पथ-आदेश: Difference between revisions
No edit summary |
|||
Line 17: | Line 17: | ||
== उदाहरण == | == उदाहरण == | ||
यदि एक [[ऑपरेटर (भौतिकी)]] को केवल एक उत्पाद के रूप में व्यक्त नहीं किया जाता है, लेकिन किसी अन्य ऑपरेटर के कार्य के रूप में, हमें पहले इस | यदि एक [[ऑपरेटर (भौतिकी)]] को केवल एक उत्पाद के रूप में व्यक्त नहीं किया जाता है, लेकिन किसी अन्य ऑपरेटर के कार्य के रूप में, हमें पहले इस फलन का [[टेलर विस्तार]] करना होगा। यह [[विल्सन लूप]] की स्थिति है, जिसे पथ-क्रमांकित घातांक के रूप में परिभाषित किया गया है जिससे यह सुनिश्चित किया जा सके कि विल्सन लूप [[गेज कनेक्शन]] की पवित्रता को कूटबद्ध करता है। मापांक σ जो क्रम को निर्धारित करता है, [[समोच्च एकीकरण]] का वर्णन करने वाला एक मापांक है, और क्योंकि समोच्च बंद है, [[गेज-इनवेरिएंट]] होने के लिए विल्सन लूप को [[ट्रेस (रैखिक बीजगणित)]] के रूप में परिभाषित किया जाना चाहिए। | ||
== समय क्रमांक == | == समय क्रमांक == | ||
[[क्वांटम क्षेत्र सिद्धांत]] में ऑपरेटरों के समय-क्रमांकित उत्पाद को लेना उपयोगी होता है। इस | [[क्वांटम क्षेत्र सिद्धांत]] में ऑपरेटरों के समय-क्रमांकित उत्पाद को लेना उपयोगी होता है। इस <math>\mathcal T</math> ऑपरेशन द्वारा दर्शाया गया है। (यद्यपि <math>\mathcal T</math> अधिकांशतः समय-क्रम ऑपरेटर कहा जाता है, द्रढ़ता से बोलना न तो स्थितिओं पर एक [[रैखिक ऑपरेटर]] है और न ही ऑपरेटरों पर एक [[सुपरऑपरेटर]] है।) | ||
दो ऑपरेटरों | दो ऑपरेटरों ''A''(''x'') और ''B''(''y'') के लिए जो स्पेसटाइम स्थानों ''x'' और ''y'' पर निर्भर करते हैं, हम परिभाषित करते हैं: | ||
:<math>\mathcal T \left\{A(x) B(y)\right\} := \begin{cases} A(x) B(y) & \text{if } \tau_x > \tau_y, \\ \pm B(y)A(x) & \text{if } \tau_x < \tau_y. \end{cases} </math> | :<math>\mathcal T \left\{A(x) B(y)\right\} := \begin{cases} A(x) B(y) & \text{if } \tau_x > \tau_y, \\ \pm B(y)A(x) & \text{if } \tau_x < \tau_y. \end{cases} </math> | ||
यहाँ <math>\tau_x</math> और <math>\tau_y</math> बिंदु x और y के अपरिवर्तनीय अदिश समय-निर्देशांक को निरूपित | यहाँ <math>\tau_x</math> और <math>\tau_y</math> बिंदु x और y के अपरिवर्तनीय अदिश समय-निर्देशांक को निरूपित करेंगे।<ref>[[Steven Weinberg]], ''The Quantum Theory of Fields'', Vol. 3, Cambridge University Press, 1995, {{ISBN|0-521-55001-7}}, p. 143.</ref> | ||
स्पष्ट रूप से हमारे पास है | स्पष्ट रूप से हमारे पास है | ||
:<math>\mathcal T \left\{A(x) B(y)\right\} := \theta (\tau_x - \tau_y) A(x) B(y) \pm \theta (\tau_y - \tau_x) B(y) A(x), </math> | :<math>\mathcal T \left\{A(x) B(y)\right\} := \theta (\tau_x - \tau_y) A(x) B(y) \pm \theta (\tau_y - \tau_x) B(y) A(x), </math> | ||
