मॉड्युली स्पेस: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{short description|Geometric space whose points represent algebro-geometric objects of some fixed kind}} | {{short description|Geometric space whose points represent algebro-geometric objects of some fixed kind}} | ||
गणित में, विशेष रूप से [[बीजगणितीय ज्यामिति]] में, एक मॉड्युली समष्टि एक ज्यामितीय समष्टि सामान्य रूप से एक [[योजना (गणित)]] या एक बीजगणितीय चित्ति होता है, जिसके बिंदु कुछ निश्चित प्रकार के बीजगणितीय-ज्यामितीय वस्तुओं या ऐसी वस्तुओं के [[समरूपता वर्ग|समरूपता वर्गो]] का प्रतिनिधित्व करते हैं। ऐसे समष्टि प्रायः वर्गीकरण समस्याओं के समाधान के रूप में उत्पन्न होते हैं: यदि कोई यह दिखा सकता है कि रोचक वस्तुओं का समुच्चय (उदाहरण के लिए, एक निश्चित | गणित में, विशेष रूप से [[बीजगणितीय ज्यामिति]] में, एक मॉड्युली समष्टि एक ज्यामितीय समष्टि सामान्य रूप से एक [[योजना (गणित)|प्रणाली (गणित)]] या एक बीजगणितीय चित्ति होता है, जिसके बिंदु कुछ निश्चित प्रकार के बीजगणितीय-ज्यामितीय वस्तुओं या ऐसी वस्तुओं के [[समरूपता वर्ग|समरूपता वर्गो]] का प्रतिनिधित्व करते हैं। ऐसे समष्टि प्रायः वर्गीकरण समस्याओं के समाधान के रूप में उत्पन्न होते हैं: यदि कोई यह दिखा सकता है कि रोचक वस्तुओं का समुच्चय (उदाहरण के लिए, एक निश्चित वर्ग के सरल बीजगणितीय वक्र) को एक ज्यामितीय समष्टि की संरचना दी जा सकती है, तो परिणामी समष्टि पर निर्देशांक प्रस्तुत करके ऐसी वस्तुओं को पैरामीट्रिज किया जा सकता है। इस संदर्भ में, मापांक शब्द का प्रयोग पैरामीटर के पर्याय के रूप में किया जाता है; मॉडुलि समष्टि को पहले वस्तुओं के समष्टि के अतिरिक्त मापदंडों के समष्टि के रूप में समझा गया था। मॉड्यूलि समष्टि का एक प्रकार [[औपचारिक मोडुली]] है। [[बर्नहार्ड रीमैन]] ने पहली बार 1857 में मोडुली शब्द का उपयोग किया था।<ref>{{cite web |last1=Chan |first1=Melody |title=Moduli Spaces of Curves: Classical and Tropical |url=https://www.ams.org/journals/notices/202110/rnoti-p1700.pdf |website=AMS}}</ref> | ||
== | == कारण == | ||
मॉड्यूलि समष्टि ज्यामितीय वर्गीकरण समस्याओं के समाधान के समष्टि हैं। अर्थात, मॉड्यूलि समष्टि के अंक ज्यामितीय समस्याओं के समाधान के अनुरूप हैं। यहां अलग-अलग समाधानों की पहचान की जाती है यदि वे समरूपी हैं, अर्थात ज्यामितीय रूप से समान होते है। मॉडुलि समष्टि को समस्या के लिए मापदंडों का एक सार्वभौमिक समष्टि देने के बारे में सोचा जा सकता है। उदाहरण के लिए, यूक्लिडियन तल में सभी वृत्तों को सर्वांगसमता तक खोजने की समस्या पर विचार करें। किसी भी वृत्त को तीन बिंदु देकर विशिष्ट रूप से वर्णित किया जा सकता है, लेकिन तीन बिंदुओं के कई अलग-अलग समुच्चय | मॉड्यूलि समष्टि ज्यामितीय वर्गीकरण समस्याओं के समाधान के समष्टि हैं। अर्थात, मॉड्यूलि समष्टि के अंक ज्यामितीय समस्याओं के समाधान के अनुरूप हैं। यहां अलग-अलग समाधानों की पहचान की जाती है यदि वे समरूपी हैं, अर्थात ज्यामितीय रूप से समान होते है। मॉडुलि समष्टि को समस्या के लिए मापदंडों का एक सार्वभौमिक समष्टि देने के बारे में सोचा जा सकता है। उदाहरण के लिए, यूक्लिडियन तल में सभी वृत्तों को सर्वांगसमता तक खोजने की समस्या पर विचार करें। किसी भी वृत्त को तीन बिंदु देकर विशिष्ट रूप से वर्णित किया जा सकता है, लेकिन तीन बिंदुओं के कई अलग-अलग समुच्चय समान वृत्त देते हैं अर्थात समानता एक से अनेक है। हालाँकि, वृत्तों को उनके केंद्र और त्रिज्या देकर विशिष्ट रूप से परिचालित किया जाता है, यह दो वास्तविक पैरामीटर और एक धनात्मक वास्तविक पैरामीटर है। चूँकि हम केवल सर्वांगसमता तक के वृत्तों में संबंध होता हैं, इसलिए हम ऐसे वृत्तों की पहचान करते हैं जिनके केंद्र अलग-अलग हों, लेकिन समान त्रिज्या हो, और इसलिए केवल त्रिज्या ही भाग के समुच्चय को पैरामीटर करने के लिए पर्याप्त है। इसलिए मॉड्यूलि समष्टि धनात्मक वास्तविक संख्या है। | ||
मोडुली समष्टि प्रायः प्राकृतिक ज्यामितीय और सांस्थितिकीय संरचनाओं को भी ले जाते हैं। वृत्तों के उदाहरण में, उदाहरण के लिए, मोडुली समष्टि केवल एक अमूर्त समुच्चय नहीं है, लेकिन त्रिज्या के अंतर का पूर्ण मूल्य एक [[मीट्रिक (गणित)|आव्यूह (गणित)]] को परिभाषित करता है, यह निर्धारित करने के लिए कि जब दो वृत्त समीप होते हैं। मॉड्यूलि समष्टि की ज्यामितीय संरचना स्थानीय रूप से हमें बताती है कि ज्यामितीय वर्गीकरण समस्या के दो समाधान समीप हैं, लेकिन सामान्य रूप से मोडुली समष्टि में एक जटिल वैश्विक संरचना भी होती है। | मोडुली समष्टि प्रायः प्राकृतिक ज्यामितीय और सांस्थितिकीय संरचनाओं को भी ले जाते हैं। वृत्तों के उदाहरण में, उदाहरण के लिए, मोडुली समष्टि केवल एक अमूर्त समुच्चय नहीं है, लेकिन त्रिज्या के अंतर का पूर्ण मूल्य एक [[मीट्रिक (गणित)|आव्यूह (गणित)]] को परिभाषित करता है, यह निर्धारित करने के लिए कि जब दो वृत्त समीप होते हैं। मॉड्यूलि समष्टि की ज्यामितीय संरचना स्थानीय रूप से हमें बताती है कि ज्यामितीय वर्गीकरण समस्या के दो समाधान समीप हैं, लेकिन सामान्य रूप से मोडुली समष्टि में एक जटिल वैश्विक संरचना भी होती है। | ||
Line 17: | Line 17: | ||
===प्रक्षेपीय समष्टि और ग्रासमैनियन === | ===प्रक्षेपीय समष्टि और ग्रासमैनियन === | ||
वास्तविक प्रक्षेपीय समष्टि '''P'''<sup>''n''</sup> एक मोडुली समष्टि है जो '''R'''<sup>''n''+1</sup> में रेखाओ की | वास्तविक प्रक्षेपीय समष्टि '''P'''<sup>''n''</sup> एक मोडुली समष्टि है जो '''R'''<sup>''n''+1</sup> में रेखाओ की समष्टि को पैरामीट्रिज करता है जो मूल के माध्यम से गुजरता है। इसी प्रकार, जटिल प्रक्षेपीय समष्टि '''C'''<sup>''n''+1</sup> में मूल बिन्दु के माध्यम से गुजरने वाली सभी जटिल रेखाओं का समष्टि है। | ||
अधिक सामान्य रूप से, क्षेत्र F पर सदिश समष्टि V का [[ ग्रासमानियन ]] 'G'(k, V), V के सभी k-विमीय रैखिक उपसमष्टि का मॉडुलि समष्टि होता है। | अधिक सामान्य रूप से, क्षेत्र F पर सदिश समष्टि V का [[ ग्रासमानियन ]] 'G'(k, V), V के सभी k-विमीय रैखिक उपसमष्टि का मॉडुलि समष्टि होता है। | ||
==== | ==== वैश्विक रूप से उत्पन्न वर्गों के साथ वृहत रेखा बंडल के मॉड्यूल के रूप में प्रक्षेपीय समष्टि ==== | ||
सार्वभौमिक प्रक्षेप्य समष्टि <math>\mathbf{P}^n_\mathbb{Z}</math> में जब भी किसी | सार्वभौमिक प्रक्षेप्य समष्टि <math>\mathbf{P}^n_\mathbb{Z}</math> में जब भी किसी प्रणाली <math>X</math> का अन्तः स्थापन होता है ,<ref>{{Cite web|title=Lemma 27.13.1 (01NE)—The Stacks project|url=https://stacks.math.columbia.edu/tag/01NE|access-date=2020-09-12|website=stacks.math.columbia.edu}}</ref><ref>{{Cite web|title=algebraic geometry - What does projective space classify?|url=https://math.stackexchange.com/questions/296217/what-does-projective-space-classify|access-date=2020-09-12|website=Mathematics Stack Exchange}}</ref> तो अन्तः स्थापन एक रेखा बंडल <math>\mathcal{L} \to X</math> द्वारा दी गई है, और <math>n+1</math> भाग <math>s_0,\ldots,s_n\in\Gamma(X,\mathcal{L})</math> जो सभी समान समय में शून्य नहीं होते हैं। इसका तात्पर्य है, एक बिंदु दिया गया है<blockquote> | ||
<math>x:\text{Spec}(R) \to X</math></blockquote> | <math>x:\text{Spec}(R) \to X</math></blockquote> | ||
