जाली स्थिरांक: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Physical dimensions of unit cells in a crystal}} | {{short description|Physical dimensions of unit cells in a crystal}} | ||
[[Image:UnitCell.png|right|thumb|upright=1.3|α, β, γ द्वारा दी गई भुजाओं के बीच लंबाई a, b, c और कोणों के साथ समानांतर चतुर्भुज का उपयोग करते हुए | [[Image:UnitCell.png|right|thumb|upright=1.3|α, β, γ द्वारा दी गई भुजाओं के बीच लंबाई a, b, c और कोणों के साथ समानांतर चतुर्भुज का उपयोग करते हुए एकक कोष्ठिका परिभाषा<ref>{{cite web|url=http://www.ccdc.cam.ac.uk/support/documentation/mercury_csd/portable/mercury_portable-4-70.html|title=Unit cell definition using parallelepiped with lengths ''a'', ''b'', ''c'' and angles between the sides given by ''α'', ''β'', ''γ''|archive-url=https://web.archive.org/web/20081004101125/http://www.ccdc.cam.ac.uk/support/documentation/mercury_csd/portable/mercury_portable-4-70.html |archive-date=4 October 2008}}</ref>]]एक जालक स्थिरांकया जालक पैरा[[मीटर]] भौतिक आयामों और कोणों में से एक है जो [[Index.php?title=क्रिस्टल जालक|क्रिस्टल जालक]] में इकाई कोशिकाओं की ज्यामिति निर्धारित करता है, और क्रिस्टल में परमाणुओं के बीच की दूरी के समानुपाती होता है। एक साधारण घनीय क्रिस्टल में केवल एक जालक स्थिरांक होता है, परमाणुओं के बीच की दूरी, लेकिन सामान्य रूप से तीन आयामों में जालक में छह जालक स्थिरांक होते हैं: तीन की लंबाई ''a'', ''b'', और ''c'' सेल किनारे एक शीर्ष पर मिलते हैं, और कोण ''α'', ''β'', और ''γ'' उन किनारों के बीच होते हैं। | ||
क्रिस्टल जालक पैरामीटर '' | क्रिस्टल जालक पैरामीटर ''a'', ''b'', और ''c'' की लंबाई का आयाम है। तीन संख्याएं [[Index.php?title=एकक कोष्ठिका|एकक कोष्ठिका]] के आकार का प्रतिनिधित्व करती हैं, अर्थात, किसी दिए गए परमाणु से एक समान परमाणु की दूरी एक ही स्थिति में और एक पड़ोसी सेल में अभिविन्यास (बहुत सरल क्रिस्टल संरचनाओं को छोड़कर, यह जरूरी नहीं कि डिसेन्सेंस हो) निकटतम पड़ोसी। उनकी एसआई इकाई मीटर है, और वे परंपरागत रूप से [[एंगस्ट्रॉम]] (ए) में निर्दिष्ट हैं; एक एंग्स्ट्रॉम 0.1 [[नैनोमीटर]] (एनएम), या 100 पीकोमेट्रेस (अपराह्न) है। विशिष्ट मान कुछ एंगस्ट्रॉम से शुरू होते हैं। कोण ''α'', ''β'', और ''γ'' आमतौर पर [[डिग्री (कोण)]] में निर्दिष्ट होते हैं। | ||
== परिचय == | == परिचय == | ||
Line 12: | Line 12: | ||
== वॉल्यूम == | == वॉल्यूम == | ||
एकक कोष्ठिका की मात्रा की गणना जालक निरंतर लंबाई और कोणों से की जा सकती है। यदि एकक कोष्ठिका साइड्स को वैक्टर के रूप में दर्शाया जाता है, तो वॉल्यूम ट्रिपल उत्पाद # वैक्टर का स्केलर ट्रिपल उत्पाद है। वॉल्यूम को अक्षर V द्वारा दर्शाया गया है। सामान्य इकाई सेल के लिए | |||
:<math>V = a b c \sqrt{1+2\cos\alpha\cos\beta\cos\gamma - \cos^2\alpha - \cos^2\beta - \cos^2\gamma}.</math> | :<math>V = a b c \sqrt{1+2\cos\alpha\cos\beta\cos\gamma - \cos^2\alpha - \cos^2\beta - \cos^2\gamma}.</math> | ||