जहाँ <math>\theta</math> [[हैवीसाइड स्टेप फंक्शन]] को दर्शाता है और <math>\pm</math> यह इस बात पर निर्भर करता है कि | जहाँ <math>\theta</math> [[हैवीसाइड स्टेप फंक्शन|हैवीसाइड चरण फलन]] को दर्शाता है और <math>\pm</math> यह इस बात पर निर्भर करता है कि क्या ऑपरेटर प्रकृति में बोसोनिक या फर्मिओनिक हैं। यदि बोसोनिक है, तो + चिन्ह सदैव चुना जाता है, यदि फर्मिओनिक है, तो चिन्ह उचित समय क्रम को प्राप्त करने के लिए आवश्यक ऑपरेटर इंटरचेंज की संख्या पर निर्भर करेगा। ध्यान दें कि सांख्यिकीय कारक यहां अंकित नहीं होते हैं। | ||
चूंकि ऑपरेटर [[spacelike| | चूंकि ऑपरेटर [[spacelike|स्पेसटाइम]] में अपने स्थान पर निर्भर करते हैं (अर्थात केवल समय नहीं) यह समय-क्रम ऑपरेशन केवल स्वतंत्र रूप से समन्वयित होता है यदि ऑपरेटर स्पेसलाइक जैसे अलग-अलग बिंदुओं पर [[ क्रमविनिमेयता | क्रमविनिमेयता]] करते हैं। यही कारण है कि <math>t_0</math> के अतिरिक्त <math>\tau</math> का उपयोग करना आवश्यक है, क्योंकि '''इसके अतिरिक्त , तब से''' <math>t_0</math> सामान्यतः स्पेसटाइम बिंदु के समन्वय निर्भर समय-जैसे सूचकांक को इंगित करता है। ध्यान दें कि समय-क्रम सामान्यतः समय तर्क के साथ दाएं से बाएं बढ़ते हुए लिखा जाता है। | ||
सामान्य तौर पर, | सामान्य तौर पर, n क्षेत्र ऑपरेटरों के उत्पाद के लिए {{nowrap|''A''<sub>1</sub>(''t''<sub>1</sub>), …, ''A''<sub>''n''</sub>(''t''<sub>''n''</sub>)}} ऑपरेटरों के समय-क्रमांकित उत्पाद को निम्नानुसार परिभाषित किया गया है: | ||
:<math> | :<math> | ||
Line 43: | Line 43: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
जहां योग सभी | जहां योग सभी ''p'' और ''n'' डिग्री क्रमपरिवर्तन के [[सममित समूह]] पर चलता है और | ||
: <math> | : <math> | ||
\varepsilon(p) \equiv \begin{cases} | \varepsilon(p) \equiv \begin{cases} | ||
Line 50: | Line 50: | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
क्वांटम क्षेत्र सिद्धांत में [[ एस मैट्रिक्स | एस आव्यूह]] समय-क्रमांकित उत्पाद का एक उदाहरण है। एस-आव्यूह, | क्वांटम क्षेत्र सिद्धांत में [[ एस मैट्रिक्स | एस आव्यूह]] समय-क्रमांकित उत्पाद का एक उदाहरण है। एस-आव्यूह, स्थिति को {{nowrap|''t'' {{=}} −∞}} से {{nowrap|''t'' {{=}} +∞}} पर एक स्थिति में बदलने के बारे में भी एक प्रकार की "होलोनॉमी" के रूप में सोचा जा सकता है, जो विल्सन लूप के अनुरूप है। हम निम्नलिखित कारणों से समयबद्ध व्यंजक प्राप्त करते हैं: | ||
हम घातांक के लिए इस सरल सूत्र से प्रारंभ करते हैं | हम घातांक के लिए इस सरल सूत्र से प्रारंभ करते हैं: | ||
:<math>\exp h = \lim_{N\to\infty} \left(1 + \frac{h}{N}\right)^N. </math> | :<math>\exp h = \lim_{N\to\infty} \left(1 + \frac{h}{N}\right)^N. </math> | ||
अब विवेकाधीन [[विकास संचालक]] पर विचार करें | अब विवेकाधीन [[विकास संचालक|विकास ऑपरेटर]] पर विचार करें | ||
:<math>S = \cdots (1+h_{+3})(1+h_{+2})(1+h_{+1})(1+h_0)(1+h_{-1})(1+h_{-2})\cdots</math> | :<math>S = \cdots (1+h_{+3})(1+h_{+2})(1+h_{+1})(1+h_0)(1+h_{-1})(1+h_{-2})\cdots</math> | ||
