पियरपोंट प्राइम: Difference between revisions
No edit summary |
No edit summary |
||
Line 22: | Line 22: | ||
{{math|1=''v'' = 0}} के साथ एक पियरपोंट प्राइम <math>2^u+1</math> के रूप में है, और इसलिए फर्मेट प्राइम (जब तक {{math|1=''u'' = 0}} न हो) हैं। यदि {{mvar|v}} धनात्मक संख्या है तो {{mvar|u}} भी धनात्मक (क्योंकि <math>3^v+1</math> 2 से अधिक एक [[सम संख्या]] होगी और इसलिए अभाज्य नहीं है) होना चाहिए, और इसलिए गैर-फर्मेट पियरपोंट अभाज्य सभी का रूप {{math|6''k'' + 1}} होता है जब {{mvar|k}} धनात्मक पूर्णांक (2 को छोड़कर, जब {{math|1=''u'' = ''v'' = 0}}) होता है। | {{math|1=''v'' = 0}} के साथ एक पियरपोंट प्राइम <math>2^u+1</math> के रूप में है, और इसलिए फर्मेट प्राइम (जब तक {{math|1=''u'' = 0}} न हो) हैं। यदि {{mvar|v}} धनात्मक संख्या है तो {{mvar|u}} भी धनात्मक (क्योंकि <math>3^v+1</math> 2 से अधिक एक [[सम संख्या]] होगी और इसलिए अभाज्य नहीं है) होना चाहिए, और इसलिए गैर-फर्मेट पियरपोंट अभाज्य सभी का रूप {{math|6''k'' + 1}} होता है जब {{mvar|k}} धनात्मक पूर्णांक (2 को छोड़कर, जब {{math|1=''u'' = ''v'' = 0}}) होता है। | ||
[[File:Pierpont exponent distribution.png|thumb|छोटे पियरपोंट अभाज्यों के लिए घातांकों का वितरण]]अनुभवजन्य रूप से, पियरपोंट प्राइम्स विशेष रूप से दुर्लभ या दुर्लभ रूप से वितरित नहीं लगते हैं; 10<sup>6</sup> से कम 42 पियरपोंट प्राइम्स, 10<sup>9</sup> से 65 कम, 10<sup>20</sup> से 157 कम, और 10<sup>100</sup> से 795 कम हैं। पियरपोंट प्राइम्स पर बीजगणितीय कारकों से कुछ प्रतिबंध हैं, इसलिए [[मेर्सन प्रीमियम]] स्थिति जैसी कोई आवश्यकता नहीं है कि एक्सपोनेंट प्राइम होना चाहिए। इस प्रकार, यह अपेक्षा की जाती है कि सही फॉर्म <math>2^u\cdot3^v+1</math> के {{mvar|n}}-अंकीय संख्याओं के बीच, इनमें से जो अंश अभाज्य हैं, वे {{math|1/''n''}} के समानुपाती होने चाहिए, सभी {{mvar|n}}-अंकीय संख्याओं के बीच अभाज्य संख्याओं के अनुपात के समान अनुपात। जैसा कि इस श्रेणी में सही रूप के <math>\Theta(n^{2})</math> | [[File:Pierpont exponent distribution.png|thumb|छोटे पियरपोंट अभाज्यों के लिए घातांकों का वितरण]]अनुभवजन्य रूप से, पियरपोंट प्राइम्स विशेष रूप से दुर्लभ या दुर्लभ रूप से वितरित नहीं लगते हैं; 10<sup>6</sup> से कम 42 पियरपोंट प्राइम्स, 10<sup>9</sup> से 65 कम, 10<sup>20</sup> से 157 कम, और 10<sup>100</sup> से 795 कम हैं। पियरपोंट प्राइम्स पर बीजगणितीय कारकों से कुछ प्रतिबंध हैं, इसलिए [[मेर्सन प्रीमियम]] स्थिति जैसी कोई आवश्यकता नहीं है कि एक्सपोनेंट प्राइम होना चाहिए। इस प्रकार, यह अपेक्षा की जाती है कि सही फॉर्म <math>2^u\cdot3^v+1</math> के {{mvar|n}}-अंकीय संख्याओं के बीच, इनमें से जो अंश अभाज्य हैं, वे {{math|1/''n''}} के समानुपाती होने चाहिए, सभी {{mvar|n}}-अंकीय संख्याओं के बीच अभाज्य संख्याओं के अनुपात के समान अनुपात। जैसा कि इस श्रेणी में सही रूप के <math>\Theta(n^{2})</math> संख्या हैं, वहाँ <math>\Theta(n)</math> पियरपोंट प्राइम्स होना चाहिए। | ||