एक संबद्ध बिंदु है<blockquote><math>\hat{x}:\text{Spec}(R) \to \mathbf{P}^n_\mathbb{Z}</math></blockquote>रचनाओं द्वारा प्रदान किया गया<blockquote><math>[s_0:\cdots:s_n]\circ x = [s_0(x):\cdots:s_n(x)] \in \mathbf{P}^n_\mathbb{Z}(R) </math></blockquote>फिर, अनुभागों के साथ दो रेखा | एक संबद्ध बिंदु है<blockquote><math>\hat{x}:\text{Spec}(R) \to \mathbf{P}^n_\mathbb{Z}</math></blockquote>रचनाओं द्वारा प्रदान किया गया<blockquote><math>[s_0:\cdots:s_n]\circ x = [s_0(x):\cdots:s_n(x)] \in \mathbf{P}^n_\mathbb{Z}(R) </math></blockquote>फिर, अनुभागों के साथ दो रेखा बंडल समतुल्य हैं<blockquote><math>(\mathcal{L},(s_0,\ldots,s_n))\sim (\mathcal{L}',(s_0',\ldots,s_n'))</math></blockquote>यदि कोई तुल्याकारिता <math>\phi:\mathcal{L} \to \mathcal{L}'</math> है जैसे कि <math>\phi(s_i) = s_i'</math> है। इसका तात्पर्य है संबंधित मोडुली फलननिर्धारक<blockquote><math>\mathbf{P}^n_\mathbb{Z}:\text{Sch}\to \text{Sets}</math></blockquote>रचना <math>X</math> समुच्चय पर प्रेषित करता है | ||
<math>\mathbf{P}^n_\mathbb{Z}(X) =\left\{ | |||
(\mathcal{L},s_0,\ldots,s_n) : \begin{matrix} | (\mathcal{L},s_0,\ldots,s_n) : \begin{matrix} | ||
\mathcal{L} \to X \text{ is a line bundle} \\ | \mathcal{L} \to X \text{ is a line bundle} \\ | ||
Line 32: | Line 32: | ||
\text{ form a basis of global sections} | \text{ form a basis of global sections} | ||
\end{matrix} | \end{matrix} | ||
\right\} / \sim </math> | \right\} / \sim </math> | ||
यह दिखा रहा है कि यह सच है, पुनरुक्ति की एक श्रृंखला के माध्यम से परिचालन किया जा सकता है: कोई भी प्रक्षेप्य अन्तः स्थापन <math>i:X \to \mathbb{P}^n_\mathbb{Z}</math> वैश्विक रूप से उत्पन्न शीफ <math>i^*\mathcal{O}_{\mathbf{P}^n_\mathbb{Z}}(1)</math> वर्गों के साथ <math>i^*x_0,\ldots,i^*x_n</math> देता है। इसके विपरीत, एक विस्तृत रेखा बंडल <math>\mathcal{L} \to X</math> दिया गया है। वैश्विक रूप से उत्पन्न <math>n+1</math> अनुभाग ऊपर के रूप में एक अन्तः स्थापन देता है। | |||
=== [[हिल्बर्ट योजना]] === | === चाउ प्रकार === | ||
हिल्बर्ट | चाउ प्रकार '''Chow'''(d,'''P'''<sup>3</sup>) एक प्रक्षेपी बीजगणितीय प्रकार है जो '''P'''<sup>3</sup> में कोटि d वक्रों को पैरामीट्रिज करती है। इसका निर्माण निम्नानुसार किया गया है। मान लीजिए C, '''P'''<sup>3</sup> में कोटि d का एक वक्र है, फिर '''P'''<sup>3</sup> में उन सभी रेखाओं पर विचार करें जो वक्र C को प्रतिच्छेद करती हैं। यह '''G'''(2, 4) में एक कोटि d भाजक ''D<sub>C</sub>'' है, जो '''P'''<sup>3</sup> में रेखाओं का ग्रासमानियन है। जब C भिन्न होता है, तो C को ''D<sub>C</sub>'' से जोड़कर, हम ग्रासमानियन चाउ (d, '''P'''<sup>3</sup>) के कोटि d विभाजकों के समष्टि के उपसमुच्चय के रूप में कोटि d वक्रों का एक पैरामीटर स्थान प्राप्त करते हैं। | ||
=== [[हिल्बर्ट योजना|हिल्बर्ट प्रणाली]] === | |||
हिल्बर्ट प्रणाली '''Hilb'''(''X'') एक मोडुली प्रणाली है। '''Hilb'''(''X'') का प्रत्येक बंद बिंदु एक निश्चित प्रणाली X की एक संवृत्त उपप्रणाली से अनुरूप है, और प्रत्येक संवृत्त उपप्रणाली को ऐसे बिंदु द्वारा दर्शाया जाता है। हिल्बर्ट प्रणाली का एक सरल उदाहरण प्रक्षेपीय समष्टि <math>\mathbb{P}^n</math> के कोटि <math>d</math> ऊनविम पृष्ठ को पैरामिट्रीकृत करने वाली हिल्बर्ट प्रणाली है। यह प्रक्षेपी बंडल द्वारा दिया जाता है <blockquote> | |||
<math>\mathcal{Hilb}_d(\mathbb{P}^n) = \mathbb{P}(\Gamma(\mathcal{O}(d)))</math> </blockquote> | |||
द्वारा दिए गए सार्वभौमिक वर्ग के साथ <blockquote> द्वारा दिया गया<math>\mathcal{U} = \{ (V(f), f) : f \in \Gamma(\mathcal{O}(d)) \}</math></blockquote>जहाँ <math>V(f)</math> डिग्री d सजातीय बहुपद f के लिए संबद्ध प्रक्षेपी प्रणाली है। | |||
== परिभाषाएँ == | == परिभाषाएँ == | ||
वस्तुओ की कई संबंधित धारणाएं हैं जिन्हें हम मोडुली समष्टि कह सकते हैं। इनमें से प्रत्येक परिभाषा ज्यामितीय वस्तुओं का प्रतिनिधित्व करने के लिए समष्टि M के बिंदुओं के लिए इसका क्या अर्थ है, इसकी एक अलग धारणा को औपचारिक रूप देती है। | |||
=== | === सूक्ष्म मोडुलि समष्टि === | ||
यह मानक अवधारणा है। | यह मानक अवधारणा है। स्वानुभविक रूप से, यदि हमारे पास एक समष्टि M है जिसके लिए प्रत्येक बिंदु ''m'' ∊ ''M'' बीजगणित-ज्यामितीय वस्तु ''U<sub>m</sub>'' से अनुरूप है, तो हम इन वस्तुओं को ''M'' पर एक [[टॉटोलॉजिकल बंडल|पुनरुक्तात्मक]] वर्ग U में संग्रहित कर सकते हैं। उदाहरण के लिए, ग्रासमैनियन ''''G'''(''k'', ''V'') श्रेणी K के समुच्चय को ले जाता है जिसका सूत्र किसी भी बिंदु पर [''L''] ∊ '''G'''(''k'', ''V'') केवल रैखिक उपसमष्टि L ⊂ V है। M को वर्ग U का 'आधार स्थान' कहा जाता है। हम कहते हैं कि ऐसा वर्ग सार्वभौमिक है यदि बीजगणित-ज्यामितीय वस्तुओं का कोई भी वर्ग किसी भी आधार स्थान B पर T एक अद्वितीय मानचित्र B → M के साथ U का [[पुलबैक (श्रेणी सिद्धांत)]] है। सूक्ष्म मोडुलि समष्टि एक समष्टि M है जो एक सार्वभौमिक वर्ग का आधार है। | ||
अधिक | अधिक परिशुद्ध रूप से, मान लीजिए कि हमारे पास योजनाओं से लेकर समुच्चय तक एक फलननिर्धारक F है, जो एक प्रणाली B को आधार B के साथ वस्तुओं के सभी उपयुक्त वर्गों के समुच्चय को निर्धारित करता है। समष्टि M, फलननिर्धारक F के लिए एक 'सूक्ष्म मोडुली समष्टि' है यदि M प्रतिनिधित्व योग्य है फलननिर्धारक F, अर्थात एक प्राकृतिक समरूपता τ : ''F'' → '''Hom'''(−, ''M'') है, जहां '''Hom'''(−, ''M'') बिंदुओं का फलननिर्धारक है। इसका तात्पर्य है कि M एक सार्वभौमिक वर्ग रखता है; यह वर्ग पर पहचान मानचित्र '''1'''<sub>''M''</sub> ∊ '''Hom'''(''M'', ''M'') के अनुरूप वर्ग है। | ||
τ : F → ' | |||
=== | ===स्थूल मॉडुलि समष्टि=== | ||
सूक्ष्म मोडुली समष्टि वांछनीय हैं, लेकिन वे सदैव सम्मिलित नहीं होते हैं और प्रायः निर्माण करना कठिन होता है, इसलिए गणितज्ञ कभी-कभी एक दुर्बल धारणा का उपयोग करते हैं जो स्थूल मोडुली समष्टि का विचार है। यदि कोई प्राकृतिक रूपांतरण τ : F → '''Hom'''(-, M) सम्मिलित है और τ ऐसे प्राकृतिक परिवर्तनों के बीच सार्वभौमिक है, तो एक समष्टि M, फलननिर्धारक F के लिए एक स्थूल मोडुली समष्टि है। अधिक ठोस रूप से, M, F के लिए एक स्थूल मोडुली समष्टि है यदि कोई वर्ग T एक आधार B पर एक मानचित्र φT : B → M और किन्हीं दो वस्तुओं V और W (एक बिंदु पर वर्गों के रूप में माना जाता है) को समान बिंदु के अनुरूप बनाता है। M यदि और केवल यदि V और W समरूपी हैं। इस प्रकार, एम एक ऐसा समष्टि है जिसमें प्रत्येक वस्तु के लिए एक बिंदु होता है जो एक वर्ग में प्रकट हो सकता है, और जिसकी ज्यामिति वर्गों में वस्तुओं के भिन्न होने के तरीकों को दर्शाती है। हालांकि, ध्यान दें कि, एक स्थूल मोडुली समष्टि में आवश्यक रूप से उपयुक्त वस्तुओं का कोई वर्ग नहीं होता है, केवल एक सार्वभौमिक होने दें। | |||
दूसरे शब्दों में, एक | दूसरे शब्दों में, एक सूक्ष्म मॉडुलि समष्टि में आधार स्थान M और सार्वभौमिक वर्ग U → M दोनों सम्मिलित होते हैं, जबकि स्थूल मॉड्यूलि समष्टि में केवल आधार स्थान M होता है। | ||
=== मोडुली चित्ति=== | === मोडुली चित्ति=== | ||
