आयामी नियमितीकरण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Method in evaluating divergent integrals}} __NOTOC__ {{Renormalization and regularization}} सैद्धांतिक भौतिकी मे...")
 
No edit summary
Line 3: Line 3:
{{Renormalization and regularization}}
{{Renormalization and regularization}}


[[सैद्धांतिक भौतिकी]] में, आयामी नियमितीकरण जुआन जोस गिआम्बियागी और सीजी बोलिनी द्वारा शुरू की गई एक विधि है।<ref>Bollini 1972, p. 20.</ref> साथ ही - स्वतंत्र रूप से और अधिक व्यापक रूप से<ref name="physicstoday">{{Cite journal |last1=Bietenholz |first1=Wolfgang |last2=Prado |first2=Lilian |date=2014-02-01 |title=प्रतिक्रियावादी अर्जेंटीना में क्रांतिकारी भौतिकी|journal=Physics Today |volume=67 |issue=2 |pages=38–43 |doi=10.1063/PT.3.2277 |issn=0031-9228|bibcode=2014PhT....67b..38B |doi-access=free }}</ref> - जेरार्ड 'टी हूफ्ट द्वारा' टी हूफ्ट और मार्टिनस जे.जी. वेल्टमैन<ref>{{Citation | last1=Hooft | first1=G. 't | last2=Veltman | first2=M. | title=Regularization and renormalization of gauge fields | doi= 10.1016/0550-3213(72)90279-9 | year=1972 | journal=Nuclear Physics B | issn=0550-3213 | volume=44 | issue=1 | pages=189–213 |bibcode = 1972NuPhB..44..189T | hdl=1874/4845 | url=https://repositorio.unal.edu.co/handle/unal/81144 | hdl-access=free }}</ref> [[नियमितीकरण (भौतिकी)]] के लिए [[फेनमैन आरेख]]ों के मूल्यांकन में [[अभिन्न]] अंग; दूसरे शब्दों में, उन्हें मान निर्दिष्ट करना जो एक जटिल पैरामीटर डी के [[मेरोमॉर्फिक फ़ंक्शन]] हैं, स्पेसटाइम आयामों की संख्या की विश्लेषणात्मक निरंतरता।
[[सैद्धांतिक भौतिकी]] में '''आयामी नियमितीकरण''' एक विधि है जिसे गियामबैगी और बोलिनी के साथ-साथ स्वतंत्र रूप से और अधिक व्यापक रूप से 'टी हूफ्ट और मार्टिनस जे.जी. वेल्टमैन<ref>{{Citation | last1=Hooft | first1=G. 't | last2=Veltman | first2=M. | title=Regularization and renormalization of gauge fields | doi= 10.1016/0550-3213(72)90279-9 | year=1972 | journal=Nuclear Physics B | issn=0550-3213 | volume=44 | issue=1 | pages=189–213 |bibcode = 1972NuPhB..44..189T | hdl=1874/4845 | url=https://repositorio.unal.edu.co/handle/unal/81144 | hdl-access=free }}</ref> द्वारा फेनमैन आरेखों के मूल्यांकन में एकीकरण को नियमित करने के लिए प्रस्तुत किया गया है दूसरे शब्दों में उनके मान निर्दिष्ट करना जो पैरामीटर D के [[मेरोमॉर्फिक फ़ंक्शन|मध्य फलन]] हैं और स्पेसटाइम आयामों की संख्या की विश्लेषणात्मक निरंतरता है।