एंड्रयू एम. ग्लीसन ने इस तर्क को स्पष्ट किया, यह [[अनुमान]] लगाते हुए कि असीम रूप से कई पियरपोंट प्राइम्स हैं, और अधिक विशेष रूप से कि लगभग {{math|10<sup>''n''</sup>}} तक लगभग {{math|9''n''}} पियरपोंट प्राइम्स होने चाहिए।<ref name="g98">{{citation | एंड्रयू एम. ग्लीसन ने इस तर्क को स्पष्ट किया, यह [[अनुमान]] लगाते हुए कि असीम रूप से कई पियरपोंट प्राइम्स हैं, और अधिक विशेष रूप से कि लगभग {{math|10<sup>''n''</sup>}} तक लगभग {{math|9''n''}} पियरपोंट प्राइम्स होने चाहिए।<ref name="g98">{{citation | ||
Line 36: | Line 36: | ||
== प्राथमिक परीक्षण == | == प्राथमिक परीक्षण == | ||
जब <math>2^u > 3^v</math>, <math>2^u\cdot 3^v + 1</math> [[प्रोथ संख्या]] है और इस प्रकार प्रोथ के प्रमेय द्वारा इसकी मौलिकता का परीक्षण किया जा सकता है। वहीं, जब <math>2^u < 3^v</math> के लिए वैकल्पिक प्रारंभिक परीक्षण <math>M=2^u\cdot 3^v + 1</math> के गुणनखंडन के आधार पर संभव हैं <math>M-1</math> छोटी सम संख्या के रूप में 3 की बड़ी घात से गुणा किया जाता है।<ref>{{citation | |||
| last1 = Kirfel | first1 = Christoph | | last1 = Kirfel | first1 = Christoph | ||
| last2 = Rødseth | first2 = Øystein J. | | last2 = Rødseth | first2 = Øystein J. | ||
Line 49: | Line 49: | ||
}}.</ref> | }}.</ref> | ||
== पियरपोंट प्राइम फ़र्मेट संख्या के कारकों के रूप == | |||
== पियरपोंट प्राइम फ़र्मेट संख्या | फ़र्मेट संख्या के कारकों के लिए चल रही विश्वव्यापी खोज के भाग के रूप में, कुछ पियरपोंट प्राइम्स को कारकों के रूप में घोषित किया गया है। निम्न तालिका<ref>Wilfrid Keller, [http://www.prothsearch.com/fermat.html Fermat factoring status].</ref> m, k, और n के मान देता है जैसे कि | ||
फ़र्मेट संख्या के कारकों के लिए चल रही विश्वव्यापी खोज के | |||
{{Block indent|left=1.6|<math>2^{2^m} + 1</math> is divisible by <math>3^{k} \cdot 2^{n} + 1.</math>}} | {{Block indent|left=1.6|<math>2^{2^m} + 1</math> is divisible by <math>3^{k} \cdot 2^{n} + 1.</math>}} | ||
Line 60: | Line 58: | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
!''m'' !!''k''!! ''n'' !! | !''m'' !!''k''!! ''n'' !! वर्ष !! खोज | ||
|- | |- | ||
|38 || 1 || 41 || 1903 || [[James Cullen (mathematician)| | |38 || 1 || 41 || 1903 || [[James Cullen (mathematician)|कुलेन]], [[Allan Joseph Champneys Cunningham|कनिंघम]] & वेस्टर्न | ||
|- | |- | ||
|63 || 2 || 67 || 1956 || [[Raphael M. Robinson| | |63 || 2 || 67 || 1956 || [[Raphael M. Robinson|रॉबिंसन]] | ||
|- | |- | ||
|207 || 1 || 209 || 1956 || | |207 || 1 || 209 || 1956 || रॉबिंसन | ||
|- | |- | ||
|452 || 3 || 455 || 1956 || | |452 || 3 || 455 || 1956 || रॉबिंसन | ||
|- | |- | ||
|9428 || 2 || 9431 || 1983 || | |9428 || 2 || 9431 || 1983 || केलर | ||
|- | |- | ||
