आरेख (श्रेणी सिद्धांत): Difference between revisions
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
औपचारिक रूप से [[श्रेणी (गणित)]] C में J प्रकार का आरेख एक (सहसंयोजक) कारक है | औपचारिक रूप से [[श्रेणी (गणित)]] C में J प्रकार का आरेख एक (सहसंयोजक) कारक है | ||
{{block indent|''D'' : ''J'' → ''C.''}} | {{block indent|''D'' : ''J'' → ''C.''}} | ||
श्रेणी J को आरेख D की 'सूचकांक श्रेणी' या ' | श्रेणी J को आरेख D की 'सूचकांक श्रेणी' या 'पद्धति' कहा जाता है; फ़ैक्टर को कभी-कभी 'J-आकार का आरेख' कहा जाता है। <ref>{{cite book|title=बीजगणितीय टोपोलॉजी में एक संक्षिप्त पाठ्यक्रम|last=May|first=J. P.|publisher=University of Chicago Press|year=1999|isbn=0-226-51183-9|pages=16|url=https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf}} </ref> J में वास्तविक वस्तुएं और आकारिकी अधिक अप्रासंगिक हैं; केवल जिस तरह से वे परस्पर संबंधित हैं। आरेख D को J पर प्रतिरूपित C में वस्तुओं और आकारिकी के संग्रह को अनुक्रमित करने के बारे में सोचा गया है। | ||
चूँकि, विधि रूप से, व्यक्तिगत आरेख और कारक या योजना और श्रेणी के बीच कोई अंतर नहीं है,| शब्दावली में परिवर्तन परिप्रेक्ष्य में बदलाव को दर्शाता है,| ठीक वैसे ही जैसे समुच्चय सिद्धान्तिक स्थिति में: सूचकांक श्रेणी को ठीक करता है, और कारक (और, दूसरी बात, लक्ष्य श्रेणी) अलग-अलग करने के लिए अनुमति देता है । | चूँकि, विधि रूप से, व्यक्तिगत आरेख और कारक या योजना और श्रेणी के बीच कोई अंतर नहीं है,| शब्दावली में परिवर्तन परिप्रेक्ष्य में बदलाव को दर्शाता है,| ठीक वैसे ही जैसे समुच्चय सिद्धान्तिक स्थिति में: सूचकांक श्रेणी को ठीक करता है, और कारक (और, दूसरी बात, लक्ष्य श्रेणी) अलग-अलग करने के लिए अनुमति देता है । | ||
Line 19: | Line 19: | ||
== उदाहरण == | == उदाहरण == | ||
* | * C में किसी भी वस्तु A को देखते हुए, किसी के पास 'निरंतर आरेख' होता है, जो आरेख है जो J से A में सभी वस्तुओं को मानचित्रित करता है, और J के सभी रूपों को A पर पहचान रूपवाद के लिए दर्शाता है। सांकेतिक रूप से, अधिकांशतः निरूपित करने के लिए अंडरबार का उपयोग करता है निरंतर आरेख: इस प्रकार, c में किसी भी वस्तु <math>A</math> के लिए सी में,निरंतर आरेख <math>\underline A</math> है | | ||
