दूरी ज्यामिति: Difference between revisions
(Created page with "दूरी ज्यामिति गणित की वह शाखा है जो अंक के जोड़े के बीच की दूरी के...") |
No edit summary |
||
Line 9: | Line 9: | ||
=== पहली समस्या: [[अतिशयोक्तिपूर्ण नेविगेशन]] === | === पहली समस्या: [[अतिशयोक्तिपूर्ण नेविगेशन]] === | ||
तीन ग्राउंड रेडियो स्टेशनों ए, बी, सी पर विचार करें, जिनके स्थान ज्ञात हैं। एक रेडियो रिसीवर अज्ञात स्थान पर है। स्टेशनों से रिसीवर तक रेडियो सिग्नल की यात्रा करने में लगने वाला समय, <math> t_A,t_B,t_C </math>, अज्ञात हैं, | तीन ग्राउंड रेडियो स्टेशनों ए, बी, सी पर विचार करें, जिनके स्थान ज्ञात हैं। एक रेडियो रिसीवर अज्ञात स्थान पर है। स्टेशनों से रिसीवर तक रेडियो सिग्नल की यात्रा करने में लगने वाला समय, <math> t_A,t_B,t_C </math>, अज्ञात हैं, किन्तु समय के अंतर, <math>t_A-t_B </math> और <math>t_A-t_C </math>, ज्ञात हैं। उनसे दूरी के अंतर को जाना जा सकता है <math>c(t_A-t_B) </math> और <math>c(t_A-t_C) </math>जिससे रिसीवर की स्थिति का पता लगाया जा सकता है। | ||
=== दूसरी समस्या: [[आयामीता में कमी]] === | === दूसरी समस्या: [[आयामीता में कमी]] === | ||
[[डेटा विश्लेषण]] में, किसी को | [[डेटा विश्लेषण]] में, किसी को अधिकांशतः वेक्टर के रूप में दर्शाए गए डेटा की एक सूची दी जाती है <math>\mathbf{v} = (x_1, \ldots, x_n)\in \mathbb{R}^n</math>, और किसी को यह पता लगाने की जरूरत है कि क्या वे कम-आयामी एफ़िन सबस्पेस के भीतर हैं। डेटा के निम्न-आयामी प्रतिनिधित्व के कई फायदे हैं, जैसे भंडारण स्थान की बचत, गणना समय, और डेटा में उत्तम अंतर्दृष्टि प्रदान करना। | ||
=== परिभाषाएँ === | === परिभाषाएँ === | ||
Line 22: | Line 22: | ||
स्पष्ट रूप से, हम एक अर्धमितीय स्थान को एक गैर-खाली सेट के रूप में परिभाषित करते हैं <math>R</math> एक सेमीमेट्रिक से लैस <math>d: R\times R \to [0, \infty)</math> ऐसा कि, सभी के लिए <math>x, y\in R</math>, | स्पष्ट रूप से, हम एक अर्धमितीय स्थान को एक गैर-खाली सेट के रूप में परिभाषित करते हैं <math>R</math> एक सेमीमेट्रिक से लैस <math>d: R\times R \to [0, \infty)</math> ऐसा कि, सभी के लिए <math>x, y\in R</math>, | ||
#सकारात्मकता: <math>d(x, y) = 0</math> | #सकारात्मकता: <math>d(x, y) = 0</math> यदि और केवल यदि<math>x = y</math>. | ||
# समरूपता: <math>d(x, y) = d(y, x)</math>. | # समरूपता: <math>d(x, y) = d(y, x)</math>. | ||
Line 37: | Line 37: | ||
==== स्वाधीनता ==== | ==== स्वाधीनता ==== | ||
बिन्दुओं को देखते हुए <math display="inline">A_0, A_1,\ldots, A_n \in \mathbb R^k</math>, उन्हें Affineस्वतंत्रता के रूप में परिभाषित किया गया है, | बिन्दुओं को देखते हुए <math display="inline">A_0, A_1,\ldots, A_n \in \mathbb R^k</math>, उन्हें Affineस्वतंत्रता के रूप में परिभाषित किया गया है, यदि वे एक के भीतर फिट नहीं हो सकते हैं <math> | ||
l</math>-आयामी संबंध उप-स्थान <math> \mathbb{R}^k</math>, किसी के लिए <math> \ell < n</math>, | l</math>-आयामी संबंध उप-स्थान <math> \mathbb{R}^k</math>, किसी के लिए <math> \ell < n</math>, यदि <math>n</math>[[संकेतन]] वे फैले हुए हैं, <math>v_n</math>, सकारात्मक है <math>n</math>- मात्रा, यानी <math>\operatorname{Vol}_n(v_n) > 0</math>. | ||
