फोटोडिसइंटीग्रेशन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:


==[[ड्यूटेरियम]] का फोटोडिसइंटीग्रेशन==
==[[ड्यूटेरियम]] का फोटोडिसइंटीग्रेशन==
2.22 MeV या अधिक ऊर्जा वाला एक फोटॉन, ड्यूटेरियम के एक परमाणु का फोटोडिसइंटीग्रेशन कर सकता है:
2.22 मेगावॉट या अधिक ऊर्जा वाला एक फोटॉन, ड्यूटेरियम के एक परमाणु का फोटोडिसइंटीग्रेशन कर सकता है:
:{| border="0"
:{| border="0"
|- style="height:2em;"
|- style="height:2em;"
Line 12: Line 12:


== बेरिलियम का फोटोडिसइंटीग्रेशन ==
== बेरिलियम का फोटोडिसइंटीग्रेशन ==
1.67 MeV या अधिक ऊर्जा वाला एक फोटॉन [[बेरिलियम-9]] (प्राकृतिक बेरिलियम का 100%, इसका एकमात्र स्थिर समस्थानिक) के एक परमाणु का फोटोडिसइंटीग्रेशन कर सकता है:
1.67 मेगावॉट या अधिक ऊर्जा वाला एक फोटॉन [[बेरिलियम-9]] (प्राकृतिक बेरिलियम का 100%, इसका एकमात्र स्थिर समस्थानिक) के एक परमाणु का फोटोडिसइंटीग्रेशन कर सकता है:
:{| border="0"
:{| border="0"
|- style="height:2em;"
|- style="height:2em;"
|{{nuclide|link=yes|beryllium|9}} ||+ ||{{Subatomic particle|link=yes|gamma}} ||→ ||2|| {{nuclide|link=yes|Helium}} ||+ ||{{Subatomic particle|link=yes|neutron}}
|{{nuclide|link=yes|beryllium|9}} ||+ ||{{Subatomic particle|link=yes|gamma}} ||→ ||2|| {{nuclide|link=yes|Helium}} ||+ ||{{Subatomic particle|link=yes|neutron}}
|}
|}
प्रयोगशाला [[न्यूट्रॉन स्रोत]] और [[स्टार्टअप न्यूट्रॉन स्रोत]] बनाने के लिए एंटीमनी -124 को बेरिलियम के साथ संग्रह किया जाता है। एंटीमनी -124 (अर्ध-जीवन 60.20 दिन) β- और 1.690MeV गामा किरणें (0.602MeV और 0.645 से 2.090 MeV तक 9 बेहोशी उत्सर्जन) उत्सर्जित करता है, जिससे स्थिर टेल्यूरियम-124 प्राप्त होता है। [[ सुरमा - 124 |सुरमा - 124]] से गामा किरणें बेरिलियम-9 को दो अल्फा कणों और एक न्यूट्रॉन में 24keV की औसत गतिज ऊर्जा के साथ विभाजित करती हैं, न्यूट्रॉन तापमान या इंटरमीडिएट अन्य उत्पाद दो अल्फा कण हैं।<ref>{{cite journal |author= Lalovic, M. |author2= Werle, H. |title= एंटीमोनीबेरीलियम फोटोन्यूट्रॉन का ऊर्जा वितरण|journal= Journal of Nuclear Energy |date= 1970 |volume= 24 |issue= 3 |pages= 123–132 |doi= 10.1016/0022-3107(70)90058-4 |bibcode= 1970JNuE...24..123L}}</ref><ref>{{cite book |author= Ahmed, S. N. |title= भौतिकी और विकिरण का पता लगाने की इंजीनियरिंग|journal=<!-- --> |date= 2007 |page= 51 |isbn= 978-0-12-045581-2 |url= https://books.google.com/books?id=3KdmdcGbBywC&pg=PA51|bibcode= 2007perd.book.....A }}</ref>