प्रायः ऐसा होता है कि | प्रायः ऐसा होता है कि रोचक ज्यामितीय वस्तुएं कई प्राकृतिक [[automorphism|स्वाकारिकता]] से सुसज्जित होती हैं। यह विशेष रूप से एक सूक्ष्म मोडुली समष्टि के अस्तित्व को असंभव बनाता है सामान्य रूप से, विचार यह है कि यदि एल कुछ ज्यामितीय वस्तु है, तो सामान्य वर्ग L × [0,1] को वृत्त ''''S'''<sup>1</sup>' <sup>1</sup> L × {0} को L × {1} के साथ एक गैर-सामान्य स्वाकारिकता के माध्यम से पहचान कर व्यावर्तित वर्ग में बनाया जा सकता है। अब यदि सूक्ष्म मॉडुलि समष्टि X अस्तित्व में है, तो मानचित्र 'S'<sup>1</sup> → X को स्थिर नहीं होना चाहिए, लेकिन तुच्छता से किसी भी उपयुक्त विवृत समुच्चय पर स्थिर होना चाहिए, फिर भी कभी-कभी स्थूल मोडुली समष्टि प्राप्त कर सकते हैं। हालांकि, यह दृष्टिकोण आदर्श नहीं है, क्योंकि ऐसे समष्टि के अस्तित्व की प्रत्याभूति नहीं है, जब वे सम्मिलित होते हैं तो वे प्रायः असामान्य होते हैं, और उन वस्तुओं के कुछ गैर-सामान्य वर्गों के बारे में विवरण स्मरण करते हैं जिन्हें वे वर्गीकृत करते हैं। | ||
समरूपताओं को याद करके वर्गीकरण को समृद्ध करने के लिए एक अधिक परिष्कृत दृष्टिकोण है। अधिक | समरूपताओं को याद करके वर्गीकरण को समृद्ध करने के लिए एक अधिक परिष्कृत दृष्टिकोण है। अधिक परिशुद्ध रूप से, किसी भी आधार पर B पर वर्गों की श्रेणी पर विचार कर सकता है, जिसमें वर्गों के बीच केवल समरूपता के रूप में लिया जाता है। एक तब [[रेशेदार श्रेणी|तंतुमय श्रेणी]] पर विचार करता है जो किसी भी समष्टि B को B से अधिक वर्गों के बंडल को निर्दिष्ट करता है। मॉड्यूलि समस्या का वर्णन करने के लिए वर्गीकृत में सूत्र की गई इन श्रेणियों का उपयोग ग्रोथेंडिक (1960/61) तक जाता है। सामान्य रूप से, उन्हें योजनाओं या बीजगणितीय समष्टि द्वारा प्रदर्शित नहीं किया जा सकता है, लेकिन कई स्थितियों में, उनके पास बीजगणितीय चित्ति की प्राकृतिक संरचना होती है। | ||
डेलिग्ने-ममफोर्ड (1969) में बीजगणितीय चित्ति और मॉडुलि समस्याओं का विश्लेषण करने के लिए उनका उपयोग एक दिए गए वर्ग के बीजगणितीय वक्र के (स्थूल) मोडुली की अपरिवर्तनीयता को परिणाम करने के लिए एक उपकरण के रूप में दिखाई दिया। बीजगणितीय चित्ति की भाषा अनिवार्य रूप से तंतुमय श्रेणी को देखने के लिए एक व्यवस्थित तरीका प्रदान करती है जो एक समष्टि के रूप में मोडुली समस्या का निर्माण करती है, और 'मॉड्यूली चित्ति' कई मॉडुलि समस्याओं में से अधिकांश संबंधित स्थूल मॉडुलि समष्टि की तुलना में अधिकतम व्यवहार (जैसे सरल) है। | |||
== अन्य उदाहरण == | == अन्य उदाहरण == | ||
=== वक्रों का मापांक === | === वक्रों का मापांक === | ||
{{details| | {{details|बीजगणितीय वक्रों का मापांक}} | ||
मोडुली चित्ति <math>\mathcal{M}_{g}</math> | मोडुली चित्ति <math>\mathcal{M}_{g}</math> वर्ग g के सामान्य प्रक्षेपी वक्र के वर्गों को उनके समरूपताओं के साथ वर्गीकृत करता है। जब g > 1, इस चित्ति को नई सीमा बिंदुओं को जोड़कर संकुचित किया जा सकता है जो स्थिर केंद्रक वक्रों (उनके समरूपताओं के साथ) के अनुरूप होता है। एक वक्र स्थिर होता है यदि इसमें केवल समाकारिकता का परिमित बंडल होता है। परिणामी चित्ति <math>\overline{\mathcal{M}}_{g}</math> को दर्शाया गया है। दोनों मोडुली चित्ति वक्रों के सार्वभौमिक वर्गों को ले जाते हैं। सामान्य या स्थिर वक्रों के समरूपता वर्गों का प्रतिनिधित्व करने वाले स्थूल मोडुली समष्टि को भी परिभाषित किया जा सकता है। मोडुली चित्ति की धारणा का आविष्कार करने से पहले इन स्थूल मॉडुलि समष्टि का वास्तव में अध्ययन किया गया था। वास्तव में, मोडुली चित्ति के विचार का आविष्कार डेलिग्ने और ममफोर्ड द्वारा किया गया था ताकि स्थूल मॉडुलि समष्टि की उत्पादकता को परिणाम करने का प्रयास किया जा सके। हाल के वर्षों में, यह स्पष्ट हो गया है कि वक्रों का चित्ति वास्तव में अधिक मौलिक वस्तु है। | ||
ऊपर के दोनों चित्ति का आयाम 3g−3 है; इसलिए एक स्थिर | ऊपर के दोनों चित्ति का आयाम 3g−3 है; इसलिए एक स्थिर केंद्रक वक्र को पूरी तरह से 3g−3 मापदंडों के मानो को जब g> 1 चयन करके निर्दिष्ट किया जा सकता है। निचले वर्ग में, किसी को समाकारिकता के सामान्य वर्गों की उपस्थिति के लिए उनकी संख्या घटाकर गणना करनी चाहिए। वर्ग शून्य का परिशुद्ध एक जटिल वक्र है, रीमैन वृत्त और इसके समरूपता का बंडल प्रक्षेपी सामान्य रैखिक (पीजीएल(2)) है। इसलिए, <math>\mathcal{M}_0</math> का आयाम है | ||
: | : आयाम(वर्ग शून्य वक्र की समष्टि) - आयाम(समाकारिकता का बंडल) = 0 - आयाम(पीजीएल(2)) = -3 | ||
इसी तरह, | इसी तरह, वर्ग 1 में, वक्र का एक आयामी समष्टि है, लेकिन इस तरह के प्रत्येक वक्र में समाकारिकता का एक आयामी बंडल होता है। इसलिए, चित्ति <math>\mathcal{M}_1</math> आयाम 0 है। अतः g > 1 होने पर स्थूल मॉडुलि समष्टि का आयाम 3g−3 होता है, क्योंकि वर्ग g > 1 के साथ वक्र केवल एक परिमित बंडल होता है, जैसे कि आयाम (समाकारिकता का एक बंडल) = 0 है। अंततः, वर्ग शून्य, स्थूल मोडुलि समष्टि का आयाम शून्य है, और वर्ग एक में इसका आयाम एक है। | ||
n चिह्नित बिंदुओं के साथ वर्ग g केंद्रक वक्र के मोडुली चित्ति पर विचार करके भी समस्या को समृद्ध किया जा सकता है। इस तरह के चिह्नित वक्रों को स्थिर कहा जाता है यदि चिह्नित बिंदुओं को सही करने वाले वक्र समाकारिकता का उपसमूह परिमित है। n-चिन्हित बिंदुओं के साथ सामान्य (या स्थिर) वर्ग g वक्र के परिणामी मोडुली चित्ति <math>\mathcal{M}_{g,n}</math> (या <math>\overline{\mathcal{M}}_{g,n}</math>) को निरूपित किया जाता है, और आयाम 3g − 3 + n है। | |||
विशेष संबंध की एक स्थिति एक चिन्हित बिंदु के साथ वर्ग 1 वक्र के मोडुली चित्ति <math>\overline{\mathcal{M}}_{1,1}</math> एक चिह्नित बिंदु के साथ वर्ग 1 वक्र है। यह [[अण्डाकार वक्र|दीर्घवृत्तीय वक्रो]] का चित्ति है, और बहुत अध्ययन किए गए [[मॉड्यूलर रूप|प्रतिरूपक रूप]] का प्राकृतिक स्थान है, जो इस चित्ति पर भाग के अनंतकी खंड हैं। | |||
=== | ===विविधता का मापांक=== | ||
उच्च आयामों में, बीजगणितीय | उच्च आयामों में, बीजगणितीय विविधता के मॉड्यूल का निर्माण और अध्ययन करना अधिक कठिन होता है। उदाहरण के लिए, ऊपर चर्चित अण्डाकार वक्रों के मॉडुलि समष्टि का उच्च-आयामी एनालॉग एबेलियन विविधता का मोडुली समष्टि है, जैसे कि [[सीगल मॉड्यूलर किस्म|सीगल प्रतिरूपक असमरूपता]] है। यह सीगल प्रतिरूपक प्रतिघात सिद्धांत की अंतर्निहित समस्या है। शिमूरा विविधता भी देखें। | ||
न्यूनतम मॉडल कार्यक्रम से उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, जेनोस कोल्लार और [[निकोलस शेफर्ड-बैरन]] द्वारा सामान्य प्रकार की | '''EDIT''' न्यूनतम मॉडल कार्यक्रम से उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, जेनोस कोल्लार और [[निकोलस शेफर्ड-बैरन]] द्वारा सामान्य प्रकार की विविधता के मोडुली समष्टि का निर्माण किया गया, जिसे अब केएसबी मोडुली समष्टि के रूप में जाना जाता है।<ref>J. Kollar. Moduli of varieties of general type, Handbook of moduli. Vol. II, 2013, pp. 131–157.</ref> | ||
डिफरेंशियल ज्योमेट्री और बाइरेशनल ज्योमेट्री से एक साथ उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, फैनो | डिफरेंशियल ज्योमेट्री और बाइरेशनल ज्योमेट्री से एक साथ उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, फैनो विविधता के मोडुली समष्टि का निर्माण फैनो विविधता के के-स्थिरता के एक विशेष वर्ग तक सीमित करके हासिल किया गया है। के-स्थिर किस्में। इस सेटिंग में [[ कौचर बिरकर ]] द्वारा सिद्ध की गई फ़ानो विविधता की सीमा के बारे में महत्वपूर्ण परिणामों का उपयोग किया जाता है, जिसके लिए उन्हें 2018 [[ फील्ड मेडल ]] से सम्मानित किया गया था। | ||