* यदि J (छोटी) [[असतत श्रेणी]] है, तो प्रकार J का आरेख अनिवार्य रूप से C में वस्तुओं का अनुक्रमित परिवार है (J द्वारा अनुक्रमित)। जब सीमा (श्रेणी सिद्धांत) के निर्माण में उपयोग किया जाता है, तो परिणाम [[उत्पाद (श्रेणी सिद्धांत)]] होता है; कोलिमिट के लिए, किसी को उत्पाद मिलता है। इसलिए, उदाहरण के लिए, जब J दो वस्तुओं के साथ असतत श्रेणी है, परिणामी सीमा केवल बाइनरी उत्पाद है। | * यदि J (छोटी) [[असतत श्रेणी]] है, तो प्रकार J का आरेख अनिवार्य रूप से C में वस्तुओं का अनुक्रमित परिवार है (J द्वारा अनुक्रमित)। जब सीमा (श्रेणी सिद्धांत) के निर्माण में उपयोग किया जाता है, तो परिणाम [[उत्पाद (श्रेणी सिद्धांत)]] होता है; कोलिमिट के लिए, किसी को उत्पाद मिलता है। इसलिए, उदाहरण के लिए, जब J दो वस्तुओं के साथ असतत श्रेणी है, परिणामी सीमा केवल बाइनरी उत्पाद है। | ||
* यदि J = −1 ← 0 → +1, तो प्रकार J (A ← B → C) का आरेख [[स्पैन (श्रेणी सिद्धांत)]] है, और इसकी कोलिमिट [[पुशआउट (श्रेणी सिद्धांत)]] है। यदि कोई यह भूल जाए कि आरेख में वस्तु B और दो तीर B → A, B → C हैं, तो परिणामी आरेख केवल दो वस्तुओं A और C के साथ असतत श्रेणी होगी, और कोलिमिट केवल बाइनरी [[सहउत्पाद]] होगा। इस प्रकार, यह उदाहरण महत्वपूर्ण तरीका दिखाता है जिसमें आरेख का विचार समुच्चय सिद्धांत में समुच्चय सूची के सामान्यीकरण करता है: आकारिकी | * यदि J = −1 ← 0 → +1, तो प्रकार J (A ← B → C) का आरेख [[स्पैन (श्रेणी सिद्धांत)]] है, और इसकी कोलिमिट [[पुशआउट (श्रेणी सिद्धांत)]] है। यदि कोई यह भूल जाए कि आरेख में वस्तु B और दो तीर B → A, B → C हैं, तो परिणामी आरेख केवल दो वस्तुओं A और C के साथ असतत श्रेणी होगी, और कोलिमिट केवल बाइनरी [[सहउत्पाद]] होगा। इस प्रकार, यह उदाहरण महत्वपूर्ण तरीका दिखाता है जिसमें आरेख का विचार समुच्चय सिद्धांत में समुच्चय सूची के सामान्यीकरण करता है: आकारिकी B →A, B → c को सम्मिलित करके, आरेख से निर्मित निर्माण में अतिरिक्त संरचना की खोज करता है, संरचना जो स्पष्ट नहीं होगा यदि किसी के पास सूची में वस्तुओं के बीच कोई संबंध नहीं होने के साथ केवल [[ सूचकांक सेट | सूचकांक समुच्चय]] होता है। | ||
* उपरोक्त के लिए [[दोहरी (श्रेणी सिद्धांत)]], यदि J = -1 → 0 ← +1, तो प्रकार J ( | * उपरोक्त के लिए [[दोहरी (श्रेणी सिद्धांत)]], यदि J = -1 → 0 ← +1, तो प्रकार J (A → B ← c) का आरेख [[ cospan |कोस्पैन]] है, और इसकी सीमा [[पुलबैक (श्रेणी सिद्धांत)]] है। | ||
* अनुक्रमणिका <math>J = 0 \rightrightarrows 1</math> दो समानांतर रूपक कहा जाता है, या कभी-कभी [[मुक्त तरकश]] या [[चलने वाला तरकश]] | * अनुक्रमणिका <math>J = 0 \rightrightarrows 1</math> दो समानांतर रूपक कहा जाता है, या कभी-कभी [[मुक्त तरकश]] या [[चलने वाला तरकश]] है। प्रकार का आरेख <math>J</math> <math>(f,g\colon X \to Y)</math> तो [[तरकश (गणित)]] है; इसकी सीमा [[तुल्यकारक (गणित)]] है, और इसकी कोलिमिट तुल्यकारक है। | ||