साथ मोनोक्लिनिक लैटिस के लिए {{nowrap|1=''α'' = 90°}}, {{nowrap|1=''γ'' = 90°}}, यह करने के लिए सरल करता है | साथ मोनोक्लिनिक लैटिस के लिए {{nowrap|1=''α'' = 90°}}, {{nowrap|1=''γ'' = 90°}}, यह करने के लिए सरल करता है | ||
:<math>V = a b c \sin\beta.</math> | :<math>V = a b c \sin\beta.</math> | ||
ऑर्थोरोम्बिक, टेट्रागोनल और | ऑर्थोरोम्बिक, टेट्रागोनल और घनीय लैटिस के साथ {{nowrap|1=''β'' = 90°}} फिर भी<ref>{{cite web|author1=Dept. of Crystallography & Struc. Biol. CSIC|title=4. Direct and reciprocal lattices|url=http://www.xtal.iqfr.csic.es/Cristalografia/index-en.html|access-date=9 June 2015|date=4 June 2015}}</ref> | ||
:<math>V = a b c .</math> | :<math>V = a b c .</math> | ||
Revision as of 17:19, 14 April 2023
एक जालक स्थिरांकया जालक पैरामीटर भौतिक आयामों और कोणों में से एक है जो क्रिस्टल जालक में इकाई कोशिकाओं की ज्यामिति निर्धारित करता है, और क्रिस्टल में परमाणुओं के बीच की दूरी के समानुपाती होता है। एक साधारण घनीय क्रिस्टल में केवल एक जालक स्थिरांक होता है, परमाणुओं के बीच की दूरी, लेकिन सामान्य रूप से तीन आयामों में जालक में छह जालक स्थिरांक होते हैं: तीन की लंबाई a, b, और c सेल किनारे एक शीर्ष पर मिलते हैं, और कोण α, β, और γ उन किनारों के बीच होते हैं।
क्रिस्टल जालक पैरामीटर a, b, और c की लंबाई का आयाम है। तीन संख्याएं एकक कोष्ठिका के आकार का प्रतिनिधित्व करती हैं, अर्थात, किसी दिए गए परमाणु से एक समान परमाणु की दूरी एक ही स्थिति में और एक पड़ोसी सेल में अभिविन्यास (बहुत सरल क्रिस्टल संरचनाओं को छोड़कर, यह जरूरी नहीं कि डिसेन्सेंस हो) निकटतम पड़ोसी। उनकी एसआई इकाई मीटर है, और वे परंपरागत रूप से एंगस्ट्रॉम (ए) में निर्दिष्ट हैं; एक एंग्स्ट्रॉम 0.1 नैनोमीटर (एनएम), या 100 पीकोमेट्रेस (अपराह्न) है। विशिष्ट मान कुछ एंगस्ट्रॉम से शुरू होते हैं। कोण α, β, और γ आमतौर पर डिग्री (कोण) में निर्दिष्ट होते हैं।
परिचय
ठोस अवस्था में एक रासायनिक पदार्थ क्रिस्टल का निर्माण कर सकता है जिसमें परमाणुओं, अणुओं या आयनों को संभव क्रिस्टल प्रणाली (जालक प्रकार) की एक छोटी परिमित संख्या में से एक के अनुसार अंतरिक्ष में व्यवस्थित किया जाता है, प्रत्येक जालक मापदंडों के काफी अच्छी तरह से परिभाषित सेट के साथ होता है। पदार्थ के लक्षण हैं। ये पैरामीटर आमतौर पर तापमान, दबाव (या, अधिक सामान्यतः, क्रिस्टल के भीतर तनाव (यांत्रिकी) की स्थानीय स्थिति) पर निर्भर करते हैं।[2] विद्युत क्षेत्र और चुंबकीय क्षेत्र, और इसकी आइसोटोप संरचना।[3] जालक आमतौर पर अशुद्धियों, क्रिस्टल दोषों और क्रिस्टल की सतह के पास विकृत होती है। मैनुअल में उद्धृत पैरामीटर मूल्यों को उन पर्यावरण चरों को निर्दिष्ट करना चाहिए, और आमतौर पर माप त्रुटियों से प्रभावित औसत होते हैं।
क्रिस्टल प्रणाली के आधार पर, कुछ या सभी लंबाई समान हो सकती हैं, और कुछ कोणों के निश्चित मान हो सकते हैं। उन प्रणालियों में, केवल छह मापदंडों में से कुछ को निर्दिष्ट करने की आवश्यकता होती है। उदाहरण के लिए, घन क्रिस्टल प्रणाली में, सभी लंबाई बराबर होती है और सभी कोण 90° होते हैं, इसलिए केवल लंबाई दी जानी चाहिए। यह मामला हीरे का है, जिसमें है a = 3.57 Å = 357 pm 300 केल्विन पर। इसी तरह, हेक्सागोनल क्रिस्टल प्रणाली में, a और b स्थिरांक बराबर होते हैं, और कोण 60°, 90°, और 90° होते हैं, इसलिए ज्यामिति केवल a और c स्थिरांक द्वारा निर्धारित की जाती है।