सामान्यतः, जब <math>k\ge n </math>, वे घनिष्ठ रूप से स्वतंत्र हैं, क्योंकि एक [[सामान्य संपत्ति]] n-simplex nondegenerate है। उदाहरण के लिए, समतल में 3 बिंदु, सामान्य रूप से, समरेख नहीं होते हैं, क्योंकि जिस त्रिभुज पर वे फैले हैं, वह एक रेखा खंड में पतित नहीं होता है। इसी तरह, अंतरिक्ष में 4 बिंदु, सामान्य रूप से समतलीय नहीं होते हैं, क्योंकि जिस चतुष्फलक का वे विस्तार करते हैं वह समतल त्रिभुज में पतित नहीं होता है। | |||
कब <math> n > k</math>, उन्हें आत्मीयता से निर्भर होना चाहिए। यह ध्यान देने से देखा जा सकता है कि कोई भी <math>n</math>-सिम्प्लेक्स जो अंदर फिट हो सकता है <math>\mathbb{R}^k</math> समतल होना चाहिए। | कब <math> n > k</math>, उन्हें आत्मीयता से निर्भर होना चाहिए। यह ध्यान देने से देखा जा सकता है कि कोई भी <math>n</math>-सिम्प्लेक्स जो अंदर फिट हो सकता है <math>\mathbb{R}^k</math> समतल होना चाहिए। | ||
Line 59: | Line 59: | ||
1 & 1 & 1 & \cdots & 1 & 0 | 1 & 1 & 1 & \cdots & 1 & 0 | ||
\end{vmatrix}</math> | \end{vmatrix}</math> | ||
यदि <math display="inline"> A_0, A_1,\ldots, A_n \in \mathbb R^k</math>, फिर वे संभवतः डीजेनेरेसी (गणित) एन-सिम्प्लेक्स के शिखर बनाते हैं <math>v_n</math> में <math>\mathbb{R}^k</math>. यह दिखाया जा सकता है<ref>{{Cite web|url=https://www.mathpages.com/home/kmath664/kmath664.htm|title=Simplex Volumes and the Cayley–Menger Determinant|website=www.mathpages.com|archive-url=https://web.archive.org/web/20190516033847/https://www.mathpages.com/home/kmath664/kmath664.htm|archive-date=16 May 2019|access-date=2019-06-08}}</ref> सिम्प्लेक्स का एन-डायमेंशनल वॉल्यूम <math>v_n</math> संतुष्ट | |||
: <math> \operatorname{Vol}_n(v_n)^2 = \frac{(-1)^{n+1}}{(n!)^2 2^n} \operatorname{CM}(A_0, \ldots, A_n). </math> | : <math> \operatorname{Vol}_n(v_n)^2 = \frac{(-1)^{n+1}}{(n!)^2 2^n} \operatorname{CM}(A_0, \ldots, A_n). </math> | ||
ध्यान दें कि, के | ध्यान दें कि, के स्थितियोंके लिए <math>n=0</math>, अपने पास <math>\operatorname{Vol}_0(v_0) = 1</math>, जिसका अर्थ है कि 0-सिंप्लेक्स का 0-आयामी आयतन 1 है, अर्थात 0-सिंप्लेक्स में 1 बिंदु है। | ||
<math display="inline">A_0, A_1,\ldots, A_n</math> आत्मीयता से स्वतंत्र iff हैं <math>\operatorname{Vol}_n(v_n) > 0</math>, वह है, <math> (-1)^{n+1} \operatorname{CM}(A_0, \ldots, A_n) > 0</math>. इस प्रकार केली-मेंजर निर्धारक आत्मीय स्वतंत्रता को | <math display="inline">A_0, A_1,\ldots, A_n</math> आत्मीयता से स्वतंत्र iff हैं <math>\operatorname{Vol}_n(v_n) > 0</math>, वह है, <math> (-1)^{n+1} \operatorname{CM}(A_0, \ldots, A_n) > 0</math>. इस प्रकार केली-मेंजर निर्धारक आत्मीय स्वतंत्रता को सिद्ध करने के लिए एक कम्प्यूटेशनल विधि देते हैं। | ||
यदि <math> | |||