* यदि J [[पोसेट श्रेणी|पोसमुच्चय श्रेणी]] है, तो प्रकार J का आरेख वस्तुओं का परिवार D | * यदि J [[पोसेट श्रेणी|पोसमुच्चय श्रेणी]] है, तो प्रकार J का आरेख वस्तुओं का परिवार D<sub>''i''</sub> है एक साथ अद्वितीय आकारिकी f<sub>''ij''</sub> के साथ : D<sub>''i''</sub> → D<sub>''j''</sub> जब भी मैं ≤ J। यदि J [[निर्देशित सेट|निर्देशित समुच्चय]] है तो प्रकार J के आरेख को वस्तुओं और आकारिकी की [[प्रत्यक्ष प्रणाली (गणित)]] कहा जाता है। यदि आरेख प्रतिपरिवर्ती फलनकार है तो इसे व्युत्क्रम प्रणाली कहा जाता है। | ||
== शंकु और सीमा == | == शंकु और सीमा == | ||
आरेख D के शीर्ष N के साथ शंकु (श्रेणी | आरेख D : J → C के शीर्ष N के साथ शंकु (श्रेणी सिद्धांतस्थिर आरेख Δ(N) से D तक आकारिकी N है। | ||
आरेख | आरेख D की सीमा (श्रेणी सिद्धांत) D के लिए [[सार्वभौमिक शंकु]] है। अर्थात, शंकु जिसके माध्यम से अन्य सभी शंकु विशिष्ट रूप से कारक हैं। यदि प्रकार J के सभी आरेखों के लिए श्रेणी सी में सीमा उपस्थित है तो फ़ैक्टर प्राप्त होता है | | ||
{{block indent|lim : ''C''<sup>''J''</sup> → ''C''}} | {{block indent|lim : ''C''<sup>''J''</sup> → ''C''}} | ||
जो प्रत्येक आरेख को उसकी सीमा तक भेजता है। | जो प्रत्येक आरेख को उसकी सीमा तक भेजता है। | ||
दोहरी रूप से, आरेख डी का [[कोलिमिट]] | दोहरी रूप से, आरेख डी का [[कोलिमिट]] D से सार्वभौमिक शंकु है। यदि प्रकार J के सभी आरेखों के लिए कोलिमिट उपस्थित है तो | ||
{{block indent|colim : ''C''<sup>''J''</sup> → ''C''}} | {{block indent|colim : ''C''<sup>''J''</sup> → ''C''}} | ||
जो प्रत्येक आरेख को उसके कोलिमिट में भेजता है। | जो प्रत्येक आरेख को उसके कोलिमिट में भेजता है। | ||
Line 41: | Line 41: | ||
{{main|Commutative diagram}} | {{main|Commutative diagram}} | ||
डायग्राम और कारक श्रेणियों को अधिकांशतः कम्यूटेटिव डायग्राम द्वारा देखा जाता है, खासकर | डायग्राम और कारक श्रेणियों को अधिकांशतः कम्यूटेटिव डायग्राम द्वारा देखा जाता है, खासकर यदि सूची श्रेणी कुछ तत्वों के साथ परिमित पोसमुच्चय श्रेणी है: सूची श्रेणी में प्रत्येक वस्तु के लिए नोड के साथ कम्यूटेटिव डायग्राम बनाता है, और रूपवाद के उत्पन्न समुच्चय के लिए तीर , पहचान मानचित्रों और आकारिकी को छोड़ कर जिन्हें रचनाओं के रूप में व्यक्त किया जा सकता है। क्रमविनिमेयता पॉसमुच्चय श्रेणी में दो वस्तुओं के बीच मानचित्र की विशिष्टता से मेल खाती है। इसके विपरीत, प्रत्येक [[क्रमविनिमेय आरेख]] इस तरह आरेख (पॉसमुच्चय सूची श्रेणी से कारक) का प्रतिनिधित्व करता है। | ||