एक क्रिस्टलीय पदार्थ के जालक पैरामीटर एक्स-रे विवर्तन या परमाणु बल माइक्रोस्कोप जैसी तकनीकों का उपयोग करके निर्धारित किए जा सकते हैं। उनका उपयोग नैनोमीटर रेंज के प्राकृतिक लंबाई मानक के रूप में किया जा सकता है।[4][5] विभिन्न संरचना के एक सब्सट्रेट पर एक क्रिस्टल परत के epitaxy में, तनाव और क्रिस्टल दोषों को कम करने के लिए जालक पैरामीटर का मिलान किया जाना चाहिए।
वॉल्यूम
एकक कोष्ठिका की मात्रा की गणना जालक निरंतर लंबाई और कोणों से की जा सकती है। यदि एकक कोष्ठिका साइड्स को वैक्टर के रूप में दर्शाया जाता है, तो वॉल्यूम ट्रिपल उत्पाद # वैक्टर का स्केलर ट्रिपल उत्पाद है। वॉल्यूम को अक्षर V द्वारा दर्शाया गया है। सामान्य इकाई सेल के लिए
साथ मोनोक्लिनिक लैटिस के लिए α = 90°, γ = 90°, यह करने के लिए सरल करता है
ऑर्थोरोम्बिक, टेट्रागोनल और घनीय लैटिस के साथ β = 90° फिर भी[6]
जालक मिलान
दो अलग-अलग अर्धचालक सामग्रियों के बीच जालक संरचनाओं का मिलान क्रिस्टल संरचना में बदलाव के बिना सामग्री में ऊर्जा अंतराल परिवर्तन के क्षेत्र को बनाने की अनुमति देता है। यह उन्नत प्रकाश उत्सर्जक डायोड और डायोड लेजर के निर्माण की अनुमति देता है।
उदाहरण के लिए, गैलियम आर्सेनाइड, एल्यूमीनियम गैलियम आर्सेनाइड, और एल्यूमीनियम आर्सेनाइड में लगभग समान जालक स्थिरांक होते हैं, जिससे एक दूसरे पर लगभग मनमाने ढंग से मोटी परतें विकसित करना संभव हो जाता है।
जालक ग्रेडिंग
आमतौर पर, पिछली फिल्म या सब्सट्रेट पर उगाई जाने वाली विभिन्न सामग्रियों की फिल्मों को फिल्म के तनाव को कम करने के लिए पूर्व परत के जालक स्थिरांक से मिलान करने के लिए चुना जाता है।
फिल्म के विकास के दौरान मिश्र धातु अनुपात के नियंत्रित परिवर्तन द्वारा जालक स्थिरांक को एक मान से दूसरे मान तक ग्रेड करना एक वैकल्पिक तरीका है। ग्रेडिंग परत की शुरुआत में अंतर्निहित जालक से मेल खाने का अनुपात होगा और परत के विकास के अंत में मिश्र धातु निम्नलिखित परत जमा करने के लिए वांछित अंतिम जालक से मेल खाएगी।
मिश्र धातु में परिवर्तन की दर परत तनाव के दंड को तौलकर निर्धारित की जानी चाहिए, और इसलिए एपिटाक्सी उपकरण में समय की लागत के खिलाफ घनत्व घनत्व।
उदाहरण के लिए, 1.9 eV से ऊपर बैंड गैप वाली इंडियम गैलियम फास्फाइड की परतों को इंडेक्स ग्रेडिंग के साथ गैलियम आर्सेनाइड वेफर (अर्धचालक) पर उगाया जा सकता है।
जालक स्थिरांक की सूची
Material | Lattice constant (Å) | Crystal structure | Ref. |
---|---|---|---|
C (diamond) | 3.567 | Diamond (FCC) | [7] |
C (graphite) | a = 2.461 c = 6.708 |
Hexagonal | |
Si | 5.431020511 | Diamond (FCC) | [8][9] |
Ge | 5.658 | Diamond (FCC) | [8] |
AlAs | 5.6605 | Zinc blende (FCC) | [8] |
AlP | 5.4510 | Zinc blende (FCC) | [8] |
AlSb | 6.1355 | Zinc blende (FCC) | [8] |
GaP | 5.4505 | Zinc blende (FCC) | [8] |
GaAs | 5.653 | Zinc blende (FCC) | [8] |
GaSb | 6.0959 | Zinc blende (FCC) | [8] |
InP | 5.869 | Zinc blende (FCC) | [8] |
InAs | 6.0583 | Zinc blende (FCC) | [8] |
InSb | 6.479 | Zinc blende (FCC) | [8] |
MgO | 4.212 | Halite (FCC) | [10] |