k < n</math>, तो बिंदुओं को निश्चित रूप से निर्भर होना चाहिए, इस प्रकार <math> | k < n</math>, तो बिंदुओं को निश्चित रूप से निर्भर होना चाहिए, इस प्रकार <math> | ||
\operatorname{CM}(A_0, \ldots, A_n) = 0</math>. केली के 1841 के पेपर ने विशेष | \operatorname{CM}(A_0, \ldots, A_n) = 0</math>. केली के 1841 के पेपर ने विशेष स्थितियोंका अध्ययन किया <math> | ||
k = 3, n = 4</math>, यानी कोई पाँच बिंदु <math> | k = 3, n = 4</math>, यानी कोई पाँच बिंदु <math> | ||
A_0, \ldots, A_4</math> 3-आयामी अंतरिक्ष में होना चाहिए <math> | A_0, \ldots, A_4</math> 3-आयामी अंतरिक्ष में होना चाहिए <math> | ||
Line 76: | Line 76: | ||
दूरी ज्यामिति में पहला परिणाम हेरॉन का सूत्र है, जो पहली शताब्दी ईस्वी से है, जो त्रिभुज का क्षेत्रफल उसके 3 शीर्षों के बीच की दूरी से देता है। ब्रह्मगुप्त का सूत्र, 7वीं शताब्दी ईस्वी से, इसे [[चक्रीय चतुर्भुज]]ों के लिए सामान्यीकृत करता है। निकोलो फोंटाना टार्टाग्लिया, 16वीं शताब्दी ईस्वी से, इसे निकोलो फोंटाना टार्टाग्लिया#वॉल्यूम ऑफ़ टेट्राहेड्रॉन को इसके 4 शीर्षों के बीच की दूरी से देने के लिए सामान्यीकृत किया। | दूरी ज्यामिति में पहला परिणाम हेरॉन का सूत्र है, जो पहली शताब्दी ईस्वी से है, जो त्रिभुज का क्षेत्रफल उसके 3 शीर्षों के बीच की दूरी से देता है। ब्रह्मगुप्त का सूत्र, 7वीं शताब्दी ईस्वी से, इसे [[चक्रीय चतुर्भुज]]ों के लिए सामान्यीकृत करता है। निकोलो फोंटाना टार्टाग्लिया, 16वीं शताब्दी ईस्वी से, इसे निकोलो फोंटाना टार्टाग्लिया#वॉल्यूम ऑफ़ टेट्राहेड्रॉन को इसके 4 शीर्षों के बीच की दूरी से देने के लिए सामान्यीकृत किया। | ||
दूरी ज्यामिति का आधुनिक सिद्धांत आर्थर केली और कार्ल मेन्जर के साथ | दूरी ज्यामिति का आधुनिक सिद्धांत आर्थर केली और कार्ल मेन्जर के साथ प्रारंभ हुआ।<ref>{{Cite journal|last1=Liberti|first1=Leo|last2=Lavor|first2=Carlile|date=2016|title=दूरी ज्यामिति के इतिहास से छह गणितीय रत्न|journal=International Transactions in Operational Research|language=en|volume=23|issue=5|pages=897–920|doi=10.1111/itor.12170|issn=1475-3995|arxiv=1502.02816|s2cid=17299562 }}</ref> केली ने 1841 में केली निर्धारक प्रकाशित किया,<ref>{{Cite journal|last=Cayley|first=Arthur|date=1841|title=स्थिति की ज्यामिति में एक प्रमेय पर|journal=Cambridge Mathematical Journal|volume=2|pages=267–271}}</ref> जो सामान्य केली-मेंजर निर्धारक का एक विशेष मामला है। मेन्जर ने 1928 में सिद्ध किया कि सभी अर्धमितीय स्थानों का एक लक्षण वर्णन प्रमेय है जो कि एन-डायमेंशनल यूक्लिडियन स्पेस में आइसोमेट्रिक रूप से एम्बेड करने योग्य है। <math>\mathbb{R}^n</math>.<ref>{{Cite journal|last=Menger|first=Karl|date=1928-12-01|title=Untersuchungen über allgemeine Metrik|journal=Mathematische Annalen|language=de|volume=100|issue=1|pages=75–163|doi=10.1007/BF01448840|s2cid=179178149 |issn=1432-1807}}</ref><ref name=":0">{{Cite journal|last1=Blumenthal|first1=L. M.|last2=Gillam|first2=B. E.