हर डायग्राम कम्यूट नहीं होता है, क्योंकि हर सूची कैटेगरी पॉसमुच्चय कैटेगरी नहीं होती है: | हर डायग्राम कम्यूट नहीं होता है, क्योंकि हर सूची कैटेगरी पॉसमुच्चय कैटेगरी नहीं होती है: |
Revision as of 12:46, 28 April 2023
श्रेणी सिद्धांत में, गणित की शाखा, आरेख समुच्चय सिद्धांत में अनुक्रमित परिवार का स्पष्ट अनुरूप है। प्राथमिक अंतर यह है कि श्रेणीबद्ध समुच्चयिंग में रूपवाद होता है जिसे अनुक्रमण की भी आवश्यकता होती है। समुच्चय का अनुक्रमित परिवार समुच्चय का संग्रह है, जो निश्चित समुच्चय द्वारा अनुक्रमित होता है; समतुल्य फलन निश्चित सूची समुच्चय से समुच्चय्स की कक्षा में है। आरेख वस्तुओं और रूपवाद का संग्रह है, जो निश्चित श्रेणी द्वारा अनुक्रमित होता है; समतुल्य कारक निश्चित सूचकांक श्रेणी से कुछ श्रेणी के लिए होता है।
आरेख का सार्वभौम फलक विकर्ण फलक है; इसका संलग्न फलक रेखाचित्र की सीमा (श्रेणी सिद्धांत) है और इसका बायां संलग्न कोलिमिट है। [1] विकर्ण फ़ैक्टर से कुछ इच्छानुसार आरेख में प्राकृतिक परिवर्तन को शंकु (श्रेणी सिद्धांत) कहा जाता है।
चूँकि, विधि रूप से, व्यक्तिगत आरेख और कारक या योजना और श्रेणी के बीच कोई अंतर नहीं है, शब्दावली में परिवर्तन परिप्रेक्ष्य में बदलाव को दर्शाता है, ठीक वैसे ही जैसे समुच्चय सिद्धान्तिक स्थिति
परिभाषा
औपचारिक रूप से श्रेणी (गणित) C में J प्रकार का आरेख एक (सहसंयोजक) कारक है
श्रेणी J को आरेख D की 'सूचकांक श्रेणी' या 'पद्धति' कहा जाता है; फ़ैक्टर को कभी-कभी 'J-आकार का आरेख' कहा जाता है। [2] J में वास्तविक वस्तुएं और आकारिकी अधिक अप्रासंगिक हैं; केवल जिस तरह से वे परस्पर संबंधित हैं। आरेख D को J पर प्रतिरूपित C में वस्तुओं और आकारिकी के संग्रह को अनुक्रमित करने के बारे में सोचा गया है।
चूँकि, विधि रूप से, व्यक्तिगत आरेख और कारक या योजना और श्रेणी के बीच कोई अंतर नहीं है,| शब्दावली में परिवर्तन परिप्रेक्ष्य में बदलाव को दर्शाता है,| ठीक वैसे ही जैसे समुच्चय सिद्धान्तिक स्थिति में: सूचकांक श्रेणी को ठीक करता है, और कारक (और, दूसरी बात, लक्ष्य श्रेणी) अलग-अलग करने के लिए अनुमति देता है ।
किसी को अधिकांशतः उस स्थिति में रोचक होती है | जहां योजना J छोटी श्रेणी या यहां तक कि परिमित समुच्चय श्रेणी है। आरेख को 'छोटा' या 'परिमित' कहा जाता है | जब J भी होता है।
श्रेणी सी में प्रकार J के आरेखों का रूपवाद, फ़ैक्टरों के बीच प्राकृतिक परिवर्तन है। इसके बाद C में प्रकार J के 'आरेखों की श्रेणी' की व्याख्या कारक श्रेणी CJ के रूप में की जा सकती है, और आरेख तब इस श्रेणी में वस्तु है।
उदाहरण