SiC | a = 3.086 c = 10.053 |
Wurtzite | [8] |
CdS | 5.8320 | Zinc blende (FCC) | [7] |
CdSe | 6.050 | Zinc blende (FCC) | [7] |
CdTe | 6.482 | Zinc blende (FCC) | [7] |
ZnO | a = 3.25 c = 5.2 |
Wurtzite (HCP) | [11] |
ZnO | 4.580 | Halite (FCC) | [7] |
ZnS | 5.420 | Zinc blende (FCC) | [7] |
PbS | 5.9362 | Halite (FCC) | [7] |
PbTe | 6.4620 | Halite (FCC) | [7] |
BN | 3.6150 | Zinc blende (FCC) | [7] |
BP | 4.5380 | Zinc blende (FCC) | [7] |
CdS | a = 4.160 c = 6.756 |
Wurtzite | [7] |
ZnS | a = 3.82 c = 6.26 |
Wurtzite | [7] |
AlN | a = 3.112 c = 4.982 |
Wurtzite | [8] |
GaN | a = 3.189 c = 5.185 |
Wurtzite | [8] |
InN | a = 3.533 c = 5.693 |
Wurtzite | [8] |
LiF | 4.03 | Halite | |
LiCl | 5.14 | Halite | |
LiBr | 5.50 | Halite | |
LiI | 6.01 | Halite | |
NaF | 4.63 | Halite | |
NaCl | 5.64 | Halite | |
NaBr | 5.97 | Halite | |
NaI | 6.47 | Halite | |
KF | 5.34 | Halite | |
KCl | 6.29 | Halite | |
KBr | 6.60 | Halite | |
KI | 7.07 | Halite | |
RbF | 5.65 | Halite | |
RbCl | 6.59 | Halite | |
RbBr | 6.89 | Halite | |
RbI | 7.35 | Halite | |
CsF | 6.02 | Halite | |
CsCl | 4.123 | Caesium chloride | |
CsI | 4.567 | Caesium chloride | |
Al | 4.046 | FCC | [12] |
Fe | 2.856 | BCC | [12] |
Ni | 3.499 | FCC | [12] |
Cu | 3.597 | FCC | [12] |
Mo | 3.142 | BCC | [12] |
Pd | 3.859 | FCC | [12] |
Ag | 4.079 | FCC | [12] |
W | 3.155 | BCC | [12] |
Pt | 3.912 | FCC | [12] |
Au | 4.065 | FCC | [12] |
Pb | 4.920 | FCC | [12] |
V | 3.0399 | BCC | |
Nb | 3.3008 | BCC | |
Ta | 3.3058 | BCC | |
TiN | 4.249 | Halite | |
ZrN | 4.577 | Halite | |
HfN | 4.392 | Halite | |
VN | 4.136 | Halite | |
CrN | 4.149 | Halite | |
NbN | 4.392 | Halite | |
TiC | 4.328 | Halite | [13] |
ZrC0.97 | 4.698 | Halite | [13] |
HfC0.99 | 4.640 | Halite | [13] |
VC0.97 | 4.166 | Halite | [13] |
NC0.99 | 4.470 | Halite | [13] |
TaC0.99 | 4.456 | Halite | [13] |
Cr3C2 | a = 11.47 b = 5.545 c = 2.830 |
Orthorhombic | [13] |
WC | a = 2.906 c = 2.837 |
Hexagonal | [13] |
ScN | 4.52 | Halite | [14] |
LiNbO3 | a = 5.1483 c = 13.8631 |
Hexagonal | [15] |
KTaO3 | 3.9885 | Cubic perovskite | [15] |
BaTiO3 | a = 3.994 c = 4.034 |
Tetragonal perovskite | [15] |
SrTiO3 | 3.98805 | Cubic perovskite | [15] |
CaTiO3 | a = 5.381 b = 5.443 c = 7.645 |
Orthorhombic perovskite | [15] |
PbTiO3 | a = 3.904 c = 4.152 |
Tetragonal perovskite | [15] |
EuTiO3 | 7.810 | Cubic perovskite | [15] |
SrVO3 | 3.838 | Cubic perovskite | [15] |
CaVO3 | 3.767 | Cubic perovskite | [15] |
BaMnO3 | a = 5.673 c = 4.71 |
Hexagonal | [15] |
CaMnO3 | a = 5.27 b = 5.275 c = 7.464 |
Orthorhombic perovskite | [15] |
SrRuO3 | a = 5.53 b = 5.57 c = 7.85 |
Orthorhombic perovskite | [15] |
YAlO3 | a = 5.179 b = 5.329 c = 7.37 |
Orthorhombic perovskite | [15] |
संदर्भ
- ↑ "Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ". Archived from the original on 4 October 2008.
