक्ट्रो-इलेक्ट्रोडायलिसिस तीन डिब्बों का उपयोग करने वाली एक इलेक्ट्रोझिल्ली प्रक्रिया है, जो इलेक्ट्रोडायलिसिस और [[इलेक्ट्रोलीज़]] को जोड़ती है। यह आमतौर पर AEM, CEM और इलेक्ट्रोलिसिस का उपयोग करके एक समाधान से अम्ल को पुनर्प्राप्त करने के लिए उपयोग किया जाता है। तीन डिब्बों को दो बाधाओं से अलग किया जाता है, जो आयन एक्सचेंज झिल्ली हैं। बीच के डिब्बे में उपचारित करने के लिए जल होता है। किनारों पर स्थित डिब्बों में साफ जल होता है। आयन AEM से होकर गुजरते हैं, जबकि धनायन CEM से होकर गुजरते हैं। बिजली एच बनाती है<sup>+</sup> ऋणायन पक्ष में और OH<sup>−</sup> धनायन पक्ष में, जो संबंधित आयनों के साथ प्रतिक्रिया करता है।<ref name=":3" />




Line 79: Line 79:
इसके अतिरिक्त, डायलिसिस समापन बिंदु कुछ व्यक्तिपरक और अनुप्रयोग विशिष्ट है। इसलिए, सामान्य प्रक्रिया को अनुकूलन की आवश्यकता हो सकती है।
इसके अतिरिक्त, डायलिसिस समापन बिंदु कुछ व्यक्तिपरक और अनुप्रयोग विशिष्ट है। इसलिए, सामान्य प्रक्रिया को अनुकूलन की आवश्यकता हो सकती है।


== डायलिसिस मेम्ब्रेन और MWCO ==
== डायलिसिस झिल्ली और MWCO ==


डायलिसिस झिल्लियों का उत्पादन और आणविक भार कट-ऑफ | आणविक-भार कटऑफ (MWCO) सीमा के अनुसार किया जाता है। जबकि 1-1,000,000 kDa से लेकर MWCOs वाली झिल्लियाँ व्यावसायिक रूप से उपलब्ध हैं, 10 kDa के पास MWCOs वाली झिल्लियों का सबसे अधिक उपयोग किया जाता है। एक झिल्ली का MWCO डायलिसिस झिल्ली के उत्पादन के दौरान बनाए गए छिद्रों की संख्या और औसत आकार का परिणाम है। MWCO आमतौर पर एक मानक अणु के सबसे छोटे औसत आणविक द्रव्यमान को संदर्भित करता है जो विस्तारित डायलिसिस के दौरान प्रभावी रूप से झिल्ली में नहीं फैलेगा। इस प्रकार, 10K MWCO के साथ एक डायलिसिस झिल्ली आम तौर पर कम से कम 10kDa के आणविक द्रव्यमान वाले प्रोटीन के 90% से अधिक को बनाए रखेगी।<ref>{{cite web |title=डायलिसिस झिल्ली की पृथक्करण विशेषताएं|url=http://www.piercenet.com/previews/2013-articles/separation-characteristics-dialysis-membranes/ |access-date=13 November 2013}}</ref><ref>{{cite web |title=झिल्ली डायलिसिस की मूल बातें|url=http://www.spectrumlabs.com/dialysis/Fund.html |access-date=13 November 2013}}</ref>
डायलिसिस झिल्लियों का उत्पादन और आणविक भार कट-ऑफ | आणविक-भार कटऑफ (MWCO) सीमा के अनुसार किया जाता है। जबकि 1-1,000,000 kDa से लेकर MWCOs वाली झिल्लियाँ व्यावसायिक रूप से उपलब्ध हैं, 10 kDa के पास MWCOs वाली झिल्लियों का सबसे अधिक उपयोग किया जाता है। एक झिल्ली का MWCO डायलिसिस झिल्ली के उत्पादन के दौरान बनाए गए छिद्रों की संख्या और औसत आकार का परिणाम है। MWCO आमतौर पर एक मानक अणु के सबसे छोटे औसत आणविक द्रव्यमान को संदर्भित करता है जो विस्तारित डायलिसिस के दौरान प्रभावी रूप से झिल्ली में नहीं फैलेगा। इस प्रकार, 10K MWCO के साथ एक डायलिसिस झिल्ली आम तौर पर कम से कम 10kDa के आणविक द्रव्यमान वाले प्रोटीन के 90% से अधिक को बनाए रखेगी।<ref>{{cite web |title=डायलिसिस झिल्ली की पृथक्करण विशेषताएं|url=http://www.piercenet.com/previews/2013-articles/separation-characteristics-dialysis-membranes/ |access-date=13 November 2013}}</ref><ref>{{cite web |title=झिल्ली डायलिसिस की मूल बातें|url=http://www.spectrumlabs.com/dialysis/Fund.html |access-date=13 November 2013}}</ref>
Line 100: Line 100:
प्रसार डायलिसिस के कुछ अनुप्रयोगों को नीचे समझाया गया है।
प्रसार डायलिसिस के कुछ अनुप्रयोगों को नीचे समझाया गया है।