कैलाबी-यौ | कैलाबी-यौ विविधता के मॉडुलि समष्टि का निर्माण एक महत्वपूर्ण खुली समस्या है, और केवल विशेष मामले जैसे कि [[K3 सतह]] या एबेलियन विविधता के मोडुली समष्टि को समझा जाता है।<ref>Huybrechts, D., 2016. ''Lectures on K3 surfaces'' (Vol. 158). Cambridge University Press.</ref> | ||
=== वेक्टर बंडलों का मॉड्यूल === | === वेक्टर बंडलों का मॉड्यूल === | ||
एक अन्य महत्वपूर्ण मोडुली समस्या मोडुली चित्ति वेक्ट की ज्यामिति (विभिन्न सबस्टैक) को समझना है<sub>''n''</sub>(X) एक निश्चित [[बीजगणितीय किस्म]] X पर रैंक n [[वेक्टर बंडल]]ों का।<ref>{{Cite web|title=वेक्टर बंडलों के बीजगणितीय ढेर और मोडुली|url=https://impa.br/wp-content/uploads/2017/04/PM_36.pdf|url-status=live}}</ref> इस चित्ति का सबसे अधिक अध्ययन तब किया गया है जब X एक-आयामी है, और विशेष रूप से जब n एक के बराबर है। इस मामले में, | एक अन्य महत्वपूर्ण मोडुली समस्या मोडुली चित्ति वेक्ट की ज्यामिति (विभिन्न सबस्टैक) को समझना है<sub>''n''</sub>(X) एक निश्चित [[बीजगणितीय किस्म|बीजगणितीय प्रकार]] X पर रैंक n [[वेक्टर बंडल]]ों का।<ref>{{Cite web|title=वेक्टर बंडलों के बीजगणितीय ढेर और मोडुली|url=https://impa.br/wp-content/uploads/2017/04/PM_36.pdf|url-status=live}}</ref> इस चित्ति का सबसे अधिक अध्ययन तब किया गया है जब X एक-आयामी है, और विशेष रूप से जब n एक के बराबर है। इस मामले में, स्थूल मोडुली समष्टि [[पिकार्ड योजना|पिकार्ड प्रणाली]] है, जो वक्रों के मोडुली समष्टि की तरह चित्ति का आविष्कार करने से पहले अध्ययन किया गया था। जब बंडलों की रैंक 1 और कोटि शून्य होती है, स्थूल मॉड्यूलि समष्टि का अध्ययन जैकोबियन प्रकार का अध्ययन होता है। | ||
भौतिकी के अनुप्रयोगों में, सदिश बंडलों के मापांकों की संख्या और [[फाइबर बंडल]]ों के मापांकों की संख्या की निकटता से संबंधित समस्या। मुख्य जी-बंडलों को [[गेज सिद्धांत]] में महत्वपूर्ण पाया गया है।{{citation needed|date=June 2013}} | भौतिकी के अनुप्रयोगों में, सदिश बंडलों के मापांकों की संख्या और [[फाइबर बंडल|सूत्र बंडल]]ों के मापांकों की संख्या की निकटता से संबंधित समस्या। मुख्य जी-बंडलों को [[गेज सिद्धांत]] में महत्वपूर्ण पाया गया है।{{citation needed|date=June 2013}} | ||
=== मॉड्युली समष्टि का आयतन === | === मॉड्युली समष्टि का आयतन === | ||
Line 96: | Line 99: | ||
== मोडुली समष्टि बनाने की विधियाँ == | == मोडुली समष्टि बनाने की विधियाँ == | ||
मोडुली समस्याओं का आधुनिक सूत्रीकरण और मोडुली फंक्शनलर्स (या अधिक सामान्यतः | मोडुली समस्याओं का आधुनिक सूत्रीकरण और मोडुली फंक्शनलर्स (या अधिक सामान्यतः वर्गीकृत में रेशेदार श्रेणी) के संदर्भ में मोडुली समष्टि की परिभाषा, और समष्टि (लगभग) उनका प्रतिनिधित्व करते हुए, ग्रोथेंडिक (1960/61) में वापस आते हैं, जिसमें उन्होंने वर्णित किया एक उदाहरण के रूप में जटिल विश्लेषणात्मक ज्यामिति में Teichmüller समष्टि का उपयोग करके सामान्य रूपरेखा, दृष्टिकोण और मुख्य समस्याएं। वार्ता, विशेष रूप से, मॉडुलि समष्टि के निर्माण की सामान्य विधि का वर्णन करती है, जो पहले विचाराधीन मोडुली समस्या को कठोर करती है। | ||
अधिक | अधिक परिशुद्ध रूप से, वर्गीकृत की जा रही वस्तुओं के गैर-तुच्छ ऑटोमोर्फिज़्म का अस्तित्व एक ठीक मोडुली समष्टि को असंभव बना देता है। हालांकि, मूल वस्तुओं को अतिरिक्त डेटा के साथ वर्गीकृत करने की एक संशोधित मोडुली समस्या पर विचार करना प्रायः संभव होता है, इस तरह से चयन किया जाता है कि पहचान ही एकमात्र समाकारिकता है जो अतिरिक्त डेटा का भी सम्मान करता है। कठोर डेटा के उपयुक्त विकल्प के साथ, संशोधित मोडुली समस्या में एक (ठीक) मोडुली समष्टि टी होगा, जिसे प्रायः एक उपयुक्त हिल्बर्ट प्रणाली या कोट प्रणाली की उपयोजना के रूप में वर्णित किया जाता है। कठोर डेटा को इसके अलावा चयन किया जाता है ताकि यह एक बीजगणितीय संरचना बंडल G के साथ एक प्रमुख बंडल से अनुरूप हो। इस प्रकार कोई G की क्रिया द्वारा भागफल लेकर कठोर समस्या से मूल तक वापस जा सकता है, और मॉड्यूलि समष्टि के निर्माण की समस्या एक प्रणाली (या अधिक सामान्य समष्टि) खोजने का बन जाता है जो (एक उपयुक्त मजबूत अर्थ में) जी की कार्रवाई से टी का भागफल टी/जी है। अंतिम समस्या, सामान्य रूप से, समाधान स्वीकार नहीं करती है; हालाँकि, इसे 1965 में [[डेविड ममफोर्ड]] द्वारा विकसित ग्राउंडब्रेकिंग [[ज्यामितीय अपरिवर्तनीय सिद्धांत]] (GIT) द्वारा संबोधित किया गया है, जो दर्शाता है कि उपयुक्त परिस्थितियों में भागफल वास्तव में सम्मिलित है। | ||
यह देखने के लिए कि यह कैसे काम कर सकता है, | यह देखने के लिए कि यह कैसे काम कर सकता है, वर्ग जी> 2 के सरल वक्र पैरामीट्रिजिंग की समस्या पर विचार करें। कोटि डी> 2 जी की एक [[पूर्ण रैखिक प्रणाली]] के साथ एक सरल वक्र प्रक्षेपीय समष्टि 'पी' के बंद एक आयामी उप-प्रणाली के बराबर है।<sup>डी−जी</sup>. नतीजतन, सामान्य वक्र और रैखिक प्रणालियों (कुछ मानदंडों को पूरा करने वाले) के मोडुली समष्टि को पर्याप्त उच्च-आयामी प्रक्षेपी समष्टि की हिल्बर्ट प्रणाली में एम्बेड किया जा सकता है। हिल्बर्ट प्रणाली में इस लोकस एच में पीजीएल (एन) की क्रिया है जो रैखिक प्रणाली के तत्वों को मिलाती है; नतीजतन, सरल वक्र के मॉड्युली समष्टि को प्रक्षेप्य सामान्य रैखिक बंडल द्वारा H के भागफल के रूप में पुनर्प्राप्त किया जाता है। | ||
एक अन्य सामान्य दृष्टिकोण मुख्य रूप से [[माइकल आर्टिन]] के साथ जुड़ा हुआ है। यहाँ विचार यह है कि जिस तरह की वस्तु को वर्गीकृत किया जाना है, उसके साथ प्रारंभ किया जाए और उसके [[विरूपण सिद्धांत]] का अध्ययन किया जाए। इसका अर्थ है कि पहले अतिसूक्ष्म विकृति का निर्माण करना, फिर 'पूर्व-प्रतिनिधित्व' प्रमेय को एक [[औपचारिक योजना]] आधार पर एक वस्तु में एक साथ रखने की अपील करना। इसके बाद, अलेक्जेंड्रे ग्रोथेंडिक के लिए एक अपील | ग्रोथेंडिक की [[ग्रोथेंडिक अस्तित्व प्रमेय]] एक आधार पर वांछित प्रकार की एक वस्तु प्रदान करती है जो एक पूर्ण स्थानीय रिंग है। इस वस्तु को आर्टिन के सन्निकटन प्रमेय के माध्यम से अनुमानित रूप से उत्पन्न वलय पर परिभाषित वस्तु द्वारा अनुमानित किया जा सकता है। इस बाद वाली वलय की एक वलय के स्पेक्ट्रम को वांछित मोडुली समष्टि पर एक प्रकार का समन्वय चार्ट देने के रूप में देखा जा सकता है। इन चार्टों को पर्याप्त रूप से एक साथ जोड़कर, हम समष्टि को कवर कर सकते हैं, लेकिन हमारे स्पेक्ट्रा के मिलन से मॉड्यूलि समष्टि तक का नक्शा सामान्य रूप से एक से कई होगा। इसलिए, हम पूर्व पर एक [[तुल्यता संबंध]] को परिभाषित करते हैं; अनिवार्य रूप से, दो बिंदु समतुल्य होते हैं यदि प्रत्येक के ऊपर की वस्तुएं समरूपी हों। यह एक | एक अन्य सामान्य दृष्टिकोण मुख्य रूप से [[माइकल आर्टिन]] के साथ जुड़ा हुआ है। यहाँ विचार यह है कि जिस तरह की वस्तु को वर्गीकृत किया जाना है, उसके साथ प्रारंभ किया जाए और उसके [[विरूपण सिद्धांत]] का अध्ययन किया जाए। इसका अर्थ है कि पहले अतिसूक्ष्म विकृति का निर्माण करना, फिर 'पूर्व-प्रतिनिधित्व' प्रमेय को एक [[औपचारिक योजना|औपचारिक प्रणाली]] आधार पर एक वस्तु