प्रयोगशाला [[न्यूट्रॉन स्रोत]] और [[स्टार्टअप न्यूट्रॉन स्रोत]] बनाने के लिए एंटीमनी -124 को बेरिलियम के साथ संग्रह किया जाता है। एंटीमनी -124 (अर्ध-जीवन 60.20 दिन) β- और 1.690मेगावॉट गामा किरणें (0.602 मेगावॉट और 0.645 से 2.090 मेगावॉट तक 9 बेहोशी उत्सर्जन) उत्सर्जित करता है, जिससे स्थिर टेल्यूरियम-124 प्राप्त होता है। [[ सुरमा - 124 |सुरमा - 124]] से गामा किरणें बेरिलियम-9 को दो अल्फा कणों और एक न्यूट्रॉन में 24केवीनब  की औसत गतिज ऊर्जा के साथ विभाजित करती हैं, न्यूट्रॉन तापमान या इंटरमीडिएट अन्य उत्पाद दो अल्फा कण हैं।<ref>{{cite journal |author= Lalovic, M. |author2= Werle, H. |title= एंटीमोनीबेरीलियम फोटोन्यूट्रॉन का ऊर्जा वितरण|journal= Journal of Nuclear Energy |date= 1970 |volume= 24 |issue= 3 |pages= 123–132 |doi= 10.1016/0022-3107(70)90058-4 |bibcode= 1970JNuE...24..123L}}</ref><ref>{{cite book |author= Ahmed, S. N. |title= भौतिकी और विकिरण का पता लगाने की इंजीनियरिंग|journal=<!-- --> |date= 2007 |page= 51 |isbn= 978-0-12-045581-2 |url= https://books.google.com/books?id=3KdmdcGbBywC&pg=PA51|bibcode= 2007perd.book.....A }}</ref>
:{| border="0"
:{| border="0"
|- style="height:2em;"
|- style="height:2em;"
|{{nuclide|link=yes|antimony|124}}&nbsp;||→&nbsp;||{{nuclide|link=yes|tellurium|124}}||+&nbsp;||{{Subatomic particle|link=yes|beta-}}&nbsp;||+&nbsp;||{{Subatomic particle|link=yes|gamma}}
|{{nuclide|link=yes|antimony|124}}&nbsp;||→&nbsp;||{{nuclide|link=yes|tellurium|124}}||+&nbsp;||{{Subatomic particle|link=yes|beta-}}&nbsp;||+&nbsp;||{{Subatomic particle|link=yes|gamma}}
|}
|}
अन्य समस्थानिकों में [[कार्बन-12]] के लिए 18.72 MeV जितना अधिक फोटोन्यूट्रॉन उत्पादन के लिए उच्च सीमा होती है।<ref>{{cite book |url=http://www-pub.iaea.org/books/iaeabooks/6043/Handbook-on-Photonuclear-Data-for-Applications-Cross-sections-and-Spectra |title=Handbook on Photonuclear Data for Applications: Cross-sections and Spectra |date=28 February 2019 |publisher=IAEA |access-date=24 April 2017 |archive-date=26 April 2017 |archive-url=https://web.archive.org/web/20170426055716/http://www-pub.iaea.org/books/iaeabooks/6043/Handbook-on-Photonuclear-Data-for-Applications-Cross-sections-and-Spectra |url-status=live }}</ref>
अन्य समस्थानिकों में [[कार्बन-12]] के लिए 18.72 मेगावॉट जितना अधिक फोटोन्यूट्रॉन उत्पादन के लिए उच्च सीमा होती है।<ref>{{cite book |url=http://www-pub.iaea.org/books/iaeabooks/6043/Handbook-on-Photonuclear-Data-for-Applications-Cross-sections-and-Spectra |title=Handbook on Photonuclear Data for Applications: Cross-sections and Spectra |date=28 February 2019 |publisher=IAEA |access-date=24 April 2017 |archive-date=26 April 2017 |archive-url=https://web.archive.org/web/20170426055716/http://www-pub.iaea.org/books/iaeabooks/6043/Handbook-on-Photonuclear-Data-for-Applications-Cross-sections-and-Spectra |url-status=live }}</ref>