*मजबूत जलीय कास्टिक सोडा घोल को विसरण डायलिसिस द्वारा हेमिकेलुलोज से शुद्ध किया जा सकता है। यह काफी हद तक अप्रचलित [[विस्कोस प्रक्रिया]] के लिए विशिष्ट है। उस प्रक्रिया में पहला कदम पानी में [[सोडियम हाइड्रॉक्साइड]] (कास्टिक सोडा) के मजबूत (17-20% w/w) समाधान के साथ लगभग शुद्ध [[hemicellulose]] ([[कपास का पौधा]] या [[घुलने वाला गूदा]]) का उपचार करना है। उस कदम का एक प्रभाव हेमिकेलुलोज (कम आणविक भार पॉलिमर) को भंग करना है। कुछ परिस्थितियों में, प्रक्रिया से जितना संभव हो उतना हेमिकेलुलोज निकालने की सलाह दी जाती है, और यह डायलिसिस का उपयोग करके किया जा सकता है।<ref>{{cite journal |url=https://iopscience.iop.org/article/10.1149/1.3493960/pdf |title=रेयॉन उद्योग में कास्टिक सोडा समाधान जिसमें हेमिसेल्यूलोज शामिल है, की वसूली के लिए परासरण का अनुप्रयोग|first=Louis E. |last=Lovett |journal=[[Trans. Electrochem. Soc.]] |volume=73 |issue=1 |pages=163–172 |year=1938|doi=10.1149/1.3493960 }}</ref><ref>{{cite journal |url=https://pubs.acs.org/doi/pdf/10.1021/ie50504a074# |title=कास्टिक सोडा समाधान का डायलिसिस|first1=R. D. |last1=Marshall |first2=J. Anderson |last2=Storrow |journal=[[Ind. Eng. Chem.]] |volume=43 |issue=12 |pages=2934–2942 |date= 1 December 1951 |doi=10.1021/ie50504a074}}</ref><ref>{{cite web |url=https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rayon |first1=Eric K. |last1=Lee |first2=W. J. |last2=Koros |title=Membranes, Synthetic, Applications: Industrial Dialysis |others=From ''Encyclopedia of Physical Science and Technology'' (3rd edition) |website=[[ScienceDirect]] |date=2003 |access-date=29 September 2020}}</ref>
*मजबूत जलीय कास्टिक सोडा घोल को विसरण डायलिसिस द्वारा हेमिकेलुलोज से शुद्ध किया जा सकता है। यह काफी हद तक अप्रचलित [[विस्कोस प्रक्रिया]] के लिए विशिष्ट है। उस प्रक्रिया में पहला कदम जल में [[सोडियम हाइड्रॉक्साइड]] (कास्टिक सोडा) के मजबूत (17-20% w/w) समाधान के साथ लगभग शुद्ध [[hemicellulose]] ([[कपास का पौधा]] या [[घुलने वाला गूदा]]) का उपचार करना है। उस कदम का एक प्रभाव हेमिकेलुलोज (कम आणविक भार पॉलिमर) को भंग करना है। कुछ परिस्थितियों में, प्रक्रिया से जितना संभव हो उतना हेमिकेलुलोज निकालने की सलाह दी जाती है, और यह डायलिसिस का उपयोग करके किया जा सकता है।<ref>{{cite journal |url=https://iopscience.iop.org/article/10.1149/1.3493960/pdf |title=रेयॉन उद्योग में कास्टिक सोडा समाधान जिसमें हेमिसेल्यूलोज शामिल है, की वसूली के लिए परासरण का अनुप्रयोग|first=Louis E. |last=Lovett |journal=[[Trans. Electrochem. Soc.]] |volume=73 |issue=1 |pages=163–172 |year=1938|doi=10.1149/1.3493960 }}</ref><ref>{{cite journal |url=https://pubs.acs.org/doi/pdf/10.1021/ie50504a074# |title=कास्टिक सोडा समाधान का डायलिसिस|first1=R. D. |last1=Marshall |first2=J. Anderson |last2=Storrow |journal=[[Ind. Eng. Chem.]] |volume=43 |issue=12 |pages=2934–2942 |date= 1 December 1951 |doi=10.1021/ie50504a074}}</ref><ref>{{cite web |url=https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rayon |first1=Eric K. |last1=Lee |first2=W. J. |last2=Koros |title=Membranes, Synthetic, Applications: Industrial Dialysis |others=From ''Encyclopedia of Physical Science and Technology'' (3rd edition) |website=[[ScienceDirect]] |date=2003 |access-date=29 September 2020}}</ref>
* अनियन-एक्सचेंज मेम्ब्रेन का उपयोग करके जलीय घोल से एसिड को पुनर्प्राप्त किया जा सकता है। यह प्रक्रिया एक वैकल्पिक [[औद्योगिक अपशिष्ट जल उपचार]] है। इसका उपयोग मिश्रित अम्ल (HF+ HNO<sub>3</sub>), Zn की रिकवरी और सांद्रता<sup>2+</sup> और Cu<sup>2+</sup>, एच में<sub>2</sub>इसलिए<sub>4</sub>+ CuSO<sub>4</sub> और वह<sub>2</sub>इसलिए<sub>4</sub>+ ZnSO<sub>4</sub> और एच की रिकवरी<sub>2</sub>इसलिए<sub>4</sub> Fe और Ni आयन युक्त अपशिष्ट सल्फ्यूरिक एसिड के घोल से, जो हीरा निर्माण प्रक्रिया में उत्पन्न होते हैं।<ref name=":4">{{Cite journal|last=Stancheva|first=K.A.|date=2008|title=डायलिसिस के अनुप्रयोग|journal=Oxidation Communications 31|volume=4|pages=758–775}}</ref>
* अनियन-एक्सचेंज झिल्ली का उपयोग करके जलीय घोल से अम्ल को पुनर्प्राप्त किया जा सकता है। यह प्रक्रिया एक वैकल्पिक [[औद्योगिक अपशिष्ट जल उपचार]] है। इसका उपयोग मिश्रित अम्ल (HF+ HNO<sub>3</sub>), Zn की रिकवरी और सांद्रता<sup>2+</sup> और Cu<sup>2+</sup>, एच में<sub>2</sub>इसलिए<sub>4</sub>+ CuSO<sub>4</sub> और वह<sub>2</sub>इसलिए<sub>4</sub>+ ZnSO<sub>4</sub> और एच की रिकवरी<sub>2</sub>इसलिए<sub>4</sub> Fe और Ni आयन युक्त अपशिष्ट सल्फ्यूरिक अम्ल के घोल से, जो हीरा निर्माण प्रक्रिया में उत्पन्न होते हैं।<ref name=":4">{{Cite journal|last=Stancheva|first=K.A.|date=2008|title=डायलिसिस के अनुप्रयोग|journal=Oxidation Communications 31|volume=4|pages=758–775}}</ref>
* इसकी कम ऊर्जा लागत के कारण डिफ्यूजन डायलिसिस का उपयोग करके क्षार अपशिष्ट को पुनर्प्राप्त किया जा सकता है। जापान के एस्टॉम कॉर्पोरेशन द्वारा विकसित एक तकनीक को लागू करने वाले एल्यूमीनियम नक़्क़ाशी समाधान से NaOH आधार को पुनर्प्राप्त किया जा सकता है।<ref name=":0">{{Cite journal|last1=Luo |first1=J. |last2=Wu |first2=C. |last3=Xu |first3=T. |last4=Wu |first4=Y. |date=2011 |title=प्रसार डायलिसिस-अवधारणा, सिद्धांत और अनुप्रयोग|journal=Journal of Membrane Science |volume=366 |issue=1–2 |pages=1–16 |doi=10.1016/j.memsci.2010.10.028}}</ref>
* इसकी कम ऊर्जा लागत के कारण डिफ्यूजन डायलिसिस का उपयोग करके क्षार अपशिष्ट को पुनर्प्राप्त किया जा सकता है। जापान के एस्टॉम कॉर्पोरेशन द्वारा विकसित एक तकनीक को लागू करने वाले एल्यूमीनियम नक़्क़ाशी समाधान से NaOH आधार को पुनर्प्राप्त किया जा सकता है।<ref name=":0">{{Cite journal|last1=Luo |first1=J. |last2=Wu |first2=C. |last3=Xu |first3=T. |last4=Wu |first4=Y. |date=2011 |title=प्रसार डायलिसिस-अवधारणा, सिद्धांत और अनुप्रयोग|journal=Journal of Membrane Science |volume=366 |issue=1–2 |pages=1–16 |doi=10.1016/j.memsci.2010.10.028}}</ref>
* बियर का डी-अल्कोहलीकरण विसरण डायलिसिस का एक अन्य अनुप्रयोग है। इस बात को ध्यान में रखते हुए कि इस तकनीक के लिए एक सघनता प्रवणता लागू की जाती है, अल्कोहल और अन्य छोटे अणु यौगिक झिल्ली के पार उच्च सांद्रता से कम सांद्रता में स्थानांतरित होते हैं, जो कि पानी है। इसका उपयोग इस एप्लिकेशन के लिए कम संचालन की स्थिति और 0.5% तक अल्कोहल को हटाने की संभावना के लिए किया जाता है।<ref>{{Cite journal|last1=Jackowski |first1=M. |last2=Trusek |first2=A. |date=2018 |title=गैर-मादक बीयर उत्पादन - एक सिंहावलोकन|journal=Polish Journal of Chemical Technology |volume=20 |issue=4 |pages=32–38 |doi=10.2478/pjct-2018-0051 |s2cid=104447271 |doi-access=free}}</ref>
* बियर का डी-अल्कोहलीकरण विसरण डायलिसिस का एक अन्य अनुप्रयोग है। इस बात को ध्यान में रखते हुए कि इस तकनीक के लिए एक सघनता प्रवणता लागू की जाती है, अल्कोहल और अन्य छोटे अणु यौगिक झिल्ली के पार उच्च सांद्रता से कम सांद्रता में स्थानांतरित होते हैं, जो कि जल है। इसका उपयोग इस एप्लिकेशन के लिए कम संचालन की स्थिति और 0.5% तक अल्कोहल को हटाने की संभावना के लिए किया जाता है।<ref>{{Cite journal|last1=Jackowski |first1=M. |last2=Trusek |first2=A. |date=2018 |title=गैर-मादक बीयर उत्पादन - एक सिंहावलोकन|journal=Polish Journal of Chemical Technology |volume=20 |issue=4 |pages=32–38 |doi=10.2478/pjct-2018-0051 |s2cid=104447271 |doi-access=free}}</ref>