|12185 || 4 || 12189 || 1993 || [[Harvey Dubner| | |12185 || 4 || 12189 || 1993 || [[Harvey Dubner|डबनेर]] | ||
|- | |- | ||
|28281 || 4 || 28285 || 1996 || | |28281 || 4 || 28285 || 1996 || टौरा | ||
|- | |- | ||
|157167 || 1 || 157169 || 1995 || | |157167 || 1 || 157169 || 1995 || यंग | ||
|- | |- | ||
|213319 || 1 || 213321 || 1996 || | |213319 || 1 || 213321 || 1996 || यंग | ||
|- | |- | ||
|303088 || 1 || 303093 || 1998 || | |303088 || 1 || 303093 || 1998 || यंग | ||
|- | |- | ||
|382447 || 1 || 382449 || 1999 || [[John B. Cosgrave| | |382447 || 1 || 382449 || 1999 || [[John B. Cosgrave|कॉसग्रेव]] & गैलोट | ||
|- | |- | ||
|461076 || 1 || 461081 || 2003 || | |461076 || 1 || 461081 || 2003 || नोहारा, जॉबलिंग, [[George Woltman|वोल्टमैन]] & गैलोट | ||
|- | |- | ||
|495728 || 5 || 495732 || 2007 || | |495728 || 5 || 495732 || 2007 || कैज़ेर, जॉबलिंग, पेने और फोगेरॉन | ||
|- | |- | ||
|672005 || 3 || 672007 || 2005 || [[Curtis Cooper (mathematician)| | |672005 || 3 || 672007 || 2005 || [[Curtis Cooper (mathematician)|कूपर]], जॉबलिंग, वोल्टमैन & गैलोट | ||
|- | |- | ||
|2145351 || 1 || 2145353 || 2003 || | |2145351 || 1 || 2145353 || 2003 || कॉसग्रेव, जॉबलिंग, वोल्टमैन & गैलोट | ||
|- | |- | ||
|2478782 || 1 || 2478785 || 2003 || | |2478782 || 1 || 2478785 || 2003 || कॉसग्रेव, जॉबलिंग, वोल्टमैन & गैलोट | ||
|- | |- | ||
|2543548 || 2 || 2543551 || 2011 || | |2543548 || 2 || 2543551 || 2011 || ब्राउन, रेनॉल्ड्स, पेने और फोगेरॉन | ||
|} | |} | ||
{{As of|2023}}, सबसे बड़ा ज्ञात पियरपॉन्ट प्राइम 2 × 3 | {{As of|2023}}, सबसे बड़ा ज्ञात पियरपॉन्ट प्राइम 2 × 3<sup>10852677</sup>  + 1 (5,178,044 दशमलव अंक) है, जिसकी मौलिकता जनवरी 2023 में खोजी गई थी।<ref>{{citation|url=http://primes.utm.edu/primes/lists/short.txt|title=The largest known primes|first=Chris|last=Caldwell|website=The [[Prime Pages]]|access-date=9 January 2023}}; {{citation|url=https://primes.utm.edu/primes/page.php?id=134762|title=The Prime Database: 2*3^10852677+1|website=The [[Prime Pages]]|access-date=9 January 2023}}</ref> | ||
Revision as of 09:16, 23 April 2023
Named after | James Pierpont |
---|---|
No. of known terms | Thousands |
Conjectured no. of terms | Infinite |
Subsequence of | Pierpont number |
First terms | 2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889 |
Largest known term | 2 × 310,852,677 + 1 |
OEIS index | A005109 |
संख्या सिद्धांत में, पियरपॉन्ट प्राइम कुछ गैर-ऋणात्मक पूर्णांकों के लिए u और v के लिए
2 और फर्मेट प्राइम्स को छोड़कर, प्रत्येक पियरपोंट प्राइम 1 मॉड्यूलो 6 होना चाहिए। पहले कुछ पियरपोंट प्राइम्स हैं:
यह अनुमान लगाया गया है कि अनंत रूप से कई पियरपोंट अभाज्य हैं, किन्तु यह अप्रमाणित है।
वितरण
Are there infinitely many Pierpont primes?