Line 30: Line 30:


==बिजली में फोटोडिसइंटीग्रेशन==
==बिजली में फोटोडिसइंटीग्रेशन==
स्थलीय बिजली उच्च-गति वाले इलेक्ट्रॉनों का उत्पादन करती है जो स्थलीय गामा- किरण फ्लैश बनाती हैं। इन किरणों की ऊर्जा कभी- कभी फोटोन्यूक्लियर प्रतिक्रिया प्रारंभ करने के लिए पर्याप्त होती है जिसके परिणामस्वरूप उत्सर्जित न्यूट्रॉन होते हैं। एक ऐसी प्रतिक्रिया, {{nuclide|link=yes|nitrogen|14}}(γ,n){{nuclide|link=yes|nitrogen|13}}, [[ब्रह्मांड किरण]] द्वारा प्रेरित के अतिरिक्त एकमात्र प्राकृतिक प्रक्रिया है जिसमें {{nuclide|link=yes|nitrogen|13}} पृथ्वी पर उत्पन्न होता है। प्रतिक्रिया से शेष अस्थिर समस्थानिक बाद में पॉज़िट्रॉन उत्सर्जन β<sup>+</sup> क्षय द्वारा पॉज़िट्रॉन का उत्सर्जन कर सकते हैं '''क्षय'''।<ref>{{Cite journal|last1=Enoto|first1=Teruaki|last2=Wada|first2=Yuuki|last3=Furuta|first3=Yoshihiro|last4=Nakazawa|first4=Kazuhiro|last5=Yuasa|first5=Takayuki|last6=Okuda|first6=Kazufumi|last7=Makishima|first7=Kazuo|last8=Sato|first8=Mitsuteru|last9=Sato|first9=Yousuke|last10=Nakano|first10=Toshio|last11=Umemoto|first11=Daigo|date=2017-11-23|title=लाइटनिंग में फोटोन्यूक्लियर रिएक्शन की खोज पॉज़िट्रॉन और न्यूट्रॉन की जांच से हुई|url=http://arxiv.org/abs/1711.08044|journal=Nature|volume=551|issue=7681|pages=481–484|doi=10.1038/nature24630|pmid=29168803|arxiv=1711.08044|s2cid=4388159|access-date=2020-12-19|archive-date=2020-11-27|archive-url=https://web.archive.org/web/20201127035805/https://arxiv.org/abs/1711.08044|url-status=live}}</ref>
स्थलीय बिजली उच्च-गति वाले इलेक्ट्रॉनों का उत्पादन करती है जो स्थलीय गामा- किरण फ्लैश बनाती हैं। इन किरणों की ऊर्जा कभी- कभी फोटोन्यूक्लियर प्रतिक्रिया प्रारंभ करने के लिए पर्याप्त होती है जिसके परिणामस्वरूप उत्सर्जित न्यूट्रॉन होते हैं। एक ऐसी प्रतिक्रिया, {{nuclide|link=yes|nitrogen|14}}(γ,n){{nuclide|link=yes|nitrogen|13}}, [[ब्रह्मांड किरण]] द्वारा प्रेरित के अतिरिक्त एकमात्र प्राकृतिक प्रक्रिया है जिसमें {{nuclide|link=yes|nitrogen|13}} पृथ्वी पर उत्पन्न होता है। प्रतिक्रिया से शेष अस्थिर समस्थानिक बाद में पॉज़िट्रॉन उत्सर्जन β<sup>+</sup> क्षय द्वारा पॉज़िट्रॉन का उत्सर्जन कर सकते हैं।<ref>{{Cite journal|last1=Enoto|first1=Teruaki|last2=Wada|first2=Yuuki|last3=Furuta|first3=Yoshihiro|last4=Nakazawa|first4=Kazuhiro|last5=Yuasa|first5=Takayuki|last6=Okuda|first6=Kazufumi|last7=Makishima|first7=Kazuo|last8=Sato|first8=Mitsuteru|last9=Sato|first9=Yousuke|last10=Nakano|first10=Toshio|last11=Umemoto|first11=Daigo|date=2017-11-23|title=लाइटनिंग में फोटोन्यूक्लियर रिएक्शन की खोज पॉज़िट्रॉन और न्यूट्रॉन की जांच से हुई|url=http://arxiv.org/abs/1711.08044|journal=Nature|volume=551|issue=7681|pages=481–484|doi=10.1038/nature24630|pmid=29168803|arxiv=1711.08044|s2cid=4388159|access-date=2020-12-19|archive-date=2020-11-27|archive-url=https://web.archive.org/web/20201127035805/https://arxiv.org/abs/1711.08044|url-status=live}}</ref>




== [[ Photofission ]] ==
== [[ Photofission ]] ==
फोटोफिशन एक समान किंतु विशिष्ट प्रक्रिया है, जिसमें एक गामा किरण को अवशोषित करने के बाद एक नाभिक, [[परमाणु विखंडन]] (लगभग समान द्रव्यमान के दो टुकड़ों में विभाजित) से गुजरता है।
फोटोफिशन एक समान किंतु विशिष्ट प्रक्रिया है, जिसमें एक गामा किरण को अवशोषित करने के बाद एक नाभिक, [[परमाणु विखंडन]] (लगभग समान द्रव्यमान के दो टुकड़ों में विभाजित) से गुजरता है।
'''दो टुकड़ों में विभाजित)'''
== यह भी देखें ==
== यह भी देखें ==
* [[जोड़ी-अस्थिरता सुपरनोवा]]
* [[जोड़ी-अस्थिरता सुपरनोवा]]