Line 110: Line 110:


* खाद्य उद्योग में इस प्रकार के डायलिसिस के लिए [[मट्ठा]] का अलवणीकरण उपयोग का सबसे बड़ा क्षेत्र है। केक, ब्रेड, आइसक्रीम और बेबी फूड जैसे विभिन्न खाद्य पदार्थों का उत्पादन करने के लिए कैल्शियम, फास्फोरस और अन्य अकार्बनिक लवण युक्त कच्चे पनीर मट्ठा को हटाना आवश्यक है। मट्ठा विखनिजीकरण की सीमा लगभग 90% है।<ref name=":1">{{Cite book |last1=Scott |first1=K. |last2=Hughes |first2=R. |title=औद्योगिक झिल्ली पृथक्करण प्रौद्योगिकी|publisher=Springer-Science+Business Media, B.V. |year=1996 |isbn=978-94-010-4274-1 |pages=222–225}}</ref>
* खाद्य उद्योग में इस प्रकार के डायलिसिस के लिए [[मट्ठा]] का अलवणीकरण उपयोग का सबसे बड़ा क्षेत्र है। केक, ब्रेड, आइसक्रीम और बेबी फूड जैसे विभिन्न खाद्य पदार्थों का उत्पादन करने के लिए कैल्शियम, फास्फोरस और अन्य अकार्बनिक लवण युक्त कच्चे पनीर मट्ठा को हटाना आवश्यक है। मट्ठा विखनिजीकरण की सीमा लगभग 90% है।<ref name=":1">{{Cite book |last1=Scott |first1=K. |last2=Hughes |first2=R. |title=औद्योगिक झिल्ली पृथक्करण प्रौद्योगिकी|publisher=Springer-Science+Business Media, B.V. |year=1996 |isbn=978-94-010-4274-1 |pages=222–225}}</ref>
* अंगूर, संतरा, सेब और नींबू जैसे फलों के रस का डी-अम्लीकरण ऐसी प्रक्रियाएँ हैं जिनमें इलेक्ट्रोडायलिसिस लागू किया जाता है। इस तकनीक में एक अनियन-एक्सचेंज मेम्ब्रेन कार्यरत है जिसका अर्थ है कि रस से [[साइट्रेट]] आयन निकाले जाते हैं और हाइड्रॉक्साइड आयनों द्वारा प्रतिस्थापित किए जाते हैं।<ref name=":1" />* [[मैं विलो हूं]] का डीसाल्टिंग इलेक्ट्रोडायलिसिस द्वारा किया जा सकता है। पीसा हुआ सोया सॉस में नमक का पारंपरिक मूल्य लगभग 16-18% है, जो काफी उच्च सामग्री है। सोया सॉस में मौजूद नमक की मात्रा को कम करने के लिए इलेक्ट्रोडायलिसिस का उपयोग किया जाता है। आजकल समाज में कम नमक सामग्री वाले आहार बहुत मौजूद हैं।<ref name=":1" />* इलेक्ट्रोडायलिसिस अमीनो एसिड को अम्लीय, बुनियादी और तटस्थ समूहों में अलग करने की अनुमति देता है। विशेष रूप से, साइटोप्लाज्मिक लीफ प्रोटीन को [[अल्फाल्फा]] के पत्तों से इलेक्ट्रोडायलिसिस लागू करने से निकाला जाता है। जब प्रोटीन [[विकृतीकरण (जैव रसायन)]] होते हैं, तो विलयनों को अलवणीकृत किया जा सकता है (के<sup>+</sup> आयन) और एच के साथ अम्लीकृत<sup>+</sup> आयन।<ref name=":1" />
* अंगूर, संतरा, सेब और नींबू जैसे फलों के रस का डी-अम्लीकरण ऐसी प्रक्रियाएँ हैं जिनमें इलेक्ट्रोडायलिसिस लागू किया जाता है। इस तकनीक में एक अनियन-एक्सचेंज झिल्ली कार्यरत है जिसका अर्थ है कि रस से [[साइट्रेट]] आयन निकाले जाते हैं और हाइड्रॉक्साइड आयनों द्वारा प्रतिस्थापित किए जाते हैं।<ref name=":1" />
*सोया सॉस का डीसाल्टिंग इलेक्ट्रोडायलिसिस द्वारा किया जा सकता है। पीसा हुआ सोया सॉस में नमक का पारंपरिक मूल्य लगभग 16-18% है, जो काफी उच्च सामग्री है। सोया सॉस में मौजूद नमक की मात्रा को कम करने के लिए इलेक्ट्रोडायलिसिस का उपयोग किया जाता है। आजकल समाज में कम नमक सामग्री वाले आहार बहुत मौजूद हैं।<ref name=":1" />
*इलेक्ट्रोडायलिसिस अमीनो अम्ल को अम्लीय, बुनियादी और तटस्थ समूहों में अलग करने की अनुमति देता है। विशेष रूप से, साइटोप्लाज्मिक लीफ प्रोटीन को [[अल्फाल्फा]] के पत्तों से इलेक्ट्रोडायलिसिस लागू करने से निकाला जाता है। जब प्रोटीन का [[विकृतीकरण (जैव रसायन)]] किया जाता है, तो विलयनों को (K<sup>+</sup> आयनों के) अलवणीकृत किया जा सकता है और H<sup>+</sup> आयनों के साथ अम्लीकृत किया जा सकता है।<ref name=":1" />




Line 117: Line 119:


=== प्रसार डायलिसिस ===
=== प्रसार डायलिसिस ===
प्रसार डायलिसिस का मुख्य लाभ यूनिट की कम ऊर्जा खपत है। यह मेम्ब्रेन तकनीक सामान्य दबाव में काम करती है और इसमें अवस्था परिवर्तन नहीं होता है। नतीजतन, आवश्यक ऊर्जा काफी कम हो जाती है, जिससे परिचालन लागत कम हो जाती है। कम स्थापना लागत, आसान संचालन और प्रक्रिया की स्थिरता और विश्वसनीयता भी है। एक अन्य लाभ यह है कि विसरण डायलिसिस पर्यावरण को प्रदूषित नहीं करता है।<ref name=":0" />
प्रसार डायलिसिस का मुख्य लाभ यूनिट की कम ऊर्जा खपत है। यह झिल्ली तकनीक सामान्य दबाव में काम करती है और इसमें अवस्था परिवर्तन नहीं होता है। नतीजतन, आवश्यक ऊर्जा काफी कम हो जाती है, जिससे परिचालन लागत कम हो जाती है। कम स्थापना लागत, आसान संचालन और प्रक्रिया की स्थिरता और विश्वसनीयता भी है। एक अन्य लाभ यह है कि विसरण डायलिसिस पर्यावरण को प्रदूषित नहीं करता है।<ref name=":0" />


एक नुकसान यह है कि एक प्रसार अपोहक की प्रसंस्करण क्षमता कम होती है और प्रसंस्करण क्षमता कम होती है। इलेक्ट्रोडायलिसिस और रिवर्स ऑस्मोसिस(परासरण) जैसी अन्य विधियां हैं जो प्रसार डायलिसिस से बेहतर दक्षता प्राप्त कर सकती हैं।<ref name=":0" />
एक नुकसान यह है कि एक प्रसार अपोहक की प्रसंस्करण क्षमता कम होती है और प्रसंस्करण क्षमता कम होती है। इलेक्ट्रोडायलिसिस और रिवर्स ऑस्मोसिस(परासरण) जैसी अन्य विधियां हैं जो प्रसार डायलिसिस की तुलना में बेहतर दक्षता प्राप्त कर सकती हैं।<ref name=":0" />