v = 0 के साथ एक पियरपोंट प्राइम के रूप में है, और इसलिए फर्मेट प्राइम (जब तक u = 0 न हो) हैं। यदि v धनात्मक संख्या है तो u भी धनात्मक (क्योंकि 2 से अधिक एक सम संख्या होगी और इसलिए अभाज्य नहीं है) होना चाहिए, और इसलिए गैर-फर्मेट पियरपोंट अभाज्य सभी का रूप 6k + 1 होता है जब k धनात्मक पूर्णांक (2 को छोड़कर, जब u = v = 0) होता है।
अनुभवजन्य रूप से, पियरपोंट प्राइम्स विशेष रूप से दुर्लभ या दुर्लभ रूप से वितरित नहीं लगते हैं; 106 से कम 42 पियरपोंट प्राइम्स, 109 से 65 कम, 1020 से 157 कम, और 10100 से 795 कम हैं। पियरपोंट प्राइम्स पर बीजगणितीय कारकों से कुछ प्रतिबंध हैं, इसलिए मेर्सन प्रीमियम स्थिति जैसी कोई आवश्यकता नहीं है कि एक्सपोनेंट प्राइम होना चाहिए। इस प्रकार, यह अपेक्षा की जाती है कि सही फॉर्म के n-अंकीय संख्याओं के बीच, इनमें से जो अंश अभाज्य हैं, वे 1/n के समानुपाती होने चाहिए, सभी n-अंकीय संख्याओं के बीच अभाज्य संख्याओं के अनुपात के समान अनुपात। जैसा कि इस श्रेणी में सही रूप के संख्या हैं, वहाँ पियरपोंट प्राइम्स होना चाहिए।
एंड्रयू एम. ग्लीसन ने इस तर्क को स्पष्ट किया, यह अनुमान लगाते हुए कि असीम रूप से कई पियरपोंट प्राइम्स हैं, और अधिक विशेष रूप से कि लगभग 10n तक लगभग 9n पियरपोंट प्राइम्स होने चाहिए।[1] ग्लीसन के अनुमान के अनुसार पियरपोंट प्राइम्स N से छोटे हैं, जो उस सीमा में मेर्सन प्राइम्स की छोटी अनुमान संख्या के विपरीत है।
प्राथमिक परीक्षण
जब , प्रोथ संख्या है और इस प्रकार प्रोथ के प्रमेय द्वारा इसकी मौलिकता का परीक्षण किया जा सकता है। वहीं, जब के लिए वैकल्पिक प्रारंभिक परीक्षण के गुणनखंडन के आधार पर संभव हैं छोटी सम संख्या के रूप में 3 की बड़ी घात से गुणा किया जाता है।[2]
पियरपोंट प्राइम फ़र्मेट संख्या के कारकों के रूप
फ़र्मेट संख्या के कारकों के लिए चल रही विश्वव्यापी खोज के भाग के रूप में, कुछ पियरपोंट प्राइम्स को कारकों के रूप में घोषित किया गया है। निम्न तालिका[3] m, k, और n के मान देता है जैसे कि
बाईं ओर फर्मेट संख्या है; दाईं ओर पियरपोंट प्राइम है।
m | k | n | वर्ष | खोज |
---|---|---|---|---|
38 | 1 | 41 | 1903 | कुलेन, कनिंघम & वेस्टर्न |
63 | 2 | 67 | 1956 | रॉबिंसन |
207 | 1 | 209 | 1956 | रॉबिंसन |
452 | 3 | 455 | 1956 | रॉबिंसन |
9428 | 2 | 9431 | 1983 | केलर |
12185 | 4 | 12189 | 1993 | डबनेर |
28281 | 4 | 28285 | 1996 | टौरा |
157167 | 1 | 157169 | 1995 | यंग |
213319 | 1 | 213321 | 1996 | यंग |
303088 | 1 | 303093 | 1998 | यंग |
382447 | 1 | 382449 | 1999 | कॉसग्रेव & गैलोट |