Revision as of 15:34, 18 April 2023

फोटोडिसइंटीग्रेशन (जिसे फोटोडिसइंटीग्रेशन या फोटोन्यूक्लियर प्रतिक्रिया भी कहा जाता है) एक परमाणु प्रक्रिया है जिसमें एक परमाणु नाभिक एक उच्च-ऊर्जा गामा किरण को अवशोषित करता है, एक उत्तेजित अवस्था में प्रवेश करता है, और एक उप-परमाणु कण का उत्सर्जन करके तुरंत क्षय हो जाता है। आने वाली गामा किरण प्रभावी रूप से एक या एक से अधिक न्यूट्रॉन, प्रोटॉन, या एक अल्फा कण को ​​​​नाभिक से बाहर निकालती है।[1] प्रतिक्रियाओं को (γ,n), (γ,p), और (γ,α). कहा जाता है।

फोटोडिसइंटीग्रेशन लोहे की तुलना में हल्के परमाणु नाभिक के लिए एन्दोठेर्मिक (ऊर्जा अवशोषित) है और कभी-कभी लोहे से भारी परमाणु नाभिक के लिए एक्ज़ोथिर्मिक (ऊर्जा विमोचन) है। सुपरनोवा में पी-प्रक्रिया के माध्यम से कम से कम कुछ भारी, प्रोटॉन-समृद्ध तत्वों के न्यूक्लियोसिंथेसिस के लिए फोटोडिसइंटीग्रेशन उत्हैतरदाई । यह लोहे को भारी तत्वों में आगे बढ़ने का कारण बनता है।

ड्यूटेरियम का फोटोडिसइंटीग्रेशन

2.22 मेगावॉट या अधिक ऊर्जा वाला एक फोटॉन, ड्यूटेरियम के एक परमाणु का फोटोडिसइंटीग्रेशन कर सकता है:

2
1
D
 

γ
 
→  1
1
H
 

n

जेम्स चाडविक और मौरिस गोल्डहैबर ने प्रोटॉन-न्यूट्रॉन द्रव्यमान अंतर को मापने के लिए इस प्रतिक्रिया का उपयोग किया।[2] यह प्रयोग सिद्ध करता है कि एक न्यूट्रॉन एक प्रोटॉन और एक इलेक्ट्रॉन की एक बाध्य अवस्था नहीं है,[3] जैसा कि अर्नेस्ट रदरफोर्ड द्वारा प्रस्तावित किया गया था।

बेरिलियम का फोटोडिसइंटीग्रेशन

1.67 मेगावॉट या अधिक ऊर्जा वाला एक फोटॉन बेरिलियम-9 (प्राकृतिक बेरिलियम का 100%, इसका एकमात्र स्थिर समस्थानिक) के एक परमाणु का फोटोडिसइंटीग्रेशन कर सकता है:

9
4
Be
 

γ
 
→  2  4
2
He
 

n

प्रयोगशाला न्यूट्रॉन स्रोत और स्टार्टअप न्यूट्रॉन स्रोत बनाने के लिए एंटीमनी -124 को बेरिलियम के साथ संग्रह किया जाता है। एंटीमनी -124 (अर्ध-जीवन 60.20 दिन) β- और 1.690मेगावॉट गामा किरणें (0.602 मेगावॉट और 0.645 से 2.090 मेगावॉट तक 9 बेहोशी उत्सर्जन) उत्सर्जित करता है, जिससे स्थिर टेल्यूरियम-124 प्राप्त होता है। सुरमा - 124 से गामा किरणें बेरिलियम-9 को दो अल्फा कणों और एक न्यूट्रॉन में 24केवीनब की औसत गतिज ऊर्जा के साथ विभाजित करती हैं, न्यूट्रॉन तापमान या इंटरमीडिएट अन्य उत्पाद दो अल्फा कण हैं।[4][5]

124
51
Sb
 
→  124
52
Te

β
 

γ

अन्य समस्थानिकों में कार्बन-12 के लिए 18.72 मेगावॉट जितना अधिक फोटोन्यूट्रॉन उत्पादन के लिए उच्च सीमा होती है।[6]


हाइपरनोवा

बहुत बड़े सितारों (250 या अधिक सौर द्रव्यमान) के विस्फोटों में, सुपरनोवा या कोर पतन घटना में फोटोडिसइंटीग्रेशन एक प्रमुख कारक है। जैसे ही तारा अपने जीवन के अंत तक पहुँचता है, यह तापमान और दबाव तक पहुँच जाता है जहाँ फोटोडिसइंटीग्रेशन के ऊर्जा-अवशोषित प्रभाव तारे के कोर के अंदर दबाव और तापमान को अस्थायी रूप से कम कर देते हैं। इसके कारण कोर का पतन प्रारंभ हो जाता है क्योंकि फोटोडिसइंटीग्रेशन द्वारा ऊर्जा को दूर ले जाया जाता है, और कोर के ढहने से ब्लैक होल का निर्माण होता है। द्रव्यमान का एक भाग आपेक्षिकीय जेट के रूप में पलायन करता है, जो ब्रह्मांड में पहली धात्विकता का "छिड़काव" कर सकता था।[7][8]