=== इलेक्ट्रोडायलिसिस ===
=== इलेक्ट्रोडायलिसिस ===
इलेक्ट्रोडायलिसिस का मुख्य लाभ उच्च वसूली है, विशेष रूप से पानी की वसूली में। एक अन्य लाभ यह तथ्य है कि उच्च दबाव लागू नहीं किया जाता है जिसका अर्थ है कि दूषण का प्रभाव महत्वपूर्ण नहीं है और परिणामस्वरूप उनके खिलाफ लड़ने के लिए किसी रसायन की आवश्यकता नहीं होती है। इसके अलावा, दूषण की परत सघन नहीं होती है, जो अधिक रिकवरी और लंबे मेम्ब्रेन जीवन की ओर ले जाती है। यह भी महत्वपूर्ण है कि उपचार 70,000 पीपीएम से अधिक सांद्रता के लिए हैं, जिससे एकाग्रता की सीमा समाप्त हो जाती है। अंत में, गैर-चरण परिवर्तन के कारण संचालित करने के लिए आवश्यक ऊर्जा कम है। वास्तव में, बहु प्रभाव आसवन (मेड) और यांत्रिक वाष्प संपीड़न (एमवीसी) प्रक्रियाओं में आवश्यक की तुलना में यह कम है।<ref name=":2">{{Cite web |title=Electrodialysis/ED Reversal |url=https://www.lenntech.com/Data-sheets/ED-ZLD-interactive.pdf |last=Charisiadis |first=C.}}</ref>
इलेक्ट्रोडायलिसिस का मुख्य लाभ उच्च वसूली है, विशेष रूप से जल की वसूली में। एक अन्य लाभ यह तथ्य है कि उच्च दबाव लागू नहीं किया जाता है जिसका अर्थ है कि दूषण का प्रभाव महत्वपूर्ण नहीं है और परिणामस्वरूप उनके खिलाफ लड़ने के लिए किसी रसायन की आवश्यकता नहीं होती है। इसके अलावा, दूषण की परत सघन नहीं होती है, जो अधिक रिकवरी और लंबे झिल्ली जीवन की ओर ले जाती है। यह भी महत्वपूर्ण है कि उपचार 70,000 ppm से अधिक सांद्रता के लिए हैं, जिससे एकाग्रता की सीमा समाप्त हो जाती है। अंत में, गैर-चरण परिवर्तन के कारण संचालित करने के लिए आवश्यक ऊर्जा कम है। वास्तव में, बहु प्रभाव आसवन (मेड) और यांत्रिक वाष्प संपीड़न (mvc) प्रक्रियाओं में आवश्यक की तुलना में यह कम है।<ref name=":2">{{Cite web |title=Electrodialysis/ED Reversal |url=https://www.lenntech.com/Data-sheets/ED-ZLD-interactive.pdf |last=Charisiadis |first=C.}}</ref>


इलेक्ट्रोडायलिसिस का मुख्य दोष वर्तमान घनत्व सीमा है, प्रक्रिया को अधिकतम अनुमति से कम वर्तमान घनत्व पर संचालित किया जाना चाहिए। तथ्य यह है कि एक निश्चित वोल्टेज पर झिल्ली के माध्यम से आयनों का प्रसार रैखिक नहीं होता है, जिससे पानी का पृथक्करण होता है, जिससे ऑपरेशन की दक्षता कम हो जाती है। ध्यान में रखा जाने वाला एक अन्य पहलू यह है कि यद्यपि संचालित करने के लिए कम ऊर्जा की आवश्यकता होती है, नमक फ़ीड की सघनता जितनी अधिक होगी, उतनी ही अधिक ऊर्जा की आवश्यकता होगी। अंत में, कुछ उत्पादों के मामले में, यह माना जाना चाहिए कि इलेक्ट्रोडायलिसिस सूक्ष्मजीवों और कार्बनिक प्रदूषकों को दूर नहीं करता है, इसलिए उपचार के बाद आवश्यक है।<ref name=":2" />
इलेक्ट्रोडायलिसिस का मुख्य दोष वर्तमान घनत्व सीमा है, प्रक्रिया को अधिकतम अनुमति से कम वर्तमान घनत्व पर संचालित किया जाना चाहिए। तथ्य यह है कि एक निश्चित वोल्टेज पर झिल्ली के माध्यम से आयनों का प्रसार रैखिक नहीं होता है, जिससे जल का पृथक्करण होता है, जिससे ऑपरेशन की दक्षता कम हो जाती है। ध्यान में रखा जाने वाला एक अन्य पहलू यह है कि यद्यपि संचालित करने के लिए कम ऊर्जा की आवश्यकता होती है, नमक फ़ीड की सघनता जितनी अधिक होगी, उतनी ही अधिक ऊर्जा की आवश्यकता होगी। अंत में, कुछ उत्पादों के मामले में, यह माना जाना चाहिए कि इलेक्ट्रोडायलिसिस सूक्ष्मजीवों और कार्बनिक प्रदूषकों को दूर नहीं करता है, इसलिए उपचार के बाद आवश्यक है।<ref name=":2" />




Line 153: Line 155:
* [https://www.sigmaaldrich.com/US/en/products/labware सिग्मा-एल्ड्रिच]
* [https://www.sigmaaldrich.com/US/en/products/labware सिग्मा-एल्ड्रिच]
* [http://www.harvardapparatus.com/ हार्वर्ड उपकरण]
* [http://www.harvardapparatus.com/ हार्वर्ड उपकरण]
* [http://www.membrane-mfpi.com/ मेम्ब्रेन फिल्ट्रेशन प्रोडक्ट्स, इंक.]
* [http://www.membrane-mfpi.com/ झिल्ली फिल्ट्रेशन प्रोडक्ट्स, इंक.]
* [http://www.HTDialysis.com]
* [http://www.HTDialysis.com]



Revision as of 11:27, 6 March 2023

डायलिसिस टयूबिंग का उपयोग करते हुए लघु-अणु डायलिसिस

रसायन विज्ञान में, डायलिसिस समाधान (रसायन विज्ञान) में अणुओं को अर्ध-पारगम्य झिल्ली, जैसे डायलिसिस ट्यूबिंग के माध्यम से प्रसार की दरों में अंतर से अलग करने की प्रक्रिया है।[1]

डायलिसिस एक सामान्य प्रयोगशाला तकनीक है जो किडनी_डायलिसिस के समान सिद्धांत पर काम करती है। जीवन विज्ञान अनुसंधान के संदर्भ में, डायलिसिस का सबसे आम उपयोग अवांछित छोटे अणुओं जैसे नमक, कम करने वाले एजेंटों, या प्रोटीन, डीएनए या पॉलिसैक्राइड जैसे बड़े मैक्रोमोलेक्यूल्स से रंगों को हटाने के लिए है।[2] डायलिसिस का उपयोग आमतौर पर बफर एक्सचेंज और ड्रग बाइंडिंग स्टडीज के लिए भी किया जाता है।

डायलिसिस की अवधारणा 1861 में स्कॉटिश रसायनज्ञ थॉमस ग्राहम (रसायनज्ञ) द्वारा पेश की गई थी।[3] उन्होंने इस तकनीक का इस्तेमाल जलीय घोल में सुक्रोज (छोटे अणु) और गोंद अरबी विलेय (बड़े अणु) को अलग करने के लिए किया। उन्होंने विसरणीय विलेय को क्रिस्टलॉयड कहा और वे जो झिल्ली कोलॉइड से नहीं गुजरेंगे।[4]