में एक साथ रखने की अपील करना। इसके बाद, अलेक्जेंड्रे ग्रोथेंडिक के लिए एक अपील | ग्रोथेंडिक की [[ग्रोथेंडिक अस्तित्व प्रमेय]] एक आधार पर वांछित प्रकार की एक वस्तु प्रदान करती है जो एक पूर्ण स्थानीय रिंग है। इस वस्तु को आर्टिन के सन्निकटन प्रमेय के माध्यम से अनुमानित रूप से उत्पन्न वलय पर परिभाषित वस्तु द्वारा अनुमानित किया जा सकता है। इस बाद वाली वलय की एक वलय के स्पेक्ट्रम को वांछित मोडुली समष्टि पर एक प्रकार का समन्वय चार्ट देने के रूप में देखा जा सकता है। इन चार्टों को पर्याप्त रूप से एक साथ जोड़कर, हम समष्टि को कवर कर सकते हैं, लेकिन हमारे स्पेक्ट्रा के मिलन से मॉड्यूलि समष्टि तक का नक्शा सामान्य रूप से एक से कई होगा। इसलिए, हम पूर्व पर एक [[तुल्यता संबंध]] को परिभाषित करते हैं; अनिवार्य रूप से, दो बिंदु समतुल्य होते हैं यदि प्रत्येक के ऊपर की वस्तुएं समरूपी हों। यह एक प्रणाली और एक तुल्यता संबंध देता है, जो एक बीजगणितीय समष्टि को परिभाषित करने के लिए पर्याप्त है (वास्तव में एक बीजगणितीय चित्ति यदि हम सावधान रहें) यदि सदैव एक प्रणाली नहीं है। | ||
== भौतिकी में == | == भौतिकी में == | ||
{{details|moduli (physics)}} | {{details|moduli (physics)}} | ||
मॉडुलि समष्टि शब्द का प्रयोग कभी-कभी भौतिक विज्ञान में [[अदिश क्षेत्र]] के एक समुच्चय के वैक्यूम अपेक्षा | मॉडुलि समष्टि शब्द का प्रयोग कभी-कभी भौतिक विज्ञान में [[अदिश क्षेत्र]] के एक समुच्चय के वैक्यूम अपेक्षा मानो के मोडुली समष्टि या संभावित [[स्ट्रिंग पृष्ठभूमि]] के मोडुली समष्टि के लिए विशेष रूप से संदर्भित करने के लिए किया जाता है। | ||
मॉडुलि समष्टि भौतिकी में [[टोपोलॉजिकल क्षेत्र सिद्धांत]] में भी दिखाई देते हैं, जहां कोई विभिन्न बीजगणितीय मोडुली समष्टि के प्रतिच्छेदन संख्या की गणना करने के लिए [[ फेनमैन पथ अभिन्न ]] का उपयोग कर सकता है। | मॉडुलि समष्टि भौतिकी में [[टोपोलॉजिकल क्षेत्र सिद्धांत]] में भी दिखाई देते हैं, जहां कोई विभिन्न बीजगणितीय मोडुली समष्टि के प्रतिच्छेदन संख्या की गणना करने के लिए [[ फेनमैन पथ अभिन्न ]] का उपयोग कर सकता है। | ||
Line 113: | Line 116: | ||
=== निर्माण उपकरण === | === निर्माण उपकरण === | ||
* हिल्बर्ट | * हिल्बर्ट प्रणाली | ||
* भाव | * भाव प्रणाली | ||
* विरूपण सिद्धांत | * विरूपण सिद्धांत | ||
* [[जीआईटी भागफल]] | * [[जीआईटी भागफल]] | ||
Line 122: | Line 125: | ||
* बीजगणितीय वक्रों का मापांक | * बीजगणितीय वक्रों का मापांक | ||
* [[अण्डाकार वक्रों का मोडुली ढेर|अण्डाकार वक्रों का मोडुली चित्ति]] | * [[अण्डाकार वक्रों का मोडुली ढेर|अण्डाकार वक्रों का मोडुली चित्ति]] | ||
*फ़ानो | *फ़ानो विविधता की के-स्थिरता| के-स्थिर फ़ानो विविधता के मोडुली समष्टि | ||
* [[मॉड्यूलर वक्र]] | * [[मॉड्यूलर वक्र|प्रतिरूपक वक्र]] | ||
* [[पिकार्ड फ़ैक्टर]] | * [[पिकार्ड फ़ैक्टर|पिकार्ड फलननिर्धारक]] | ||
*कोट | *कोट प्रणाली# एक कर्व पर सेमीटेबल वेक्टर बंडल | ||
* [[Kontsevich अंतरिक्ष मॉड्यूल|Kontsevich समष्टि मॉड्यूल]] | * [[Kontsevich अंतरिक्ष मॉड्यूल|Kontsevich समष्टि मॉड्यूल]] | ||
* सेमीस्टेबल शीशों का मोडुली | * सेमीस्टेबल शीशों का मोडुली |
Revision as of 22:13, 22 April 2023
गणित में, विशेष रूप से बीजगणितीय ज्यामिति में, एक मॉड्युली समष्टि एक ज्यामितीय समष्टि सामान्य रूप से एक प्रणाली (गणित) या एक बीजगणितीय चित्ति होता है, जिसके बिंदु कुछ निश्चित प्रकार के बीजगणितीय-ज्यामितीय वस्तुओं या ऐसी वस्तुओं के समरूपता वर्गो का प्रतिनिधित्व करते हैं। ऐसे समष्टि प्रायः वर्गीकरण समस्याओं के समाधान के रूप में उत्पन्न होते हैं: यदि कोई यह दिखा सकता है कि रोचक वस्तुओं का समुच्चय (उदाहरण के लिए, एक निश्चित वर्ग के सरल बीजगणितीय वक्र) को एक ज्यामितीय समष्टि की संरचना दी जा सकती है, तो परिणामी समष्टि पर निर्देशांक प्रस्तुत करके ऐसी वस्तुओं को पैरामीट्रिज किया जा सकता है। इस संदर्भ में, मापांक शब्द का प्रयोग पैरामीटर के पर्याय के रूप में किया जाता है; मॉडुलि समष्टि को पहले वस्तुओं के समष्टि के अतिरिक्त मापदंडों के समष्टि के रूप में समझा गया था। मॉड्यूलि समष्टि का एक प्रकार औपचारिक मोडुली है। बर्नहार्ड रीमैन ने पहली बार 1857 में मोडुली शब्द का उपयोग किया था।[1]
कारण
मॉड्यूलि समष्टि ज्यामितीय वर्गीकरण समस्याओं के समाधान के समष्टि हैं। अर्थात, मॉड्यूलि समष्टि के अंक ज्यामितीय समस्याओं के समाधान के अनुरूप हैं। यहां अलग-अलग समाधानों की पहचान की जाती है यदि वे समरूपी हैं, अर्थात ज्यामितीय रूप से समान होते है। मॉडुलि समष्टि को समस्या के लिए मापदंडों का एक सार्वभौमिक समष्टि देने के बारे में सोचा जा सकता है। उदाहरण के लिए, यूक्लिडियन तल में सभी वृत्तों को सर्वांगसमता तक खोजने की समस्या पर विचार करें। किसी भी वृत्त को तीन बिंदु देकर विशिष्ट रूप से वर्णित किया जा सकता है, लेकिन तीन बिंदुओं के कई अलग-अलग समुच्चय समान वृत्त देते हैं अर्थात समानता एक से अनेक है। हालाँकि, वृत्तों को उनके केंद्र और त्रिज्या देकर विशिष्ट रूप से परिचालित किया जाता है, यह दो वास्तविक पैरामीटर और एक धनात्मक वास्तविक पैरामीटर है। चूँकि हम केवल सर्वांगसमता तक के वृत्तों में संबंध होता हैं, इसलिए हम ऐसे वृत्तों की पहचान करते हैं जिनके केंद्र अलग-अलग हों, लेकिन समान त्रिज्या हो, और इसलिए केवल त्रिज्या ही भाग के समुच्चय को पैरामीटर करने के लिए पर्याप्त है। इसलिए मॉड्यूलि समष्टि धनात्मक वास्तविक संख्या है।
मोडुली समष्टि प्रायः प्राकृतिक ज्यामितीय और सांस्थितिकीय संरचनाओं को भी ले जाते हैं। वृत्तों के उदाहरण में, उदाहरण के लिए, मोडुली समष्टि केवल एक अमूर्त समुच्चय नहीं है, लेकिन त्रिज्या के अंतर का पूर्ण मूल्य एक आव्यूह (गणित) को परिभाषित करता है, यह निर्धारित करने के लिए कि जब दो वृत्त समीप होते हैं। मॉड्यूलि समष्टि की ज्यामितीय संरचना स्थानीय रूप से हमें बताती है कि ज्यामितीय वर्गीकरण समस्या के दो समाधान समीप हैं, लेकिन सामान्य रूप से मोडुली समष्टि में एक जटिल वैश्विक संरचना भी होती है।
उदाहरण के लिए, विचार करें कि R2 में रेखाओं के समुच्चय का वर्णन कैसे किया जाए जो मूल बिंदु को प्रतिच्छेद करती है। हम इस वर्ग की प्रत्येक रेखा L को एक मात्रा निर्दिष्ट करना चाहते हैं जो विशिष्ट रूप से इसे एक मापांक की पहचान कर सके। ऐसी मात्रा का एक उदाहरण 0 ≤ θ < π रेडियन के साथ धनात्मक कोण θ(L) है। L रेखाओ का समुच्चय इसलिए पैरामीटर युक्त को P1(R) के रूप में जाना जाता है और इसे वास्तविक प्रक्षेप्य रेखा कहा जाता है।
हम R2 में रेखाओं के समुच्चय का भी वर्णन कर सकते हैं जो एक सांस्थितिकीय निर्माण के माध्यम से मूल को प्रतिच्छेद करता है। अतः S1 ⊂ R2 पर विचार करने के लिए और ध्यान दें कि प्रत्येक बिंदु s ∈ S1 समुच्चय में एक रेखा L(s) देता है जो मूल बिंदु और s को जोड़ता है। हालाँकि, यह नक्शा दो से एक है, इसलिए हम P1(R) ≅ S1/~ उत्पन्न करने के लिए s ~ −s की पहचान करना चाहते हैं, जहां इस समष्टि पर सांस्थिति भागफल मानचित्र S1 → P1(R) द्वारा प्रेरित भागफल सांस्थिति है।
इस प्रकार, जब हम P1(R) पर विचार करते हैं, रेखाओं की मॉड्यूलि समष्टि के रूप में जो R2 में मूल बिन्दु को प्रतिच्छेद करती है, हम उन तरीकों को अभिग्रहण करते हैं जिनमें वर्ग के इकाई (इस स्थिति में रेखा) 0 ≤ θ < π को निरंतर बदलते हुए संशोधित कर सकते हैं।
सामान्य उदाहरण
प्रक्षेपीय समष्टि और ग्रासमैनियन