बिजली में फोटोडिसइंटीग्रेशन

स्थलीय बिजली उच्च-गति वाले इलेक्ट्रॉनों का उत्पादन करती है जो स्थलीय गामा- किरण फ्लैश बनाती हैं। इन किरणों की ऊर्जा कभी- कभी फोटोन्यूक्लियर प्रतिक्रिया प्रारंभ करने के लिए पर्याप्त होती है जिसके परिणामस्वरूप उत्सर्जित न्यूट्रॉन होते हैं। एक ऐसी प्रतिक्रिया, 14
7
N
(γ,n)13
7
N
, ब्रह्मांड किरण द्वारा प्रेरित के अतिरिक्त एकमात्र प्राकृतिक प्रक्रिया है जिसमें 13
7
N
पृथ्वी पर उत्पन्न होता है। प्रतिक्रिया से शेष अस्थिर समस्थानिक बाद में पॉज़िट्रॉन उत्सर्जन β+ क्षय द्वारा पॉज़िट्रॉन का उत्सर्जन कर सकते हैं।[9]


Photofission

फोटोफिशन एक समान किंतु विशिष्ट प्रक्रिया है, जिसमें एक गामा किरण को अवशोषित करने के बाद एक नाभिक, परमाणु विखंडन (लगभग समान द्रव्यमान के दो टुकड़ों में विभाजित) से गुजरता है।

यह भी देखें

संदर्भ

  1. Clayton, D. D. (1984). तारकीय विकास और न्यूक्लियोसिंथेसिस के सिद्धांत. University of Chicago Press. pp. 519. ISBN 978-0-22-610953-4.
  2. Chadwick, J.; Goldhaber, M. (1934). "A nuclear 'photo-effect': disintegration of the diplon by γ rays". Nature. 134 (3381): 237–238. Bibcode:1934Natur.134..237C. doi:10.1038/134237a0.
  3. Livesy, D. L. (1966). परमाणु और परमाणु भौतिकी. Waltham, MA: Blaisdell. p. 347. LCCN 65017961.
  4. Lalovic, M.; Werle, H. (1970). "एंटीमोनीबेरीलियम फोटोन्यूट्रॉन का ऊर्जा वितरण". Journal of Nuclear Energy. 24 (3): 123–132. Bibcode:1970JNuE...24..123L. doi:10.1016/0022-3107(70)90058-4.
  5. Ahmed, S. N. (2007). भौतिकी और विकिरण का पता लगाने की इंजीनियरिंग. p. 51. Bibcode:2007perd.book.....A. ISBN 978-0-12-045581-2.
  6. Handbook on Photonuclear Data for Applications: Cross-sections and Spectra. IAEA. 28 February 2019. Archived from the original on 26 April 2017. Retrieved 24 April 2017.
  7. Fryer, C. L.; Woosley, S. E.; Heger, A. (2001). "जोड़ी-अस्थिरता सुपरनोवा, ग्रेविटी वेव्स और गामा-रे ट्रांजिस्टर". The Astrophysical Journal. 550 (1): 372–382. arXiv:astro-ph/0007176. Bibcode:2001ApJ...550..372F. doi:10.1086/319719. S2CID 7368009.
  8. Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H. (2003). "कैसे बड़े पैमाने पर एकल सितारे अपना जीवन समाप्त करते हैं". The Astrophysical Journal. 591 (1): 288–300. arXiv:astro-ph/0212469. Bibcode:2003ApJ...591..288H. doi:10.1086/375341. S2CID 59065632.
  9. Enoto, Teruaki; Wada, Yuuki; Furuta, Yoshihiro; Nakazawa, Kazuhiro; Yuasa, Takayuki; Okuda, Kazufumi; Makishima, Kazuo; Sato, Mitsuteru; Sato, Yousuke; Nakano, Toshio; Umemoto, Daigo (2017-11-23). "लाइटनिंग में फोटोन्यूक्लियर रिएक्शन की खोज पॉज़िट्रॉन और न्यूट्रॉन की जांच से हुई". Nature. 551 (7681): 481–484. arXiv:1711.08044. doi:10.1038/nature24630. PMID 29168803. S2CID 4388159. Archived from the original on 2020-11-27. Retrieved 2020-12-19.