461076 | 1 | 461081 | 2003 | नोहारा, जॉबलिंग, वोल्टमैन & गैलोट |
495728 | 5 | 495732 | 2007 | कैज़ेर, जॉबलिंग, पेने और फोगेरॉन |
672005 | 3 | 672007 | 2005 | कूपर, जॉबलिंग, वोल्टमैन & गैलोट |
2145351 | 1 | 2145353 | 2003 | कॉसग्रेव, जॉबलिंग, वोल्टमैन & गैलोट |
2478782 | 1 | 2478785 | 2003 | कॉसग्रेव, जॉबलिंग, वोल्टमैन & गैलोट |
2543548 | 2 | 2543551 | 2011 | ब्राउन, रेनॉल्ड्स, पेने और फोगेरॉन |
As of 2023[update], सबसे बड़ा ज्ञात पियरपॉन्ट प्राइम 2 × 310852677 + 1 (5,178,044 दशमलव अंक) है, जिसकी मौलिकता जनवरी 2023 में खोजी गई थी।[4]
बहुभुज निर्माण
पेपर फ़ोल्डिंग के गणित में, हुज़िता-होतोरी स्वयंसिद्ध सात प्रकार के फ़ोल्ड में से छह को परिभाषित करते हैं। यह दिखाया गया है कि ये तह किसी भी घन समीकरण को हल करने वाले बिंदुओं के निर्माण की अनुमति देने के लिए पर्याप्त हैं।[5] यह इस प्रकार है कि वे किसी भी नियमित बहुभुज की अनुमति देते हैं N पक्षों का गठन किया जाना है, जब तक N ≥ 3 और रूप का है 2m3nρ, कहाँ ρ विशिष्ट पियरपोंट प्राइम्स का उत्पाद है। यह नियमित बहुभुजों का वही वर्ग है जो कम्पास, सीधा किनारा, और कोण तिराहे के साथ बनाया जा सकता है।[1]नियमित बहुभुज जिनका निर्माण केवल कम्पास और स्ट्रेटेज (रचनात्मक बहुभुज) के साथ किया जा सकता है, वे विशेष मामले हैं जहाँ n = 0 और ρ अलग फ़र्मेट प्राइम्स का उत्पाद है, जो खुद पियरपोंट प्राइम्स का सबसेट है।
1895 में, जेम्स पियरपोंट (गणितज्ञ) ने नियमित बहुभुजों की ही कक्षा का अध्ययन किया; उनका काम पियरपोंट प्राइम्स को नाम देता है। पियरपोंट ने कम्पास और स्ट्रेटेज निर्माणों को अलग तरीके से सामान्यीकृत किया, शंकु वर्गों को आकर्षित करने की क्षमता जोड़कर जिनके गुणांक पहले निर्मित बिंदुओं से आते हैं। जैसा कि उन्होंने दिखाया, नियमित N-गॉन जिनका निर्माण इन संक्रियाओं के साथ किया जा सकता है, वे ऐसे हैं जो यूलर के टोटेंट का कार्य करते हैं N 3-स्मूथ है। चूँकि अभाज्य का कुल योग उसमें से को घटाकर बनाया जाता है, अभाज्य N जिसके लिए पियरपोंट के निर्माण कार्य वास्तव में पियरपोंट प्राइम्स हैं। हालांकि, पियरपोंट ने 3-स्मूथ कुलियों के साथ समग्र संख्याओं के रूप का वर्णन नहीं किया।[6] जैसा कि ग्लीसन ने बाद में दिखाया, ये संख्याएँ ठीक उसी रूप की हैं 2m3nρ ऊपर दिया गया है।[1]
सबसे छोटा अभाज्य जो पियरपोंट (या फर्मेट) अभाज्य नहीं है, वह 11 है; इसलिए, hedecagon पहला नियमित बहुभुज है जिसे कम्पास, स्ट्रेटेज और एंगल ट्राइसेक्टर (या ओरिगेमी, या कॉनिक सेक्शन) के साथ नहीं बनाया जा सकता है। अन्य सभी नियमित N-gons साथ 3 ≤ N ≤ 21 कम्पास, स्ट्रेटेज और ट्राइसेक्टर के साथ बनाया जा सकता है।[1]