इस अवधारणा से डायलिसिस को अर्ध पारगम्य झिल्ली के माध्यम से भंग आयनों या छोटे आयामों के अणुओं से निलंबित कोलाइडल कणों की एक सहज पृथक्करण प्रक्रिया के रूप में परिभाषित किया जा सकता है। सबसे आम डायलिसिस झिल्ली सेलूलोज़, संशोधित सेलूलोज़ या सिंथेटिक बहुलक (सेलूलोज़ एसीटेट या नाइट्रोसेल्यूलोज़) से बने होते हैं।[5]


व्युत्पत्ति

डायलिसिस ग्रीक से निकला है διά, 'के माध्यम से', और λύειν, 'ढीला करने के लिए'।[3]


सिद्धांत

डायलिसिस आकार के वर्गीकरण द्वारा अणुओं को विभेदित करके नमूने में अणुओं के मैट्रिक्स को बदलने के लिए उपयोग की जाने वाली प्रक्रिया है।[6][7] यह विसरण पर निर्भर करता है, जो विलयन (एक प्रकार कि गति) में अणुओं का यादृच्छिक, ऊष्मीय गति है जो उच्च सांद्रता वाले क्षेत्र से कम सांद्रता वाले क्षेत्र से अणुओं के शुद्ध संचलन की ओर ले जाता है जब तक कि संतुलन नहीं हो जाता। झिल्ली के छिद्रों के आकार के कारण, नमूने में बड़े अणु झिल्ली से नहीं गुजर सकते हैं, जिससे नमूना कक्ष से उनका प्रसार प्रतिबंधित हो जाता है। इसके विपरीत, छोटे अणु स्वतंत्र रूप से झिल्ली में फैल जाएंगे और पूरे समाधान की मात्रा में संतुलन प्राप्त करेंगे, जिससे नमूने और डायलीसेट में इन अणुओं की समग्र एकाग्रता बदल जाएगी (दाईं ओर डायलिसिस आंकड़ा देखें)।

असमस एक और सिद्धांत है जो डायलिसिस का काम करता है। परासरण के दौरान, द्रव उच्च जल सांद्रता वाले क्षेत्रों से अर्ध-पारगम्य झिल्ली के माध्यम से कम जल सांद्रता की ओर संतुलन तक चलता है। डायलिसिस में, अतिरिक्त तरल पदार्थ एक झिल्ली के माध्यम से नमूने से डायलीसेट की ओर तब तक जाता है जब तक नमूना और डायलीसेट के बीच द्रव का स्तर समान नहीं हो जाता।

अंत में, अल्ट्राफिल्ट्रेशन जल का संवहन प्रवाह है और जलस्थैतिक बलों या आसमाटिक बलों के कारण दबाव प्रवणता के नीचे घुला हुआ पदार्थ घुल जाता है। डायलिसिस में, अल्ट्राफिल्ट्रेशन नमूने से अपशिष्ट और अतिरिक्त तरल पदार्थ के अणुओं को हटा देता है।[6][7]

उदाहरण के लिए, डायलिसिस तब होता है जब एक सेलूलोज़ बैग में एक नमूना होता है और इसे डायलीसेट समाधान में डुबोया जाता है। डायलिसिस के दौरान, नमूने और डायलीसेट के बीच संतुलन प्राप्त किया जाता है क्योंकि केवल छोटे अणु ही सेल्युलोज झिल्ली को पार कर सकते हैं, केवल बड़े कण पीछे रह जाते हैं।

एक बार संतुलन हो जाने के बाद, अणुओं की अंतिम सांद्रता शामिल समाधानों की मात्रा पर निर्भर होती है, और यदि संतुलित डायलीसेट को ताजा डायलीसेट (नीचे प्रक्रिया देखें) के साथ प्रतिस्थापित (या विनिमय) किया जाता है, तो प्रसार छोटे अणुओं की एकाग्रता को और कम कर देगा। नमूने में।

डायलिसिस का उपयोग या तो एक नमूने से छोटे अणुओं को पेश करने या हटाने के लिए किया जा सकता है, क्योंकि छोटे अणु दोनों दिशाओं में झिल्ली के पार स्वतंत्र रूप से चलते हैं। नमक निकालने के लिए डायलिसिस का भी उपयोग किया जा सकता है। यह डायलिसिस को विभिन्न प्रकार के अनुप्रयोगों के लिए एक उपयोगी तकनीक बनाता है। डायलिसिस के लिए उपयोग किए जाने वाले अर्धपारगम्य झिल्लियों के इतिहास, गुणों और निर्माण पर अतिरिक्त जानकारी के लिए डायलिसिस टयूबिंग देखें।

प्रकार

प्रसार डायलिसिस

डिफ्यूजन डायलिसिस एक सहज पृथक्करण प्रक्रिया है जहां ड्राइविंग बल जो अलगाव पैदा करता है वह एकाग्रता ढाल है। इसमें एन्ट्रापी में वृद्धि और गिब्स मुक्त ऊर्जा में कमी है जिसका अर्थ है कि यह थर्मोडायनामिक रूप से अनुकूल है। प्रसार डायलिसिस अलग करने के लिए यौगिकों के आधार पर आयन एक्सचेंज झिल्ली (एईएम) या कटियन-एक्सचेंज झिल्ली (सीईएम) का उपयोग करता है। AEM आयनों के पारित होने की अनुमति देता है जबकि यह सह-आयन अस्वीकृति और विद्युत तटस्थता के संरक्षण के कारण धनायनों के मार्ग को बाधित करता है। इसके विपरीत कटियन विनिमय झिल्लियों के साथ होता है।[8]


इलेक्ट्रोडायलिसिस

इलेक्ट्रोडायलिसिस पृथक्करण की एक प्रक्रिया है जो आयन-विनिमय झिल्लियों का उपयोग करती है और एक प्रेरक शक्ति के रूप में विद्युत क्षमता का उपयोग करती है। यह मुख्य रूप से जलीय घोल से आयनों को हटाने के लिए उपयोग किया जाता है। तीन इलेक्ट्रोडायलिसिस प्रक्रियाएं हैं जिनका आमतौर पर उपयोग किया जाता है - डोनन डायलिसिस, रिवर्स इलेक्ट्रोडायलिसिस, और इलेक्ट्रो-इलेक्ट्रोडायलिसिस। इन प्रक्रियाओं को नीचे समझाया गया है।[9]


डोनन डायलिसिस

डोनन डायलिसिस एक पृथक्करण प्रक्रिया है जिसका उपयोग दो जलीय विलयनों के बीच आयनों का आदान-प्रदान करने के लिए किया जाता है जो CEM या AEM झिल्ली द्वारा अलग किए जाते हैं। अलग-अलग अम्लता के साथ दो समाधानों को अलग करने वाली एक कटियन एक्सचेंज झिल्ली के मामले में, प्रोटॉन (एच+) झिल्ली के माध्यम से कम अम्लीय पक्ष में जाएं। यह एक विद्युत क्षमता को प्रेरित करता है जो कम अम्लीय पक्ष में अधिक अम्लीय पक्ष में मौजूद धनायनों के प्रवाह को प्रेरित करेगा। प्रक्रिया समाप्त हो जाएगी जब एच की एकाग्रता में भिन्नता+ परिमाण का वही क्रम है जो अलग किए गए धनायन की सांद्रता के अंतर का है।[10]