- C में किसी भी वस्तु A को देखते हुए, किसी के पास 'निरंतर आरेख' होता है, जो आरेख है जो J से A में सभी वस्तुओं को मानचित्रित करता है, और J के सभी रूपों को A पर पहचान रूपवाद के लिए दर्शाता है। सांकेतिक रूप से, अधिकांशतः निरूपित करने के लिए अंडरबार का उपयोग करता है निरंतर आरेख: इस प्रकार, c में किसी भी वस्तु के लिए सी में,निरंतर आरेख है |
- यदि J (छोटी) असतत श्रेणी है, तो प्रकार J का आरेख अनिवार्य रूप से C में वस्तुओं का अनुक्रमित परिवार है (J द्वारा अनुक्रमित)। जब सीमा (श्रेणी सिद्धांत) के निर्माण में उपयोग किया जाता है, तो परिणाम उत्पाद (श्रेणी सिद्धांत) होता है; कोलिमिट के लिए, किसी को उत्पाद मिलता है। इसलिए, उदाहरण के लिए, जब J दो वस्तुओं के साथ असतत श्रेणी है, परिणामी सीमा केवल बाइनरी उत्पाद है।
- यदि J = −1 ← 0 → +1, तो प्रकार J (A ← B → C) का आरेख स्पैन (श्रेणी सिद्धांत) है, और इसकी कोलिमिट पुशआउट (श्रेणी सिद्धांत) है। यदि कोई यह भूल जाए कि आरेख में वस्तु B और दो तीर B → A, B → C हैं, तो परिणामी आरेख केवल दो वस्तुओं A और C के साथ असतत श्रेणी होगी, और कोलिमिट केवल बाइनरी सहउत्पाद होगा। इस प्रकार, यह उदाहरण महत्वपूर्ण तरीका दिखाता है जिसमें आरेख का विचार समुच्चय सिद्धांत में समुच्चय सूची के सामान्यीकरण करता है: आकारिकी B →A, B → c को सम्मिलित करके, आरेख से निर्मित निर्माण में अतिरिक्त संरचना की खोज करता है, संरचना जो स्पष्ट नहीं होगा यदि किसी के पास सूची में वस्तुओं के बीच कोई संबंध नहीं होने के साथ केवल सूचकांक समुच्चय होता है।
- उपरोक्त के लिए दोहरी (श्रेणी सिद्धांत), यदि J = -1 → 0 ← +1, तो प्रकार J (A → B ← c) का आरेख कोस्पैन है, और इसकी सीमा पुलबैक (श्रेणी सिद्धांत) है।
- अनुक्रमणिका दो समानांतर रूपक कहा जाता है, या कभी-कभी मुक्त तरकश या चलने वाला तरकश है। प्रकार का आरेख तो तरकश (गणित) है; इसकी सीमा तुल्यकारक (गणित) है, और इसकी कोलिमिट तुल्यकारक है।
- यदि J पोसमुच्चय श्रेणी है, तो प्रकार J का आरेख वस्तुओं का परिवार Di है एक साथ अद्वितीय आकारिकी fij के साथ : Di → Dj जब भी मैं ≤ J। यदि J निर्देशित समुच्चय है तो प्रकार J के आरेख को वस्तुओं और आकारिकी की प्रत्यक्ष प्रणाली (गणित) कहा जाता है। यदि आरेख प्रतिपरिवर्ती फलनकार है तो इसे व्युत्क्रम प्रणाली कहा जाता है।
शंकु और सीमा
आरेख D : J → C के शीर्ष N के साथ शंकु (श्रेणी सिद्धांतस्थिर आरेख Δ(N) से D तक आकारिकी N है।
आरेख D की सीमा (श्रेणी सिद्धांत) D के लिए सार्वभौमिक शंकु है। अर्थात, शंकु जिसके माध्यम से अन्य सभी शंकु विशिष्ट रूप से कारक हैं। यदि प्रकार J के सभी आरेखों के लिए श्रेणी सी में सीमा उपस्थित है तो फ़ैक्टर प्राप्त होता है |
जो प्रत्येक आरेख को उसकी सीमा तक भेजता है।