वास्तविक प्रक्षेपीय समष्टि Pn एक मोडुली समष्टि है जो Rn+1 में रेखाओ की समष्टि को पैरामीट्रिज करता है जो मूल के माध्यम से गुजरता है। इसी प्रकार, जटिल प्रक्षेपीय समष्टि Cn+1 में मूल बिन्दु के माध्यम से गुजरने वाली सभी जटिल रेखाओं का समष्टि है।
अधिक सामान्य रूप से, क्षेत्र F पर सदिश समष्टि V का ग्रासमानियन 'G'(k, V), V के सभी k-विमीय रैखिक उपसमष्टि का मॉडुलि समष्टि होता है।
वैश्विक रूप से उत्पन्न वर्गों के साथ वृहत रेखा बंडल के मॉड्यूल के रूप में प्रक्षेपीय समष्टि
सार्वभौमिक प्रक्षेप्य समष्टि में जब भी किसी प्रणाली का अन्तः स्थापन होता है ,[2][3] तो अन्तः स्थापन एक रेखा बंडल द्वारा दी गई है, और भाग जो सभी समान समय में शून्य नहीं होते हैं। इसका तात्पर्य है, एक बिंदु दिया गया है
एक संबद्ध बिंदु है
रचनाओं द्वारा प्रदान किया गया
फिर, अनुभागों के साथ दो रेखा बंडल समतुल्य हैं
यदि कोई तुल्याकारिता है जैसे कि है। इसका तात्पर्य है संबंधित मोडुली फलननिर्धारक
रचना समुच्चय पर प्रेषित करता है
यह दिखा रहा है कि यह सच है, पुनरुक्ति की एक श्रृंखला के माध्यम से परिचालन किया जा सकता है: कोई भी प्रक्षेप्य अन्तः स्थापन वैश्विक रूप से उत्पन्न शीफ वर्गों के साथ देता है। इसके विपरीत, एक विस्तृत रेखा बंडल दिया गया है। वैश्विक रूप से उत्पन्न अनुभाग ऊपर के रूप में एक अन्तः स्थापन देता है।
चाउ प्रकार
चाउ प्रकार Chow(d,P3) एक प्रक्षेपी बीजगणितीय प्रकार है जो P3 में कोटि d वक्रों को पैरामीट्रिज करती है। इसका निर्माण निम्नानुसार किया गया है। मान लीजिए C, P3 में कोटि d का एक वक्र है, फिर P3 में उन सभी रेखाओं पर विचार करें जो वक्र C को प्रतिच्छेद करती हैं। यह G(2, 4) में एक कोटि d भाजक DC है, जो P3 में रेखाओं का ग्रासमानियन है। जब C भिन्न होता है, तो C को DC से जोड़कर, हम ग्रासमानियन चाउ (d, P3) के कोटि d विभाजकों के समष्टि के उपसमुच्चय के रूप में कोटि d वक्रों का एक पैरामीटर स्थान प्राप्त करते हैं।
हिल्बर्ट प्रणाली
हिल्बर्ट प्रणाली Hilb(X) एक मोडुली प्रणाली है। Hilb(X) का प्रत्येक बंद बिंदु एक निश्चित प्रणाली X की एक संवृत्त उपप्रणाली से अनुरूप है, और प्रत्येक संवृत्त उपप्रणाली को ऐसे बिंदु द्वारा दर्शाया जाता है। हिल्बर्ट प्रणाली का एक सरल उदाहरण प्रक्षेपीय समष्टि के कोटि ऊनविम पृष्ठ को पैरामिट्रीकृत करने वाली हिल्बर्ट प्रणाली है। यह प्रक्षेपी बंडल द्वारा दिया जाता है
द्वारा दिए गए सार्वभौमिक वर्ग के साथ
द्वारा दिया गया
जहाँ डिग्री d सजातीय बहुपद f के लिए संबद्ध प्रक्षेपी प्रणाली है।
परिभाषाएँ
वस्तुओ की कई संबंधित धारणाएं हैं जिन्हें हम मोडुली समष्टि कह सकते हैं। इनमें से प्रत्येक परिभाषा ज्यामितीय वस्तुओं का प्रतिनिधित्व करने के लिए समष्टि M के बिंदुओं के लिए इसका क्या अर्थ है, इसकी एक अलग धारणा को औपचारिक रूप देती है।
सूक्ष्म मोडुलि समष्टि
यह मानक अवधारणा है। स्वानुभविक रूप से, यदि हमारे पास एक समष्टि M है जिसके लिए प्रत्येक बिंदु m ∊ M बीजगणित-ज्यामितीय वस्तु Um से अनुरूप है, तो हम इन वस्तुओं को M पर एक पुनरुक्तात्मक वर्ग U में संग्रहित कर सकते हैं। उदाहरण के लिए, ग्रासमैनियन 'G(k, V) श्रेणी K के समुच्चय को ले जाता है जिसका सूत्र किसी भी बिंदु पर [L] ∊ G(k, V) केवल रैखिक उपसमष्टि L ⊂ V है। M को वर्ग U का 'आधार स्थान' कहा जाता है। हम कहते हैं कि ऐसा वर्ग सार्वभौमिक है यदि बीजगणित-ज्यामितीय वस्तुओं का कोई भी वर्ग किसी भी आधार स्थान B पर T एक अद्वितीय मानचित्र B → M के साथ U का पुलबैक (श्रेणी सिद्धांत) है। सूक्ष्म मोडुलि समष्टि एक समष्टि M है जो एक सार्वभौमिक वर्ग का आधार है।
अधिक परिशुद्ध रूप से, मान लीजिए कि हमारे पास योजनाओं से लेकर समुच्चय तक एक फलननिर्धारक F है, जो एक प्रणाली B को आधार B के साथ वस्तुओं के सभी उपयुक्त वर्गों के समुच्चय को निर्धारित करता है। समष्टि M, फलननिर्धारक F के लिए एक 'सूक्ष्म मोडुली समष्टि' है यदि M प्रतिनिधित्व योग्य है फलननिर्धारक F, अर्थात एक प्राकृतिक समरूपता τ : F → Hom(−, M) है, जहां Hom(−, M) बिंदुओं का फलननिर्धारक है। इसका तात्पर्य है कि M एक सार्वभौमिक वर्ग रखता है; यह वर्ग पर पहचान मानचित्र 1M ∊ Hom(M, M) के अनुरूप वर्ग है।
स्थूल मॉडुलि समष्टि
सूक्ष्म मोडुली समष्टि वांछनीय हैं, लेकिन वे सदैव सम्मिलित नहीं होते हैं और प्रायः निर्माण करना कठिन होता है, इसलिए गणितज्ञ कभी-कभी एक दुर्बल धारणा का उपयोग करते हैं जो स्थूल मोडुली समष्टि का विचार है। यदि कोई प्राकृतिक रूपांतरण τ : F → Hom(-, M) सम्मिलित है और τ ऐसे प्राकृतिक परिवर्तनों के बीच सार्वभौमिक है, तो एक समष्टि M, फलननिर्धारक F के लिए एक स्थूल मोडुली समष्टि है। अधिक ठोस रूप से, M, F के लिए एक स्थूल मोडुली समष्टि है यदि कोई वर्ग T एक आधार B पर एक मानचित्र φT : B → M और किन्हीं दो वस्तुओं V और W (एक बिंदु पर वर्गों के रूप में माना जाता है) को समान बिंदु के अनुरूप बनाता है। M यदि और केवल यदि V और W समरूपी हैं। इस प्रकार, एम एक ऐसा समष्टि है जिसमें प्रत्येक वस्तु के लिए एक बिंदु होता है जो एक वर्ग में प्रकट हो सकता है, और जिसकी ज्यामिति वर्गों में वस्तुओं के भिन्न होने के तरीकों को दर्शाती है। हालांकि, ध्यान दें कि, एक स्थूल मोडुली समष्टि में आवश्यक रूप से उपयुक्त वस्तुओं का कोई वर्ग नहीं होता है, केवल एक सार्वभौमिक होने दें।
दूसरे शब्दों में, एक सूक्ष्म मॉडुलि समष्टि में आधार स्थान M और सार्वभौमिक वर्ग U → M दोनों सम्मिलित होते हैं, जबकि स्थूल मॉड्यूलि समष्टि में केवल आधार स्थान M होता है।
मोडुली चित्ति
प्रायः ऐसा होता है कि रोचक ज्यामितीय वस्तुएं कई प्राकृतिक स्वाकारिकता से सुसज्जित होती हैं। यह विशेष रूप से एक सूक्ष्म मोडुली समष्टि के अस्तित्व को असंभव बनाता है सामान्य रूप से, विचार यह है कि यदि एल कुछ ज्यामितीय वस्तु है, तो सामान्य वर्ग L × [0,1] को वृत्त 'S1' 1 L × {0} को L × {1} के साथ एक गैर-सामान्य स्वाकारिकता के माध्यम से पहचान कर व्यावर्तित वर्ग में बनाया जा सकता है। अब यदि सूक्ष्म मॉडुलि समष्टि X अस्तित्व में है, तो मानचित्र 'S'1 → X को स्थिर नहीं होना चाहिए, लेकिन तुच्छता से किसी भी उपयुक्त विवृत समुच्चय पर स्थिर होना चाहिए, फिर भी कभी-कभी स्थूल मोडुली समष्टि प्राप्त कर सकते हैं। हालांकि, यह दृष्टिकोण आदर्श नहीं है, क्योंकि ऐसे समष्टि के अस्तित्व की प्रत्याभूति नहीं है, जब वे सम्मिलित होते हैं तो वे प्रायः असामान्य होते हैं, और उन वस्तुओं के कुछ गैर-सामान्य वर्गों के बारे में विवरण स्मरण करते हैं जिन्हें वे वर्गीकृत करते हैं।
समरूपताओं को याद करके वर्गीकरण को समृद्ध करने के लिए एक अधिक परिष्कृत दृष्टिकोण है। अधिक परिशुद्ध रूप से, किसी भी आधार पर B पर वर्गों की श्रेणी पर विचार कर सकता है, जिसमें वर्गों के बीच केवल समरूपता के रूप में लिया जाता है। एक तब तंतुमय श्रेणी पर विचार करता है जो किसी भी समष्टि B को B से अधिक वर्गों के बंडल को निर्दिष्ट करता है। मॉड्यूलि समस्या का वर्णन करने के लिए वर्गीकृत में सूत्र की गई इन श्रेणियों का उपयोग ग्रोथेंडिक (1960/61) तक जाता है। सामान्य रूप से, उन्हें योजनाओं या बीजगणितीय समष्टि द्वारा प्रदर्शित नहीं किया जा सकता है, लेकिन कई स्थितियों में, उनके पास बीजगणितीय चित्ति की प्राकृतिक संरचना होती है।