जहाँ <math>1+h_{j}</math> एक अतिसूक्ष्म समय अंतराल | जहाँ <math>1+h_{j}</math> एक अतिसूक्ष्म समय अंतराल <math>[j\varepsilon,(j+1)\varepsilon]</math> पर विकास ऑपरेटर है। उच्च क्रमांक नियमों को सीमा <math>\varepsilon\to 0</math> में उपेक्षित किया जा सकता है। ऑपरेटर <math>h_j</math> द्वारा परिभाषित किया गया है | ||
:<math>h_j =\frac{1}{i\hbar} \int_{j\varepsilon}^{(j+1)\varepsilon} \, dt \int d^3 x \, H(\vec x,t). </math> | :<math>h_j =\frac{1}{i\hbar} \int_{j\varepsilon}^{(j+1)\varepsilon} \, dt \int d^3 x \, H(\vec x,t). </math> | ||
ध्यान दें कि पिछले समय के अंतराल में विकास | ध्यान दें कि पिछले समय के अंतराल में विकास ऑपरेटर उत्पाद के दाईं ओर दिखाई देते हैं। हम देखते हैं कि सूत्र घातांक से संतुष्ट उपरोक्त पहचान के अनुरूप है, और हम लिख सकते हैं: | ||
:<math> S = {\mathcal T} \exp \left(\sum_{j=-\infty}^\infty h_j\right) = \mathcal T \exp \left(\int dt\, d^3 x \, \frac{H(\vec x,t)}{i\hbar}\right).</math> | :<math> S = {\mathcal T} \exp \left(\sum_{j=-\infty}^\infty h_j\right) = \mathcal T \exp \left(\int dt\, d^3 x \, \frac{H(\vec x,t)}{i\hbar}\right).</math> | ||
एकमात्र सूक्ष्मता जिसे हमें सम्मिलित करना था वह समय-क्रमांक देने वाला ऑपरेटर | एकमात्र सूक्ष्मता जिसे हमें सम्मिलित करना था वह समय-क्रमांक देने वाला ऑपरेटर <math>\mathcal T</math> था क्योंकि उपरोक्त S को परिभाषित करने वाले उत्पाद में कारक भी समय-क्रमांकित थे, (और ऑपरेटर सामान्य रूप से यात्रा नहीं करते हैं) और ऑपरेटर <math>\mathcal T</math> सुनिश्चित करता है कि यह क्रमांक संरक्षित रहेगा। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 22:03, 25 April 2023
This article needs additional citations for verification. (September 2016) (Learn how and when to remove this template message) |
सैद्धांतिक भौतिकी में, पथ-क्रमांक प्रक्रिया (या एक मेटा-ऑपरेटर ) है, जो एक चुने हुए मापांक के मान के अनुसार ऑपरेटरों के उत्पाद का क्रमांक देता है:
यहाँ p एक क्रमचय है, जो मापांक को मान के आधार पर क्रमित करता है:
उदाहरण के लिए:
उदाहरण
यदि एक ऑपरेटर (भौतिकी) को केवल एक उत्पाद के रूप में व्यक्त नहीं किया जाता है, लेकिन किसी अन्य ऑपरेटर के कार्य के रूप में, हमें पहले इस फलन का टेलर विस्तार करना होगा। यह विल्सन लूप की स्थिति है, जिसे पथ-क्रमांकित घातांक के रूप में परिभाषित किया गया है जिससे यह सुनिश्चित किया जा सके कि विल्सन लूप गेज कनेक्शन की पवित्रता को कूटबद्ध करता है। मापांक σ जो क्रम को निर्धारित करता है, समोच्च एकीकरण का वर्णन करने वाला एक मापांक है, और क्योंकि समोच्च बंद है, गेज-इनवेरिएंट होने के लिए विल्सन लूप को ट्रेस (रैखिक बीजगणित) के रूप में परिभाषित किया जाना चाहिए।
समय क्रमांक