सामान्यीकरण
दूसरी तरह का पियरपॉन्ट प्राइम फॉर्म 2 की प्रमुख संख्या हैमें3v − 1. ये संख्याएँ हैं
इस प्रकार के सबसे बड़े ज्ञात अभाज्य मेर्सेन अभाज्य हैं; वर्तमान में सबसे बड़ा ज्ञात है (24,862,048 दशमलव अंक)। दूसरी तरह का सबसे बड़ा ज्ञात पियरपोंट प्राइम जो मेर्सन प्राइम नहीं है , प्राइमग्रिड द्वारा पाया गया।[7] सामान्यीकृत पियरपॉन्ट प्राइम फॉर्म का प्राइम है के फिक्स्ड प्राइम पी के साथ1 < पृ2 < पृ3 < ... < पीk. दूसरी तरह का सामान्यीकृत पियरपॉन्ट प्राइम फॉर्म का प्राइम है के फिक्स्ड प्राइम पी के साथ1 < पृ2 < पृ3 < ... < पीk. चूँकि 2 से बड़ी सभी अभाज्य संख्याएँ समता (गणित) हैं, दोनों प्रकार में p1 2 होना चाहिए। OEIS में ऐसे प्राइम्स के क्रम हैं:
{p1, p2, p3, ..., pk} | + 1 | − 1 |
{2} | OEIS: A092506 | OEIS: A000668 |
{2, 3} | OEIS: A005109 | OEIS: A005105 |
{2, 5} | OEIS: A077497 | OEIS: A077313 |
{2, 3, 5} | OEIS: A002200 | OEIS: A293194 |
{2, 7} | OEIS: A077498 | OEIS: A077314 |
{2, 3, 5, 7} | OEIS: A174144 | OEIS: A347977 |
{2, 11} | OEIS: A077499 | OEIS: A077315 |
{2, 13} | OEIS: A173236 | OEIS: A173062 |
यह भी देखें
- प्रोथ प्रधान , फॉर्म के प्राइम्स जहाँ k और n धनात्मक पूर्णांक हैं, विषम है और
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Gleason, Andrew M. (1988), "Angle trisection, the heptagon, and the triskaidecagon", American Mathematical Monthly, 95 (3): 185–194, doi:10.2307/2323624, MR 0935432. Footnote 8, p. 191.
- ↑ Kirfel, Christoph; Rødseth, Øystein J. (2001), "On the primality of ", Discrete Mathematics, 241 (1–3): 395–406, doi:10.1016/S0012-365X(01)00125-X, MR 1861431.
- ↑ Wilfrid Keller, Fermat factoring status.
- ↑ Caldwell, Chris, "The largest known primes", The Prime Pages, retrieved 9 January 2023; "The Prime Database: 2*3^10852677+1", The Prime Pages, retrieved 9 January 2023
- ↑ Hull, Thomas C. (2011), "Solving cubics with creases: the work of Beloch and Lill", American Mathematical Monthly, 118 (4): 307–315, doi:10.4169/amer.math.monthly.118.04.307, MR 2800341.
- ↑ Pierpont, James (1895), "On an undemonstrated theorem of the Disquisitiones Arithmeticæ", Bulletin of the American Mathematical Society, 2 (3): 77–83, doi:10.1090/S0002-9904-1895-00317-1, MR 1557414.
- ↑ 3*2^18924988 - 1 (5,696,990 Decimal Digits), from The Prime Pages.