आयामी नियमितीकरण स्पेसटाइम आयाम d और वर्ग दूरी (x) के आधार पर एक [[ फेनमैन अभिन्न ]] को इंटीग्रल के रूप में लिखता है<sub>''i''</sub>-X<sub>''j''</sub>)<sup>स्पेसटाइम बिंदुओं x का 2</sup><sub>''i''</sub>, ... इसमें दिखाई दे रहे हैं। [[यूक्लिडियन अंतरिक्ष]] में, अभिन्न अक्सर -रे (डी) के लिए पर्याप्त रूप से बड़े होते हैं, और विश्लेषणात्मक रूप से इस क्षेत्र से सभी जटिल डी के लिए परिभाषित मेरोमोर्फिक फ़ंक्शन तक जारी रखा जा सकता है। सामान्य तौर पर, डी के भौतिक मूल्य (आमतौर पर 4) पर एक ध्रुव होगा, जिसे भौतिक मात्रा प्राप्त करने के लिए पुनर्संरचना द्वारा रद्द करने की आवश्यकता होती है।
आयामी नियमितीकरण स्पेसटाइम आयाम D और स्पेसटाइम बिन्दु xi, ... की वर्ग दूरी (x<sub>i</sub>−x<sub>j</sub>)<sup>2</sup> के आधार पर एक इंटीग्रल के रूप में एक [[ फेनमैन अभिन्न |फेनमैन अभिन्न]] लिखता है। [[यूक्लिडियन अंतरिक्ष]] में, अभिन्न अक्सर -रे (डी) के लिए पर्याप्त रूप से बड़े होते हैं, और विश्लेषणात्मक रूप से इस क्षेत्र से सभी जटिल डी के लिए परिभाषित मेरोमोर्फिक फ़ंक्शन तक जारी रखा जा सकता है। सामान्य तौर पर, डी के भौतिक मूल्य (आमतौर पर 4) पर एक ध्रुव होगा, जिसे भौतिक मात्रा प्राप्त करने के लिए पुनर्संरचना द्वारा रद्द करने की आवश्यकता होती है। Etingof (1999) ने दिखाया कि विश्लेषणात्मक निरंतरता को पूरा करने के लिए बर्नस्टीन-साटो बहुपद का उपयोग करके, कम से कम बड़े पैमाने पर यूक्लिडियन क्षेत्रों के मामले में आयामी नियमितीकरण गणितीय रूप से अच्छी तरह से परिभाषित है।
{{harvtxt|Etingof|1999}} ने दिखाया कि विश्लेषणात्मक निरंतरता को पूरा करने के लिए बर्नस्टीन-साटो बहुपद का उपयोग करके, कम से कम बड़े पैमाने पर यूक्लिडियन क्षेत्रों के मामले में आयामी नियमितीकरण गणितीय रूप से अच्छी तरह से परिभाषित है।
 
यद्यपि विधि सबसे अच्छी तरह से समझी जाती है जब ध्रुवों को घटाया जाता है और d को एक बार फिर 4 से बदल दिया जाता है, इसने कुछ सफलताओं का भी नेतृत्व किया है जब d को एक अन्य पूर्णांक मान तक ले जाया जाता है जहाँ सिद्धांत दृढ़ता से युग्मित प्रतीत होता है जैसा कि मामले में है आइसिंग मॉडल#विल्सन-फिशर फिक्स्ड पॉइंट|विल्सन-फिशर फिक्स्ड पॉइंट। आंशिक आयामों के माध्यम से प्रक्षेप को गंभीरता से लेना एक और छलांग है। इसने कुछ लेखकों को यह सुझाव देने के लिए प्रेरित किया है कि आयामी नियमितीकरण का उपयोग क्रिस्टल के भौतिकी का अध्ययन करने के लिए किया जा सकता है जो मैक्रोस्कोपिक रूप से फ्रैक्टल आयाम प्रतीत होता है।<ref>{{cite journal|title=गैर-पूर्णांक आयामों में आइसिंग जैसी प्रणालियों के लिए सटीक महत्वपूर्ण घातांक|journal=Journal de Physique|year=1987|volume=48|first1=J.C.|last1=Le Guillo|first2=J.|last2=Zinn-Justin|url=https://hal.archives-ouvertes.fr/jpa-00210418/document}}</ref>
यह तर्क दिया गया है कि ज़ेटा फ़ंक्शन नियमितीकरण और आयामी नियमितीकरण समतुल्य हैं क्योंकि वे एक श्रृंखला या अभिसरण के अभिन्न अंग के लिए विश्लेषणात्मक निरंतरता का उपयोग करने के समान सिद्धांत का उपयोग करते हैं।<ref>A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini, ''Analytic Aspects of Quantum Field'' , World Scientific Publishing, 2003, {{ISBN|981-238-364-6}}</ref>


यद्यपि विधि सबसे अच्छी तरह से समझी जाती है जब ध्रुवों को घटाया जाता है और d को एक बार फिर 4 से बदल दिया जाता है, इसने कुछ सफलताओं का भी नेतृत्व किया है जब d को एक अन्य पूर्णांक मान तक ले जाया जाता है जहाँ सिद्धांत दृढ़ता से युग्मित प्रतीत होता है जैसा कि मामले में है विल्सन-फिशर निश्चित बिंदु। आंशिक आयामों के माध्यम से प्रक्षेप को गंभीरता से लेना एक और छलांग है। इसने कुछ लेखकों को यह सुझाव देने के लिए प्रेरित किया है कि आयामी नियमितीकरण का उपयोग क्रिस्टल के भौतिकी का अध्ययन करने के लिए किया जा सकता है जो मैक्रोस्कोपिक रूप से भग्न प्रतीत होते हैं।<ref>{{cite journal|title=गैर-पूर्णांक आयामों में आइसिंग जैसी प्रणालियों के लिए सटीक महत्वपूर्ण घातांक|journal=Journal de Physique|year=1987|volume=48|first1=J.C.|last1=Le Guillo|first2=J.|last2=Zinn-Justin|url=https://hal.archives-ouvertes.fr/jpa-00210418/document}}</ref>