डेलिग्ने-ममफोर्ड (1969) में बीजगणितीय चित्ति और मॉडुलि समस्याओं का विश्लेषण करने के लिए उनका उपयोग एक दिए गए वर्ग के बीजगणितीय वक्र के (स्थूल) मोडुली की अपरिवर्तनीयता को परिणाम करने के लिए एक उपकरण के रूप में दिखाई दिया। बीजगणितीय चित्ति की भाषा अनिवार्य रूप से तंतुमय श्रेणी को देखने के लिए एक व्यवस्थित तरीका प्रदान करती है जो एक समष्टि के रूप में मोडुली समस्या का निर्माण करती है, और 'मॉड्यूली चित्ति' कई मॉडुलि समस्याओं में से अधिकांश संबंधित स्थूल मॉडुलि समष्टि की तुलना में अधिकतम व्यवहार (जैसे सरल) है।
अन्य उदाहरण
वक्रों का मापांक
मोडुली चित्ति वर्ग g के सामान्य प्रक्षेपी वक्र के वर्गों को उनके समरूपताओं के साथ वर्गीकृत करता है। जब g > 1, इस चित्ति को नई सीमा बिंदुओं को जोड़कर संकुचित किया जा सकता है जो स्थिर केंद्रक वक्रों (उनके समरूपताओं के साथ) के अनुरूप होता है। एक वक्र स्थिर होता है यदि इसमें केवल समाकारिकता का परिमित बंडल होता है। परिणामी चित्ति को दर्शाया गया है। दोनों मोडुली चित्ति वक्रों के सार्वभौमिक वर्गों को ले जाते हैं। सामान्य या स्थिर वक्रों के समरूपता वर्गों का प्रतिनिधित्व करने वाले स्थूल मोडुली समष्टि को भी परिभाषित किया जा सकता है। मोडुली चित्ति की धारणा का आविष्कार करने से पहले इन स्थूल मॉडुलि समष्टि का वास्तव में अध्ययन किया गया था। वास्तव में, मोडुली चित्ति के विचार का आविष्कार डेलिग्ने और ममफोर्ड द्वारा किया गया था ताकि स्थूल मॉडुलि समष्टि की उत्पादकता को परिणाम करने का प्रयास किया जा सके। हाल के वर्षों में, यह स्पष्ट हो गया है कि वक्रों का चित्ति वास्तव में अधिक मौलिक वस्तु है।
ऊपर के दोनों चित्ति का आयाम 3g−3 है; इसलिए एक स्थिर केंद्रक वक्र को पूरी तरह से 3g−3 मापदंडों के मानो को जब g> 1 चयन करके निर्दिष्ट किया जा सकता है। निचले वर्ग में, किसी को समाकारिकता के सामान्य वर्गों की उपस्थिति के लिए उनकी संख्या घटाकर गणना करनी चाहिए। वर्ग शून्य का परिशुद्ध एक जटिल वक्र है, रीमैन वृत्त और इसके समरूपता का बंडल प्रक्षेपी सामान्य रैखिक (पीजीएल(2)) है। इसलिए, का आयाम है
- आयाम(वर्ग शून्य वक्र की समष्टि) - आयाम(समाकारिकता का बंडल) = 0 - आयाम(पीजीएल(2)) = -3
इसी तरह, वर्ग 1 में, वक्र का एक आयामी समष्टि है, लेकिन इस तरह के प्रत्येक वक्र में समाकारिकता का एक आयामी बंडल होता है। इसलिए, चित्ति आयाम 0 है। अतः g > 1 होने पर स्थूल मॉडुलि समष्टि का आयाम 3g−3 होता है, क्योंकि वर्ग g > 1 के साथ वक्र केवल एक परिमित बंडल होता है, जैसे कि आयाम (समाकारिकता का एक बंडल) = 0 है। अंततः, वर्ग शून्य, स्थूल मोडुलि समष्टि का आयाम शून्य है, और वर्ग एक में इसका आयाम एक है।
n चिह्नित बिंदुओं के साथ वर्ग g केंद्रक वक्र के मोडुली चित्ति पर विचार करके भी समस्या को समृद्ध किया जा सकता है। इस तरह के चिह्नित वक्रों को स्थिर कहा जाता है यदि चिह्नित बिंदुओं को सही करने वाले वक्र समाकारिकता का उपसमूह परिमित है। n-चिन्हित बिंदुओं के साथ सामान्य (या स्थिर) वर्ग g वक्र के परिणामी मोडुली चित्ति (या ) को निरूपित किया जाता है, और आयाम 3g − 3 + n है।
विशेष संबंध की एक स्थिति एक चिन्हित बिंदु के साथ वर्ग 1 वक्र के मोडुली चित्ति एक चिह्नित बिंदु के साथ वर्ग 1 वक्र है। यह दीर्घवृत्तीय वक्रो का चित्ति है, और बहुत अध्ययन किए गए प्रतिरूपक रूप का प्राकृतिक स्थान है, जो इस चित्ति पर भाग के अनंतकी खंड हैं।
विविधता का मापांक
उच्च आयामों में, बीजगणितीय विविधता के मॉड्यूल का निर्माण और अध्ययन करना अधिक कठिन होता है। उदाहरण के लिए, ऊपर चर्चित अण्डाकार वक्रों के मॉडुलि समष्टि का उच्च-आयामी एनालॉग एबेलियन विविधता का मोडुली समष्टि है, जैसे कि सीगल प्रतिरूपक असमरूपता है। यह सीगल प्रतिरूपक प्रतिघात सिद्धांत की अंतर्निहित समस्या है। शिमूरा विविधता भी देखें।
EDIT न्यूनतम मॉडल कार्यक्रम से उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, जेनोस कोल्लार और निकोलस शेफर्ड-बैरन द्वारा सामान्य प्रकार की विविधता के मोडुली समष्टि का निर्माण किया गया, जिसे अब केएसबी मोडुली समष्टि के रूप में जाना जाता है।[4] डिफरेंशियल ज्योमेट्री और बाइरेशनल ज्योमेट्री से एक साथ उत्पन्न होने वाली तकनीकों का उपयोग करते हुए, फैनो विविधता के मोडुली समष्टि का निर्माण फैनो विविधता के के-स्थिरता के एक विशेष वर्ग तक सीमित करके हासिल किया गया है। के-स्थिर किस्में। इस सेटिंग में कौचर बिरकर द्वारा सिद्ध की गई फ़ानो विविधता की सीमा के बारे में महत्वपूर्ण परिणामों का उपयोग किया जाता है, जिसके लिए उन्हें 2018 फील्ड मेडल से सम्मानित किया गया था।
कैलाबी-यौ विविधता के मॉडुलि समष्टि का निर्माण एक महत्वपूर्ण खुली समस्या है, और केवल विशेष मामले जैसे कि K3 सतह या एबेलियन विविधता के मोडुली समष्टि को समझा जाता है।[5]
वेक्टर बंडलों का मॉड्यूल
एक अन्य महत्वपूर्ण मोडुली समस्या मोडुली चित्ति वेक्ट की ज्यामिति (विभिन्न सबस्टैक) को समझना हैn(X) एक निश्चित बीजगणितीय प्रकार X पर रैंक n वेक्टर बंडलों का।[6] इस चित्ति का सबसे अधिक अध्ययन तब किया गया है जब X एक-आयामी है, और विशेष रूप से जब n एक के बराबर है। इस मामले में, स्थूल मोडुली समष्टि पिकार्ड प्रणाली है, जो वक्रों के मोडुली समष्टि की तरह चित्ति का आविष्कार करने से पहले अध्ययन किया गया था। जब बंडलों की रैंक 1 और कोटि शून्य होती है, स्थूल मॉड्यूलि समष्टि का अध्ययन जैकोबियन प्रकार का अध्ययन होता है।
भौतिकी के अनुप्रयोगों में, सदिश बंडलों के मापांकों की संख्या और सूत्र बंडलों के मापांकों की संख्या की निकटता से संबंधित समस्या। मुख्य जी-बंडलों को गेज सिद्धांत में महत्वपूर्ण पाया गया है।[citation needed]
मॉड्युली समष्टि का आयतन
सरल जियोडेसिक्स और वील-पीटरसन वॉल्यूम्स ऑफ़ मोडुली स्पेसेस बॉर्डर वाली रीमैन सतहें।
मोडुली समष्टि बनाने की विधियाँ
मोडुली समस्याओं का आधुनिक सूत्रीकरण और मोडुली फंक्शनलर्स (या अधिक सामान्यतः वर्गीकृत में रेशेदार श्रेणी) के संदर्भ में मोडुली समष्टि की परिभाषा, और समष्टि (लगभग) उनका प्रतिनिधित्व करते हुए, ग्रोथेंडिक (1960/61) में वापस आते हैं, जिसमें उन्होंने वर्णित किया एक उदाहरण के रूप में जटिल विश्लेषणात्मक ज्यामिति में Teichmüller समष्टि का उपयोग करके सामान्य रूपरेखा, दृष्टिकोण और मुख्य समस्याएं। वार्ता, विशेष रूप से, मॉडुलि समष्टि के निर्माण की सामान्य विधि का वर्णन करती है, जो पहले विचाराधीन मोडुली समस्या को कठोर करती है।
अधिक परिशुद्ध रूप से, वर्गीकृत की जा रही वस्तुओं के गैर-तुच्छ ऑटोमोर्फिज़्म का अस्तित्व एक ठीक मोडुली समष्टि को असंभव बना देता है। हालांकि, मूल वस्तुओं को अतिरिक्त डेटा के साथ वर्गीकृत करने की एक संशोधित मोडुली समस्या पर विचार करना प्रायः संभव होता है, इस तरह से चयन किया जाता है कि पहचान ही एकमात्र समाकारिकता है जो अतिरिक्त डेटा का भी सम्मान करता है। कठोर डेटा के उपयुक्त विकल्प के साथ, संशोधित मोडुली समस्या में एक (ठीक) मोडुली समष्टि टी होगा, जिसे प्रायः एक उपयुक्त हिल्बर्ट प्रणाली या कोट प्रणाली की उपयोजना के रूप में वर्णित किया जाता है। कठोर डेटा को इसके अलावा चयन किया जाता है ताकि यह एक बीजगणितीय संरचना बंडल G के साथ एक प्रमुख बंडल से अनुरूप हो। इस प्रकार कोई G की क्रिया द्वारा भागफल लेकर कठोर समस्या से मूल तक वापस जा सकता है, और मॉड्यूलि समष्टि के निर्माण की समस्या एक प्रणाली (या अधिक सामान्य समष्टि) खोजने का बन जाता है जो (एक उपयुक्त मजबूत अर्थ में) जी की कार्रवाई से टी का भागफल टी/जी है। अंतिम समस्या, सामान्य रूप से, समाधान स्वीकार नहीं करती है; हालाँकि, इसे 1965 में डेविड ममफोर्ड द्वारा विकसित ग्राउंडब्रेकिंग ज्यामितीय अपरिवर्तनीय सिद्धांत (GIT) द्वारा संबोधित किया गया है, जो दर्शाता है कि उपयुक्त परिस्थितियों में भागफल वास्तव में सम्मिलित है।