क्वांटम क्षेत्र सिद्धांत में ऑपरेटरों के समय-क्रमांकित उत्पाद को लेना उपयोगी होता है। इस ऑपरेशन द्वारा दर्शाया गया है। (यद्यपि अधिकांशतः समय-क्रम ऑपरेटर कहा जाता है, द्रढ़ता से बोलना न तो स्थितिओं पर एक रैखिक ऑपरेटर है और न ही ऑपरेटरों पर एक सुपरऑपरेटर है।)
दो ऑपरेटरों A(x) और B(y) के लिए जो स्पेसटाइम स्थानों x और y पर निर्भर करते हैं, हम परिभाषित करते हैं:
यहाँ और बिंदु x और y के अपरिवर्तनीय अदिश समय-निर्देशांक को निरूपित करेंगे।[1]
स्पष्ट रूप से हमारे पास है
जहाँ हैवीसाइड चरण फलन को दर्शाता है और यह इस बात पर निर्भर करता है कि क्या ऑपरेटर प्रकृति में बोसोनिक या फर्मिओनिक हैं। यदि बोसोनिक है, तो + चिन्ह सदैव चुना जाता है, यदि फर्मिओनिक है, तो चिन्ह उचित समय क्रम को प्राप्त करने के लिए आवश्यक ऑपरेटर इंटरचेंज की संख्या पर निर्भर करेगा। ध्यान दें कि सांख्यिकीय कारक यहां अंकित नहीं होते हैं।
चूंकि ऑपरेटर स्पेसटाइम में अपने स्थान पर निर्भर करते हैं (अर्थात केवल समय नहीं) यह समय-क्रम ऑपरेशन केवल स्वतंत्र रूप से समन्वयित होता है यदि ऑपरेटर स्पेसलाइक जैसे अलग-अलग बिंदुओं पर क्रमविनिमेयता करते हैं। यही कारण है कि के अतिरिक्त का उपयोग करना आवश्यक है, क्योंकि इसके अतिरिक्त , तब से सामान्यतः स्पेसटाइम बिंदु के समन्वय निर्भर समय-जैसे सूचकांक को इंगित करता है। ध्यान दें कि समय-क्रम सामान्यतः समय तर्क के साथ दाएं से बाएं बढ़ते हुए लिखा जाता है।
सामान्य तौर पर, n क्षेत्र ऑपरेटरों के उत्पाद के लिए A1(t1), …, An(tn) ऑपरेटरों के समय-क्रमांकित उत्पाद को निम्नानुसार परिभाषित किया गया है:
जहां योग सभी p और n डिग्री क्रमपरिवर्तन के सममित समूह पर चलता है और
क्वांटम क्षेत्र सिद्धांत में एस आव्यूह समय-क्रमांकित उत्पाद का एक उदाहरण है। एस-आव्यूह, स्थिति को t = −∞ से t = +∞ पर एक स्थिति में बदलने के बारे में भी एक प्रकार की "होलोनॉमी" के रूप में सोचा जा सकता है, जो विल्सन लूप के अनुरूप है। हम निम्नलिखित कारणों से समयबद्ध व्यंजक प्राप्त करते हैं:
हम घातांक के लिए इस सरल सूत्र से प्रारंभ करते हैं:
अब विवेकाधीन विकास ऑपरेटर पर विचार करें
जहाँ एक अतिसूक्ष्म समय अंतराल पर विकास ऑपरेटर है। उच्च क्रमांक नियमों को सीमा में उपेक्षित किया जा सकता है। ऑपरेटर द्वारा परिभाषित किया गया है
ध्यान दें कि पिछले समय के अंतराल में विकास ऑपरेटर उत्पाद के दाईं ओर दिखाई देते हैं। हम देखते हैं कि सूत्र घातांक से संतुष्ट उपरोक्त पहचान के अनुरूप है, और हम लिख सकते हैं:
एकमात्र सूक्ष्मता जिसे हमें सम्मिलित करना था वह समय-क्रमांक देने वाला ऑपरेटर था क्योंकि उपरोक्त S को परिभाषित करने वाले उत्पाद में कारक भी समय-क्रमांकित थे, (और ऑपरेटर सामान्य रूप से यात्रा नहीं करते हैं) और ऑपरेटर सुनिश्चित करता है कि यह क्रमांक संरक्षित रहेगा।
यह भी देखें
- क्रमबद्ध घातीय (अनिवार्य रूप से एक ही अवधारणा)
- गेज सिद्धांत
- एस-आव्यूह
संदर्भ
- ↑ Steven Weinberg, The Quantum Theory of Fields, Vol. 3, Cambridge University Press, 1995, ISBN 0-521-55001-7, p. 143.