|date=1943|title=''एन''-स्पेस में अंकों का वितरण|url=https://www.tandfonline.com/doi/pdf/10.1080/00029890.1943.11991349|journal=The American Mathematical Monthly|language=en|volume=50|issue=3|pages=181|doi=10.2307/2302400|jstor=2302400}}</ref> 1931 में, मेन्जर ने यूक्लिडियन ज्यामिति का एक स्वयंसिद्ध उपचार देनेनियत के लिए दूरस्थ संबंधों का उपयोग किया।<ref>{{Cite journal|last=Menger|first=Karl|date=1931|title=यूक्लिडियन ज्यामिति का नया फाउंडेशन|journal=American Journal of Mathematics|volume=53|issue=4|pages=721–745|doi=10.2307/2371222|issn=0002-9327|jstor=2371222}}</ref> | ||
[[लियोनार्ड ब्लूमेंथल]] की किताब<ref name="blumenthal" />स्नातक स्तर पर दूरी ज्यामिति के लिए एक सामान्य अवलोकन देता है, जिसका एक बड़ा हिस्सा पहली बार प्रकाशित होने पर अंग्रेजी में व्यवहार किया जाता है। | [[लियोनार्ड ब्लूमेंथल]] की किताब<ref name="blumenthal" />स्नातक स्तर पर दूरी ज्यामिति के लिए एक सामान्य अवलोकन देता है, जिसका एक बड़ा हिस्सा पहली बार प्रकाशित होने पर अंग्रेजी में व्यवहार किया जाता है। | ||
== मेन्जर लक्षण वर्णन | == मेन्जर लक्षण वर्णन प्रमेयचूँकि == | ||
मेन्जर ने सेमीमेट्रिक रिक्त स्थान के निम्नलिखित लक्षण वर्णन (गणित) को सिद्ध किया:<ref name="siam" /><blockquote>एक सेमीमेट्रिक स्पेस <math>(R, d)</math> isometrically में एम्बेड करने योग्य है <math>n</math>-आयामी यूक्लिडियन अंतरिक्ष <math>\mathbb{R}^n</math>, | मेन्जर ने सेमीमेट्रिक रिक्त स्थान के निम्नलिखित लक्षण वर्णन (गणित) को सिद्ध किया:<ref name="siam" /><blockquote>एक सेमीमेट्रिक स्पेस <math>(R, d)</math> isometrically में एम्बेड करने योग्य है <math>n</math>-आयामी यूक्लिडियन अंतरिक्ष <math>\mathbb{R}^n</math>, किन्तु अंदर नहीं <math>\mathbb{R}^m</math> किसी के लिए <math>0 \le m < n</math>, यदि और केवल यदि: | ||
# <math>R</math> एक | # <math>R</math> एक सम्मिलित है <math>(n+1)</math>-बिंदु सबसेट <math>S</math> जो एक आत्मीयता से स्वतंत्र के साथ सममितीय है <math>(n+1)</math>-बिंदु का सबसेट <math>\mathbb{R}^n</math>; | ||
# कोई <math>(n+3)</math>-बिंदु सबसेट <math>S'</math>, के किन्हीं दो अतिरिक्त बिंदुओं को जोड़कर प्राप्त किया गया <math>R</math> को <math>S</math>, एक के अनुरूप है <math>(n+3)</math>-बिंदु का सबसेट <math>\mathbb{R}^n</math>. | # कोई <math>(n+3)</math>-बिंदु सबसेट <math>S'</math>, के किन्हीं दो अतिरिक्त बिंदुओं को जोड़कर प्राप्त किया गया <math>R</math> को <math>S</math>, एक के अनुरूप है <math>(n+3)</math>-बिंदु का सबसेट <math>\mathbb{R}^n</math>. | ||
</blockquote>इस प्रमेय का एक प्रमाण थोड़ा कमजोर रूप में (सेमीमेट्रिक रिक्त स्थान के | </blockquote>इस प्रमेय का एक प्रमाण थोड़ा कमजोर रूप में (सेमीमेट्रिक रिक्त स्थान के अतिरिक्त मीट्रिक रिक्त स्थान के लिए) में है।<ref>{{Cite journal|last1=Bowers|first1=John C.|last2=Bowers|first2=Philip L.|s2cid=50040864|date=2017-12-13|title=A Menger Redux: Embedding Metric Spaces Isometrically in Euclidean Space|journal=The American Mathematical Monthly|volume=124|issue=7|pages=621|language=en|doi=10.4169/amer.math.monthly.124.7.621}}</ref> | ||