- ↑ Francisco Colmenero (2019): "Negative area compressibility in oxalic acid dihydrate". Materials Letters, volume 245, pages 25-28. doi:10.1016/j.matlet.2019.02.077
- ↑ Roland Tellgren and Ivar Olovsson (1971): "Hydrogen Bond Studies. XXXXVI. The Crystal Structures of Normal and Deuterated Sodium Hydrogen Oxalate Monohydrate NaHC2O4·H2O and NaDC2O4·D2O". Journal of Chemical Physics, volume 54, issue 1. doi:10.1063/1.1674582
- ↑ R. V. Lapshin (1998). "टनलिंग माइक्रोस्कोप स्कैनर का स्वचालित पार्श्व अंशांकन" (PDF). Review of Scientific Instruments. USA: AIP. 69 (9): 3268–3276. Bibcode:1998RScI...69.3268L. doi:10.1063/1.1149091. ISSN 0034-6748.
- ↑ R. V. Lapshin (2019). "Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Real mode". Applied Surface Science. Netherlands: Elsevier B. V. 470: 1122–1129. arXiv:1501.06679. Bibcode:2019ApSS..470.1122L. doi:10.1016/j.apsusc.2018.10.149. ISSN 0169-4332.
- ↑ Dept. of Crystallography & Struc. Biol. CSIC (4 June 2015). "4. Direct and reciprocal lattices". Retrieved 9 June 2015.
- ↑ 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 "Lattice Constants". Argon National Labs (Advanced Photon Source). Retrieved 19 October 2014.
- ↑ 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 8.13 8.14 "Semiconductor NSM". Retrieved 19 October 2014.
- ↑ "Fundamental physical constants". physics.nist.gov. NIST. Retrieved 17 January 2020.
- ↑ "Substrates". Spi Supplies. Retrieved 17 May 2017.
- ↑ Hadis Morkoç and Ümit Özgur (2009). Zinc Oxide: Fundamentals, Materials and Device Technology. Weinheim: WILEY-VCH Verlag GmbH & Co.
- ↑ 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 Davey, Wheeler (1925). "Precision Measurements of the Lattice Constants of Twelve Common Metals". Physical Review. 25 (6): 753–761. Bibcode:1925PhRv...25..753D. doi:10.1103/PhysRev.25.753.
- ↑ 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 Toth, L.E. (1967). Transition Metal Carbides and Nitrides. New York: Academic Press.
- ↑ Saha, B. (2010). "Electronic structure, phonons, and thermal properties of ScN, ZrN, and HfN: A first-principles study" (PDF). Journal of Applied Physics. 107 (3): 033715–033715–8. Bibcode:2010JAP...107c3715S. doi:10.1063/1.3291117.
- ↑ 15.00 15.01 15.02 15.03 15.04 15.05 15.06 15.07 15.08 15.09 15.10 15.11 15.12 Goodenough, J. B.; Longo, M. "3.1.7 Data: Crystallographic properties of compounds with perovskite or perovskite-related structure, Table 2 Part 1". SpringerMaterials - The Landolt-Börnstein Database.