यह तर्क दिया गया है कि ज़ेटा नियमितीकरण और आयामी नियमितीकरण समतुल्य हैं क्योंकि वे एक श्रृंखला या अभिसरण के अभिन्न अंग के लिए विश्लेषणात्मक निरंतरता का उपयोग करने के समान सिद्धांत का उपयोग करते हैं।<ref>A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini, ''Analytic Aspects of Quantum Field'' , World Scientific Publishing, 2003, {{ISBN|981-238-364-6}}</ref>


[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/04/2023]]
[[Category:Created On 18/04/2023]]

Revision as of 14:38, 25 April 2023

सैद्धांतिक भौतिकी में आयामी नियमितीकरण एक विधि है जिसे गियामबैगी और बोलिनी के साथ-साथ स्वतंत्र रूप से और अधिक व्यापक रूप से 'टी हूफ्ट और मार्टिनस जे.जी. वेल्टमैन[1] द्वारा फेनमैन आरेखों के मूल्यांकन में एकीकरण को नियमित करने के लिए प्रस्तुत किया गया है दूसरे शब्दों में उनके मान निर्दिष्ट करना जो पैरामीटर D के मध्य फलन हैं और स्पेसटाइम आयामों की संख्या की विश्लेषणात्मक निरंतरता है।

आयामी नियमितीकरण स्पेसटाइम आयाम D और स्पेसटाइम बिन्दु xi, ... की वर्ग दूरी (xi−xj)2 के आधार पर एक इंटीग्रल के रूप में एक फेनमैन अभिन्न लिखता है। यूक्लिडियन अंतरिक्ष में, अभिन्न अक्सर -रे (डी) के लिए पर्याप्त रूप से बड़े होते हैं, और विश्लेषणात्मक रूप से इस क्षेत्र से सभी जटिल डी के लिए परिभाषित मेरोमोर्फिक फ़ंक्शन तक जारी रखा जा सकता है। सामान्य तौर पर, डी के भौतिक मूल्य (आमतौर पर 4) पर एक ध्रुव होगा, जिसे भौतिक मात्रा प्राप्त करने के लिए पुनर्संरचना द्वारा रद्द करने की आवश्यकता होती है। Etingof (1999) ने दिखाया कि विश्लेषणात्मक निरंतरता को पूरा करने के लिए बर्नस्टीन-साटो बहुपद का उपयोग करके, कम से कम बड़े पैमाने पर यूक्लिडियन क्षेत्रों के मामले में आयामी नियमितीकरण गणितीय रूप से अच्छी तरह से परिभाषित है।

यद्यपि विधि सबसे अच्छी तरह से समझी जाती है जब ध्रुवों को घटाया जाता है और d को एक बार फिर 4 से बदल दिया जाता है, इसने कुछ सफलताओं का भी नेतृत्व किया है जब d को एक अन्य पूर्णांक मान तक ले जाया जाता है जहाँ सिद्धांत दृढ़ता से युग्मित प्रतीत होता है जैसा कि मामले में है विल्सन-फिशर निश्चित बिंदु। आंशिक आयामों के माध्यम से प्रक्षेप को गंभीरता से लेना एक और छलांग है। इसने कुछ लेखकों को यह सुझाव देने के लिए प्रेरित किया है कि आयामी नियमितीकरण का उपयोग क्रिस्टल के भौतिकी का अध्ययन करने के लिए किया जा सकता है जो मैक्रोस्कोपिक रूप से भग्न प्रतीत होते हैं।[2]

यह तर्क दिया गया है कि ज़ेटा नियमितीकरण और आयामी नियमितीकरण समतुल्य हैं क्योंकि वे एक श्रृंखला या अभिसरण के अभिन्न अंग के लिए विश्लेषणात्मक निरंतरता का उपयोग करने के समान सिद्धांत का उपयोग करते हैं।[3]

  1. Hooft, G. 't; Veltman, M. (1972), "Regularization and renormalization of gauge fields", Nuclear Physics B, 44 (1): 189–213, Bibcode:1972NuPhB..44..189T, doi:10.1016/0550-3213(72)90279-9, hdl:1874/4845, ISSN 0550-3213
  2. Le Guillo, J.C.; Zinn-Justin, J. (1987). "गैर-पूर्णांक आयामों में आइसिंग जैसी प्रणालियों के लिए सटीक महत्वपूर्ण घातांक". Journal de Physique. 48.
  3. A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini, Analytic Aspects of Quantum Field , World Scientific Publishing, 2003, ISBN 981-238-364-6