यह देखने के लिए कि यह कैसे काम कर सकता है, वर्ग जी> 2 के सरल वक्र पैरामीट्रिजिंग की समस्या पर विचार करें। कोटि डी> 2 जी की एक पूर्ण रैखिक प्रणाली के साथ एक सरल वक्र प्रक्षेपीय समष्टि 'पी' के बंद एक आयामी उप-प्रणाली के बराबर है।डी−जी. नतीजतन, सामान्य वक्र और रैखिक प्रणालियों (कुछ मानदंडों को पूरा करने वाले) के मोडुली समष्टि को पर्याप्त उच्च-आयामी प्रक्षेपी समष्टि की हिल्बर्ट प्रणाली में एम्बेड किया जा सकता है। हिल्बर्ट प्रणाली में इस लोकस एच में पीजीएल (एन) की क्रिया है जो रैखिक प्रणाली के तत्वों को मिलाती है; नतीजतन, सरल वक्र के मॉड्युली समष्टि को प्रक्षेप्य सामान्य रैखिक बंडल द्वारा H के भागफल के रूप में पुनर्प्राप्त किया जाता है।
एक अन्य सामान्य दृष्टिकोण मुख्य रूप से माइकल आर्टिन के साथ जुड़ा हुआ है। यहाँ विचार यह है कि जिस तरह की वस्तु को वर्गीकृत किया जाना है, उसके साथ प्रारंभ किया जाए और उसके विरूपण सिद्धांत का अध्ययन किया जाए। इसका अर्थ है कि पहले अतिसूक्ष्म विकृति का निर्माण करना, फिर 'पूर्व-प्रतिनिधित्व' प्रमेय को एक औपचारिक प्रणाली आधार पर एक वस्तु में एक साथ रखने की अपील करना। इसके बाद, अलेक्जेंड्रे ग्रोथेंडिक के लिए एक अपील | ग्रोथेंडिक की ग्रोथेंडिक अस्तित्व प्रमेय एक आधार पर वांछित प्रकार की एक वस्तु प्रदान करती है जो एक पूर्ण स्थानीय रिंग है। इस वस्तु को आर्टिन के सन्निकटन प्रमेय के माध्यम से अनुमानित रूप से उत्पन्न वलय पर परिभाषित वस्तु द्वारा अनुमानित किया जा सकता है। इस बाद वाली वलय की एक वलय के स्पेक्ट्रम को वांछित मोडुली समष्टि पर एक प्रकार का समन्वय चार्ट देने के रूप में देखा जा सकता है। इन चार्टों को पर्याप्त रूप से एक साथ जोड़कर, हम समष्टि को कवर कर सकते हैं, लेकिन हमारे स्पेक्ट्रा के मिलन से मॉड्यूलि समष्टि तक का नक्शा सामान्य रूप से एक से कई होगा। इसलिए, हम पूर्व पर एक तुल्यता संबंध को परिभाषित करते हैं; अनिवार्य रूप से, दो बिंदु समतुल्य होते हैं यदि प्रत्येक के ऊपर की वस्तुएं समरूपी हों। यह एक प्रणाली और एक तुल्यता संबंध देता है, जो एक बीजगणितीय समष्टि को परिभाषित करने के लिए पर्याप्त है (वास्तव में एक बीजगणितीय चित्ति यदि हम सावधान रहें) यदि सदैव एक प्रणाली नहीं है।
भौतिकी में
मॉडुलि समष्टि शब्द का प्रयोग कभी-कभी भौतिक विज्ञान में अदिश क्षेत्र के एक समुच्चय के वैक्यूम अपेक्षा मानो के मोडुली समष्टि या संभावित स्ट्रिंग पृष्ठभूमि के मोडुली समष्टि के लिए विशेष रूप से संदर्भित करने के लिए किया जाता है।
मॉडुलि समष्टि भौतिकी में टोपोलॉजिकल क्षेत्र सिद्धांत में भी दिखाई देते हैं, जहां कोई विभिन्न बीजगणितीय मोडुली समष्टि के प्रतिच्छेदन संख्या की गणना करने के लिए फेनमैन पथ अभिन्न का उपयोग कर सकता है।
यह भी देखें
निर्माण उपकरण
- हिल्बर्ट प्रणाली
- भाव प्रणाली
- विरूपण सिद्धांत
- जीआईटी भागफल
- आर्टिन की कसौटी, मोडुली फ़ैक्टरों से बीजगणितीय चित्ति के रूप में मोडुली समष्टि के निर्माण के लिए सामान्य मानदंड
मोडुली समष्टि
- बीजगणितीय वक्रों का मापांक
- अण्डाकार वक्रों का मोडुली चित्ति
- फ़ानो विविधता की के-स्थिरता| के-स्थिर फ़ानो विविधता के मोडुली समष्टि
- प्रतिरूपक वक्र
- पिकार्ड फलननिर्धारक
- कोट प्रणाली# एक कर्व पर सेमीटेबल वेक्टर बंडल
- Kontsevich समष्टि मॉड्यूल
- सेमीस्टेबल शीशों का मोडुली
संदर्भ
- ↑ Chan, Melody. "Moduli Spaces of Curves: Classical and Tropical" (PDF). AMS.
- ↑ "Lemma 27.13.1 (01NE)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-09-12.
- ↑ "algebraic geometry - What does projective space classify?". Mathematics Stack Exchange. Retrieved 2020-09-12.
- ↑ J. Kollar. Moduli of varieties of general type, Handbook of moduli. Vol. II, 2013, pp. 131–157.
- ↑ Huybrechts, D., 2016. Lectures on K3 surfaces (Vol. 158). Cambridge University Press.
- ↑ "वेक्टर बंडलों के बीजगणितीय ढेर और मोडुली" (PDF).
{{cite web}}
: CS1 maint: url-status (link)
टिप्पणियाँ
अनुसंधान लेख
मौलिक कागजात
- Grothendieck, Alexander (1960–1961). "विश्लेषणात्मक ज्यामिति में निर्माण तकनीक। I. Teichmüller के स्थान और इसके प्रकारों का स्वयंसिद्ध विवरण।" (PDF). Séminaire Henri Cartan 13 No. 1, Exposés No. 7 and 8. Paris.
- डेविड ममफोर्ड|ममफोर्ड, डेविड, ज्यामितीय अपरिवर्तनीय सिद्धांत। गणित और उनके सीमावर्ती क्षेत्रों के परिणाम, नई श्रृंखला, वॉल्यूम 34 स्प्रिंगर-वर्लग, बर्लिन-न्यूयॉर्क 1965 vi+145 पीपी MR0214602
- ममफोर्ड, डेविड; फोगार्टी, जे.; किरवान, एफ। ज्यामितीय अपरिवर्तनीय सिद्धांत। तीसरा संस्करण। गणित और संबंधित क्षेत्रों में परिणाम (2) (गणित और संबंधित क्षेत्रों में परिणाम (2)), 34. स्प्रिंगर-वेरलाग, बर्लिन, 1994. xiv+292 पीपी। MR1304906 ISBN 3-540-56963-4
प्रारंभिक अनुप्रयोग
- Deligne, Pierre; Mumford, David (1969). "दिए गए जीनस के वक्रों के स्थान की इर्रेड्यूबिलिटी" (PDF). Publications Mathématiques de l'IHÉS. 36: 75–109. CiteSeerX 10.1.1.589.288. doi:10.1007/bf02684599.
- Faltings, Gerd; Chai, Ching-Li (1990). एबेलियन किस्मों का पतन. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 22. With an appendix by David Mumford. Berlin: Springer-Verlag. doi:10.1007/978-3-662-02632-8. ISBN 978-3-540-52015-3. MR 1083353.
- Katz, Nicholas M; Mazur, Barry (1985). अण्डाकार वक्रों का अंकगणितीय मोडुली. Annals of Mathematics Studies. Vol. 108. Princeton University Press. ISBN 978-0-691-08352-0. MR 0772569.
अन्य संदर्भ
- पापड़ोपोलोस, अथानेसे, संस्करण। (2007), टेचमुलर सिद्धांत की पुस्तिका। वॉल्यूम। मैं, गणित और सैद्धांतिक भौतिकी में आईआरएमए व्याख्यान, 11, यूरोपीय गणितीय सोसायटी (ईएमएस), ज्यूरिख, doi:10.4171/029, ISBN 978-3-03719-029-6, MR2284826
- पापड़ोपोलोस, अथानेसे, संस्करण। (2009), टेचमुलर थ्योरी की हैंडबुक। वॉल्यूम। द्वितीय, गणित और सैद्धांतिक भौतिकी में आईआरएमए व्याख्यान, 13, यूरोपीय गणितीय सोसायटी (ईएमएस), ज्यूरिख, doi:10.4171/055, ISBN 978-3-03719-055-5, MR2524085
- पापड़ोपोलोस, अथानेसे, संस्करण। (2012), टेचमुलर थ्योरी की हैंडबुक। वॉल्यूम। III, गणित और सैद्धांतिक भौतिकी में IRMA व्याख्यान, 17, यूरोपीय गणितीय सोसायटी (EMS), ज्यूरिख, doi:10.4171/103, ISBN 978-3-03719-103-3.
अन्य लेख और स्रोत
- Harris, Joe; Morrison, Ian (1998). वक्रों का मोडुली. Graduate Texts in Mathematics. Vol. 187. New York: Springer Verlag. doi:10.1007/b98867. ISBN 978-0-387-98429-2. MR 1631825.
- Viehweg, Eckart (1995). पोलराइज़्ड मैनिफोल्ड्स के लिए क्वैसी-प्रोजेक्टिव मोडुली (PDF). Springer Verlag. ISBN 978-3-540-59255-6.
- Simpson, Carlos (1994). "एक चिकनी प्रोजेक्टिव विविधता I के मौलिक समूह के प्रतिनिधित्व के मॉड्यूली" (PDF). Publications Mathématiques de l'IHÉS. 79: 47–129. doi:10.1007/bf02698887.
- मरयम मिर्जाखनी (2007) बॉर्डर वाली रीमैन सतहों के मोडुली समष्टि के सिंपल जियोडेसिक और वेल-पीटर्सन वॉल्यूम गणितीय खोजें
बाहरी संबंध
- Lurie, J. (2011). "Moduli Problems for Ring Spectra". Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). pp. 1099–1125. doi:10.1142/9789814324359_0088.