रिवर्स इलेक्ट्रोडायलिसिस

रिवर्स इलेक्ट्रोडायलिसिस झिल्लियों पर आधारित एक तकनीक है जो विभिन्न लवणता वाली दो जल धाराओं के मिश्रण से बिजली प्राप्त करती है। यह आमतौर पर आयन एक्सचेंज झिल्ली (AEM) और कटियन एक्सचेंज झिल्ली (CEM) का उपयोग करता है। AEMs का उपयोग आयनों के पारित होने की अनुमति देने के लिए किया जाता है और cations के पारित होने में बाधा उत्पन्न होती है और CEMs का उपयोग इसके विपरीत करने के लिए किया जाता है। उच्च लवणता वाले जल में धनायन और ऋणायन कम लवणता वाले जल में चले जाते हैं, CEMs से गुजरने वाले धनायन और AEMs के माध्यम से आयन। इस घटना को बिजली में बदला जा सकता है।[11]


इलेक्ट्रो-इलेक्ट्रोडायलिसिस

इलेक्ट्रो-इलेक्ट्रोडायलिसिस तीन डिब्बों का उपयोग करने वाली एक इलेक्ट्रोझिल्ली प्रक्रिया है, जो इलेक्ट्रोडायलिसिस और इलेक्ट्रोलीज़ को जोड़ती है। यह आमतौर पर AEM, CEM और इलेक्ट्रोलिसिस का उपयोग करके एक समाधान से अम्ल को पुनर्प्राप्त करने के लिए उपयोग किया जाता है। तीन डिब्बों को दो बाधाओं से अलग किया जाता है, जो आयन एक्सचेंज झिल्ली हैं। बीच के डिब्बे में उपचारित करने के लिए जल होता है। किनारों पर स्थित डिब्बों में साफ जल होता है। आयन AEM से होकर गुजरते हैं, जबकि धनायन CEM से होकर गुजरते हैं। बिजली एच बनाती है+ ऋणायन पक्ष में और OH धनायन पक्ष में, जो संबंधित आयनों के साथ प्रतिक्रिया करता है।[9]


प्रक्रिया

उपकरण

डायलिसिस द्वारा समाधान में अणुओं को अलग करना अपेक्षाकृत सरल प्रक्रिया है। नमूना और डायलीसेट बफ़र के अलावा, आम तौर पर सभी की आवश्यकता होती है:

  • एक उपयुक्त प्रारूप में डायलिसिस झिल्ली (जैसे, ट्यूबिंग, कैसेट, आदि) और आणविक भार कट-ऑफ (MWCO)
  • डायलीसेट बफर द्रावण को रखने के लिए एक कंटेनर
  • समाधानों को हल करने और तापमान को नियंत्रित करने की क्षमता

सामान्य प्रोटोकॉल

प्रोटीन के नमूनों के लिए एक विशिष्ट डायलिसिस प्रक्रिया इस प्रकार है:

  1. निर्देशों के अनुसार झिल्ली तैयार करें
  2. नमूने को डायलिसिस टयूबिंग, कैसेट या डिवाइस में लोड करें
  3. डायलिसिस बफर के एक बाहरी कक्ष में नमूना रखें (बफर की कोमल सरगर्मी के साथ)
  4. 2 घंटे के लिए डायल करें (कमरे के तापमान या 4 डिग्री सेल्सियस पर)
  5. डायलिसिस बफर बदलें और 2 घंटे के लिए डायलिसिस करें
  6. डायलिसिस बफर बदलें और 2 घंटे या रात भर के लिए डायलिसिस करें

नमूना और डायलीसेट की कुल मात्रा झिल्ली के दोनों किनारों पर छोटे अणुओं की अंतिम संतुलन एकाग्रता निर्धारित करती है। डायलीसेट की उचित मात्रा और बफर के कई एक्सचेंजों का उपयोग करके, नमूने के भीतर छोटे संदूषकों की एकाग्रता को स्वीकार्य या नगण्य स्तर तक कम किया जा सकता है। उदाहरण के लिए, जब डायलीसेट के 200mL के विरुद्ध 1mL नमूने को डायलिसिस किया जाता है, तो संतुलन प्राप्त होने पर अवांछित डायलाइज़ेबल पदार्थों की सांद्रता 200 गुना कम हो जाएगी। 200mL प्रत्येक के दो अतिरिक्त बफर परिवर्तनों के बाद, नमूने में दूषित स्तर 8 x 10 के कारक से कम हो जाएगा6 (200 x 200 x 200)।

चर और प्रोटोकॉल अनुकूलन

हालांकि किसी नमूने का डायलिसिस करना अपेक्षाकृत सरल है, निम्नलिखित चरों के कारण सभी अनुप्रयोगों के लिए एक सार्वभौमिक डायलिसिस प्रक्रिया प्रदान नहीं की जा सकती है:

  • नमूना मात्रा
  • अणुओं के आकार को अलग किया जा रहा है
  • झिल्ली का इस्तेमाल किया
  • झिल्ली की ज्यामिति, जो प्रसार दूरी को प्रभावित करती है

इसके अतिरिक्त, डायलिसिस समापन बिंदु कुछ व्यक्तिपरक और अनुप्रयोग विशिष्ट है। इसलिए, सामान्य प्रक्रिया को अनुकूलन की आवश्यकता हो सकती है।

डायलिसिस झिल्ली और MWCO

डायलिसिस झिल्लियों का उत्पादन और आणविक भार कट-ऑफ | आणविक-भार कटऑफ (MWCO) सीमा के अनुसार किया जाता है। जबकि 1-1,000,000 kDa से लेकर MWCOs वाली झिल्लियाँ व्यावसायिक रूप से उपलब्ध हैं, 10 kDa के पास MWCOs वाली झिल्लियों का सबसे अधिक उपयोग किया जाता है। एक झिल्ली का MWCO डायलिसिस झिल्ली के उत्पादन के दौरान बनाए गए छिद्रों की संख्या और औसत आकार का परिणाम है। MWCO आमतौर पर एक मानक अणु के सबसे छोटे औसत आणविक द्रव्यमान को संदर्भित करता है जो विस्तारित डायलिसिस के दौरान प्रभावी रूप से झिल्ली में नहीं फैलेगा। इस प्रकार, 10K MWCO के साथ एक डायलिसिस झिल्ली आम तौर पर कम से कम 10kDa के आणविक द्रव्यमान वाले प्रोटीन के 90% से अधिक को बनाए रखेगी।[12][13] यह ध्यान रखना महत्वपूर्ण है कि झिल्ली का एमडब्ल्यूसीओ एक स्पष्ट रूप से परिभाषित मूल्य नहीं है। झिल्ली की MWCO सीमा के पास द्रव्यमान वाले अणु MWCO की तुलना में काफी छोटे अणुओं की तुलना में झिल्ली में अधिक धीरे-धीरे फैलेंगे। एक अणु के लिए एक झिल्ली में तेजी से फैलने के लिए, यह आमतौर पर एक झिल्ली के MWCO रेटिंग से कम से कम 20- से 50 गुना छोटा होना चाहिए। इसलिए, 20K रेटेड डायलिसिस झिल्ली में डायलिसिस का उपयोग करके 10kDa प्रोटीन से 30kDa प्रोटीन को अलग करना व्यावहारिक नहीं है।

प्रयोगशाला उपयोग के लिए डायलिसिस झिल्ली आम तौर पर पुनर्जीवित सेलूलोज़ या सेलूलोज़ एस्टर की एक फिल्म से बने होते हैं। सेलूलोज़ झिल्लियों और निर्माण की समीक्षा के लिए संदर्भ देखें।[14]