दोहरी रूप से, आरेख डी का कोलिमिट D से सार्वभौमिक शंकु है। यदि प्रकार J के सभी आरेखों के लिए कोलिमिट उपस्थित है तो
जो प्रत्येक आरेख को उसके कोलिमिट में भेजता है।
क्रमविनिमेय आरेख
डायग्राम और कारक श्रेणियों को अधिकांशतः कम्यूटेटिव डायग्राम द्वारा देखा जाता है, खासकर यदि सूची श्रेणी कुछ तत्वों के साथ परिमित पोसमुच्चय श्रेणी है: सूची श्रेणी में प्रत्येक वस्तु के लिए नोड के साथ कम्यूटेटिव डायग्राम बनाता है, और रूपवाद के उत्पन्न समुच्चय के लिए तीर , पहचान मानचित्रों और आकारिकी को छोड़ कर जिन्हें रचनाओं के रूप में व्यक्त किया जा सकता है। क्रमविनिमेयता पॉसमुच्चय श्रेणी में दो वस्तुओं के बीच मानचित्र की विशिष्टता से मेल खाती है। इसके विपरीत, प्रत्येक क्रमविनिमेय आरेख इस तरह आरेख (पॉसमुच्चय सूची श्रेणी से कारक) का प्रतिनिधित्व करता है।
हर डायग्राम कम्यूट नहीं होता है, क्योंकि हर सूची कैटेगरी पॉसमुच्चय कैटेगरी नहीं होती है: सबसे सरल रूप से, एंडोमोर्फिज्म के साथ वस्तु का आरेख (), या दो समानांतर तीरों के साथ (; ) आवागमन की आवश्यकता नहीं है। इसके अलावा, आरेख बनाना असंभव हो सकता है (क्योंकि वे अनंत हैं) या बस गड़बड़ हो सकते हैं (क्योंकि बहुत अधिक वस्तुएं या आकारिकी हैं); चूँकि, ऐसे जटिल आरेखों को स्पष्ट करने के लिए योजनाबद्ध क्रमविनिमेय आरेख (सूचकांक श्रेणी की उपश्रेणियों के लिए, या दीर्घवृत्त के साथ, जैसे कि निर्देशित प्रणाली के लिए) का उपयोग किया जाता है।
यह भी देखें
- विकर्ण फ़ैक्टर
- डायरेक्ट सिस्टम (गणित)
- उलटा तंत्र
संदर्भ
- ↑ Mac Lane, Saunders; Moerdijk, Ieke (1992). ज्योमेट्री और लॉजिक में शीव्स टोपोस थ्योरी का पहला परिचय. New York: Springer-Verlag. pp. 20–23. ISBN 9780387977102.
- ↑ May, J. P. (1999). बीजगणितीय टोपोलॉजी में एक संक्षिप्त पाठ्यक्रम (PDF). University of Chicago Press. p. 16. ISBN 0-226-51183-9.
- Adámek, Jiří; Horst Herrlich; George E. Strecker (1990). Abstract and Concrete Categories (PDF). John Wiley & Sons. ISBN 0-471-60922-6. Now available as free on-line edition (4.2MB PDF).
- Barr, Michael; Wells, Charles (2002). Toposes, Triples and Theories (PDF). ISBN 0-387-96115-1. Revised and corrected free online version of Grundlehren der mathematischen Wissenschaften (278) Springer-Verlag, 1983).
- diagram at the nLab
बाहरी संबंध
- Diagram Chasing at MathWorld
- WildCats is a category theory package for Mathematica. Manipulation and visualization of objects, रूपवाद, commutative diagrams, categories, functors, natural transformations.