प्रयोगशाला डायलिसिस प्रारूप

डायलिसिस आमतौर पर डायलिसिस टयूबिंग के क्लिप्ड बैग में या विभिन्न प्रकार के स्वरूपित अपोहक में किया जाता है। उपयोग किए जाने वाले डायलिसिस सेट अप का चुनाव काफी हद तक नमूने के आकार और उपयोगकर्ता की पसंद पर निर्भर करता है। डायलिसिस टयूबिंग प्रयोगशाला में डायलिसिस के लिए इस्तेमाल किया जाने वाला सबसे पुराना और आम तौर पर सबसे कम खर्चीला प्रारूप है। टयूबिंग को एक सिरे पर क्लिप से काटकर सील कर दिया जाता है, फिर दूसरे सिरे पर क्लिप से भरकर सील कर दिया जाता है। टयूबिंग लचीलापन प्रदान करता है लेकिन हैंडलिंग, सीलिंग और नमूना पुनर्प्राप्ति के संबंध में चिंताओं में वृद्धि हुई है। डायलिसिस टयूबिंग को आमतौर पर रोल या प्लेटेड टेलिस्कोप ट्यूब में या तो गीला या सूखा दिया जाता है।

कई विक्रेताओं से डायलिसिस उपकरणों (या अपोहक) की एक विस्तृत विविधता उपलब्ध है। डायलाइज़र विशिष्ट नमूना मात्रा श्रेणियों के लिए डिज़ाइन किए गए हैं और टयूबिंग पर डायलिसिस प्रयोगों के लिए अधिक नमूना सुरक्षा और बेहतर उपयोग और प्रदर्शन प्रदान करते हैं। स्लाइड-ए-लाइज़र, फ्लोट-ए-लाइज़र, और पुर-ए-लाइज़र/डी-ट्यूब/जीईबीएफ़्लेक्स डायलाइज़र उत्पाद श्रंखला सबसे आम प्रीफ़ॉर्मेटेड डायलाइज़र हैं।

अनुप्रयोग

डायलिसिस में अनुप्रयोगों की एक विस्तृत श्रृंखला है। उपयोग किए गए डायलिसिस के प्रकार के आधार पर इन्हें दो श्रेणियों में विभाजित किया जा सकता है।

प्रसार डायलिसिस

प्रसार डायलिसिस के कुछ अनुप्रयोगों को नीचे समझाया गया है।

  • मजबूत जलीय कास्टिक सोडा घोल को विसरण डायलिसिस द्वारा हेमिकेलुलोज से शुद्ध किया जा सकता है। यह काफी हद तक अप्रचलित विस्कोस प्रक्रिया के लिए विशिष्ट है। उस प्रक्रिया में पहला कदम जल में सोडियम हाइड्रॉक्साइड (कास्टिक सोडा) के मजबूत (17-20% w/w) समाधान के साथ लगभग शुद्ध hemicellulose (कपास का पौधा या घुलने वाला गूदा) का उपचार करना है। उस कदम का एक प्रभाव हेमिकेलुलोज (कम आणविक भार पॉलिमर) को भंग करना है। कुछ परिस्थितियों में, प्रक्रिया से जितना संभव हो उतना हेमिकेलुलोज निकालने की सलाह दी जाती है, और यह डायलिसिस का उपयोग करके किया जा सकता है।[15][16][17]
  • अनियन-एक्सचेंज झिल्ली का उपयोग करके जलीय घोल से अम्ल को पुनर्प्राप्त किया जा सकता है। यह प्रक्रिया एक वैकल्पिक औद्योगिक अपशिष्ट जल उपचार है। इसका उपयोग मिश्रित अम्ल (HF+ HNO3), Zn की रिकवरी और सांद्रता2+ और Cu2+, एच में2इसलिए4+ CuSO4 और वह2इसलिए4+ ZnSO4 और एच की रिकवरी2इसलिए4 Fe और Ni आयन युक्त अपशिष्ट सल्फ्यूरिक अम्ल के घोल से, जो हीरा निर्माण प्रक्रिया में उत्पन्न होते हैं।[4]
  • इसकी कम ऊर्जा लागत के कारण डिफ्यूजन डायलिसिस का उपयोग करके क्षार अपशिष्ट को पुनर्प्राप्त किया जा सकता है। जापान के एस्टॉम कॉर्पोरेशन द्वारा विकसित एक तकनीक को लागू करने वाले एल्यूमीनियम नक़्क़ाशी समाधान से NaOH आधार को पुनर्प्राप्त किया जा सकता है।[8]
  • बियर का डी-अल्कोहलीकरण विसरण डायलिसिस का एक अन्य अनुप्रयोग है। इस बात को ध्यान में रखते हुए कि इस तकनीक के लिए एक सघनता प्रवणता लागू की जाती है, अल्कोहल और अन्य छोटे अणु यौगिक झिल्ली के पार उच्च सांद्रता से कम सांद्रता में स्थानांतरित होते हैं, जो कि जल है। इसका उपयोग इस एप्लिकेशन के लिए कम संचालन की स्थिति और 0.5% तक अल्कोहल को हटाने की संभावना के लिए किया जाता है।[18]


इलेक्ट्रोडायलिसिस

इलेक्ट्रोडायलिसिस के कुछ अनुप्रयोगों को नीचे समझाया गया है।

  • खाद्य उद्योग में इस प्रकार के डायलिसिस के लिए मट्ठा का अलवणीकरण उपयोग का सबसे बड़ा क्षेत्र है। केक, ब्रेड, आइसक्रीम और बेबी फूड जैसे विभिन्न खाद्य पदार्थों का उत्पादन करने के लिए कैल्शियम, फास्फोरस और अन्य अकार्बनिक लवण युक्त कच्चे पनीर मट्ठा को हटाना आवश्यक है। मट्ठा विखनिजीकरण की सीमा लगभग 90% है।[19]
  • अंगूर, संतरा, सेब और नींबू जैसे फलों के रस का डी-अम्लीकरण ऐसी प्रक्रियाएँ हैं जिनमें इलेक्ट्रोडायलिसिस लागू किया जाता है। इस तकनीक में एक अनियन-एक्सचेंज झिल्ली कार्यरत है जिसका अर्थ है कि रस से साइट्रेट आयन निकाले जाते हैं और हाइड्रॉक्साइड आयनों द्वारा प्रतिस्थापित किए जाते हैं।[19]
  • सोया सॉस का डीसाल्टिंग इलेक्ट्रोडायलिसिस द्वारा किया जा सकता है। पीसा हुआ सोया सॉस में नमक का पारंपरिक मूल्य लगभग 16-18% है, जो काफी उच्च सामग्री है। सोया सॉस में मौजूद नमक की मात्रा को कम करने के लिए इलेक्ट्रोडायलिसिस का उपयोग किया जाता है। आजकल समाज में कम नमक सामग्री वाले आहार बहुत मौजूद हैं।[19]
  • इलेक्ट्रोडायलिसिस अमीनो अम्ल को अम्लीय, बुनियादी और तटस्थ समूहों में अलग करने की अनुमति देता है। विशेष रूप से, साइटोप्लाज्मिक लीफ प्रोटीन को अल्फाल्फा के पत्तों से इलेक्ट्रोडायलिसिस लागू करने से निकाला जाता है। जब प्रोटीन का विकृतीकरण (जैव रसायन) किया जाता है, तो विलयनों को (K+ आयनों के) अलवणीकृत किया जा सकता है और H+ आयनों के साथ अम्लीकृत किया जा सकता है।[19]


फायदे और नुकसान

डायलिसिस के फायदे और नुकसान दोनों हैं। पिछले खंड की संरचना के बाद, उपयोग किए गए डायलिसिस के प्रकार के आधार पर पेशेवरों और विपक्षों पर चर्चा की जाती है। डिफ्यूजन डायलिसिस और इलेक्ट्रोडायलिसिस दोनों के फायदे और नुकसान नीचे दिए गए हैं।

प्रसार डायलिसिस

प्रसार डायलिसिस का मुख्य लाभ यूनिट की कम ऊर्जा खपत है। यह झिल्ली तकनीक सामान्य दबाव में काम करती है और इसमें अवस्था परिवर्तन नहीं होता है। नतीजतन, आवश्यक ऊर्जा काफी कम हो जाती है, जिससे परिचालन लागत कम हो जाती है। कम स्थापना लागत, आसान संचालन और प्रक्रिया की स्थिरता और विश्वसनीयता भी है। एक अन्य लाभ यह है कि विसरण डायलिसिस पर्यावरण को प्रदूषित नहीं करता है।[8]

एक नुकसान यह है कि एक प्रसार अपोहक की प्रसंस्करण क्षमता कम होती है और प्रसंस्करण क्षमता कम होती है। इलेक्ट्रोडायलिसिस और रिवर्स ऑस्मोसिस(परासरण) जैसी अन्य विधियां हैं जो प्रसार डायलिसिस की तुलना में बेहतर दक्षता प्राप्त कर सकती हैं।[8]


इलेक्ट्रोडायलिसिस

इलेक्ट्रोडायलिसिस का मुख्य लाभ उच्च वसूली है, विशेष रूप से जल की वसूली में। एक अन्य लाभ यह तथ्य है कि उच्च दबाव लागू नहीं किया जाता है जिसका अर्थ है कि दूषण का प्रभाव महत्वपूर्ण नहीं है और परिणामस्वरूप उनके खिलाफ लड़ने के लिए किसी रसायन की आवश्यकता नहीं होती है। इसके अलावा, दूषण की परत सघन नहीं होती है, जो अधिक रिकवरी और लंबे झिल्ली जीवन की ओर ले जाती है। यह भी महत्वपूर्ण है कि उपचार 70,000 ppm से अधिक सांद्रता के लिए हैं, जिससे एकाग्रता की सीमा समाप्त हो जाती है। अंत में, गैर-चरण परिवर्तन के कारण संचालित करने के लिए आवश्यक ऊर्जा कम है। वास्तव में, बहु प्रभाव आसवन (मेड) और यांत्रिक वाष्प संपीड़न (mvc) प्रक्रियाओं में आवश्यक की तुलना में यह कम है।[20]

इलेक्ट्रोडायलिसिस का मुख्य दोष वर्तमान घनत्व सीमा है, प्रक्रिया को अधिकतम अनुमति से कम वर्तमान घनत्व पर संचालित किया जाना चाहिए। तथ्य यह है कि एक निश्चित वोल्टेज पर झिल्ली के माध्यम से आयनों का प्रसार रैखिक नहीं होता है, जिससे जल का पृथक्करण होता है, जिससे ऑपरेशन की दक्षता कम हो जाती है। ध्यान में रखा जाने वाला एक अन्य पहलू यह है कि यद्यपि संचालित करने के लिए कम ऊर्जा की आवश्यकता होती है, नमक फ़ीड की सघनता जितनी अधिक होगी, उतनी ही अधिक ऊर्जा की आवश्यकता होगी। अंत में, कुछ उत्पादों के मामले में, यह माना जाना चाहिए कि इलेक्ट्रोडायलिसिस सूक्ष्मजीवों और कार्बनिक प्रदूषकों को दूर नहीं करता है, इसलिए उपचार के बाद आवश्यक है।[20]


यह भी देखें

संदर्भ

  1. Reed, R (2007). जैव आणविक विज्ञान में व्यावहारिक कौशल (3rd ed.). Essex: Pearson Education Limited. p. 379. ISBN 978-0-13-239115-3.
  2. Berg, JM (2007). जीव रसायन (6th ed.). New York: W.H. Freeman and Company. p. 69. ISBN 978-0-7167-8724-2.
  3. 3.0 3.1 Chisholm, Hugh, ed. (1911). "Dialysis" . Encyclopædia Britannica (in English). Vol. 8 (11th ed.). Cambridge University Press. p. 157.
  4. 4.0 4.1 Stancheva, K.A. (2008). "डायलिसिस के अनुप्रयोग". Oxidation Communications 31. 4: 758–775.
  5. Ninfa, A.J.; Ballou, D. P.; Benore, M. (2009). जैव रसायन और जैव प्रौद्योगिकी के लिए मौलिक प्रयोगशाला दृष्टिकोण. p. 45. ISBN 978-0-470-08766-4.
  6. 6.0 6.1 "What is dialysis?".
  7. 7.0 7.1 "What is dialysis and how does dialysis work?".
  8. 8.0 8.1 8.2 8.3 Luo, J.; Wu, C.; Xu, T.; Wu, Y. (2011). "प्रसार डायलिसिस-अवधारणा, सिद्धांत और अनुप्रयोग". Journal of Membrane Science. 366 (1–2): 1–16. doi:10.1016/j.memsci.2010.10.028.
  9. 9.0 9.1 Luis, P. (2018). Fundamental Modeling of Membrane Systems: Membrane and Process Performance. Elsevier. pp. 275–292. ISBN 978-0-12-813483-2.
  10. Scott, K. (1995). औद्योगिक झिल्लियों की पुस्तिका. Kidlington: Elsevier Advanced Technology. pp. 704-706. ISBN 978-1-85617-233-2.
  11. Mei, Y.; Tang, C.Y. (2018). "Recent developments and future perspectives of reverse electrodialysis technology: A review". Desalination. 425: 156–174. doi:10.1016/j.desal.2017.10.021.
  12. "डायलिसिस झिल्ली की पृथक्करण विशेषताएं". Retrieved 13 November 2013.
  13. "झिल्ली डायलिसिस की मूल बातें". Retrieved 13 November 2013.
  14. Klemm, Dieter; Heublein, Brigitte; Fink, Hans-Peter; Bohn, Andreas (2005). "Cellulose: Fascinating Biopolymer and Sustainable Raw Material". Angewandte Chemie International Edition. 44 (22): 3358–3393. doi:10.1002/anie.200460587. PMID 15861454.
  15. Lovett, Louis E. (1938). "रेयॉन उद्योग में कास्टिक सोडा समाधान जिसमें हेमिसेल्यूलोज शामिल है, की वसूली के लिए परासरण का अनुप्रयोग". Trans. Electrochem. Soc. 73 (1): 163–172. doi:10.1149/1.3493960.
  16. Marshall, R. D.; Storrow, J. Anderson (1 December 1951). "कास्टिक सोडा समाधान का डायलिसिस". Ind. Eng. Chem. 43 (12): 2934–2942. doi:10.1021/ie50504a074.
  17. Lee, Eric K.; Koros, W. J. (2003). "Membranes, Synthetic, Applications: Industrial Dialysis". ScienceDirect. From Encyclopedia of Physical Science and Technology (3rd edition). Retrieved 29 September 2020.
  18. Jackowski, M.; Trusek, A. (2018). "गैर-मादक बीयर उत्पादन - एक सिंहावलोकन". Polish Journal of Chemical Technology. 20 (4): 32–38. doi:10.2478/pjct-2018-0051. S2CID 104447271.
  19. 19.0 19.1 19.2 19.3 Scott, K.; Hughes, R. (1996). औद्योगिक झिल्ली पृथक्करण प्रौद्योगिकी. Springer-Science+Business Media, B.V. pp. 222–225. ISBN 978-94-010-4274-1.
  20. 20.0 20.1 Charisiadis, C. "Electrodialysis/ED Reversal" (PDF).


बाहरी संबंध

आपूर्तिकर्ता


श्रेणी:जैव रसायन विधियां श्रेणी:झिल्ली प्रौद्योगिकी