Line 96: | Line 96: | ||
(S,d)</math> , साथ <math>S = \{P_0, \ldots, P_n\}</math>, और <math>d(P_i, P_j) = d_{ij}\ge 0</math>, <math>0 \le i < j \le n</math>, का एक आइसोमेट्रिक एम्बेडिंग <math>(S, d)</math> में <math>\mathbb{R}^n</math> द्वारा परिभाषित किया गया है <math display="inline">A_0, A_1,\ldots, A_n \in \mathbb R^n</math>, ऐसा है कि <math>d(A_i, A_j) = d_{ij}</math> सभी के लिए <math>0 \le i < j \le n</math>. | (S,d)</math> , साथ <math>S = \{P_0, \ldots, P_n\}</math>, और <math>d(P_i, P_j) = d_{ij}\ge 0</math>, <math>0 \le i < j \le n</math>, का एक आइसोमेट्रिक एम्बेडिंग <math>(S, d)</math> में <math>\mathbb{R}^n</math> द्वारा परिभाषित किया गया है <math display="inline">A_0, A_1,\ldots, A_n \in \mathbb R^n</math>, ऐसा है कि <math>d(A_i, A_j) = d_{ij}</math> सभी के लिए <math>0 \le i < j \le n</math>. | ||
दोबारा, कोई पूछता है कि क्या ऐसा आइसोमेट्रिक एम्बेडिंग | दोबारा, कोई पूछता है कि क्या ऐसा आइसोमेट्रिक एम्बेडिंग उपस्तिथ है <math>(S,d)</math>. | ||
एक आवश्यक शर्त को देखना आसान है: सभी के लिए <math>k = 1, \ldots, n</math>, होने देना <math>v_k</math> द्वारा गठित के-सिम्प्लेक्स बनें <math display="inline">A_0, A_1,\ldots, A_k</math>, तब | एक आवश्यक शर्त को देखना आसान है: सभी के लिए <math>k = 1, \ldots, n</math>, होने देना <math>v_k</math> द्वारा गठित के-सिम्प्लेक्स बनें <math display="inline">A_0, A_1,\ldots, A_k</math>, तब | ||
:<math>(-1)^{k+1} \operatorname{CM}(P_0, \ldots, P_k) = (-1)^{k+1} \operatorname{CM}(A_0, \ldots, A_k) = 2^k (k!)^k \operatorname{Vol}_k(v_k)^2 \ge 0</math> | :<math>(-1)^{k+1} \operatorname{CM}(P_0, \ldots, P_k) = (-1)^{k+1} \operatorname{CM}(A_0, \ldots, A_k) = 2^k (k!)^k \operatorname{Vol}_k(v_k)^2 \ge 0</math> | ||
बातचीत भी रखती है। यानी | बातचीत भी रखती है। यानी यदि सभी के लिए <math>k = 1, \ldots, n</math>, | ||
:<math>(-1)^{k+1}\operatorname{CM}(P_0, \ldots, P_k) \ge 0,</math> | :<math>(-1)^{k+1}\operatorname{CM}(P_0, \ldots, P_k) \ge 0,</math> | ||
तो ऐसी एम्बेडिंग | तो ऐसी एम्बेडिंग उपस्तिथ है। | ||
इसके | इसके अतिरिक्त, इस तरह की एम्बेडिंग आइसोमेट्री तक अद्वितीय है <math>\mathbb{R}^n</math>. यही है, किसी भी दो आइसोमेट्रिक एम्बेडिंग द्वारा परिभाषित किया गया है <math display="inline">A_0, A_1,\ldots, A_n</math>, और <math display="inline">A'_0, A'_1,\ldots, A'_n</math>, एक (आवश्यक रूप से अद्वितीय नहीं) आइसोमेट्री उपस्तिथ है <math>T : \mathbb R^n \to \mathbb R^n</math>, ऐसा है कि <math>T(A_k) = A'_k</math> सभी के लिए <math>k = 0, \ldots, n</math>. ऐसा <math>T</math> अद्वितीय है यदि और केवल यदि <math>\operatorname{CM}(P_0, \ldots, P_n) \neq 0</math>, वह है, <math display="inline">A_0, A_1,\ldots, A_n</math> आत्मीयता से स्वतंत्र हैं। | ||
=== एम्बेडिंग <math>n+2</math> और <math>n+3</math> अंक === | === एम्बेडिंग <math>n+2</math> और <math>n+3</math> अंक === | ||
यदि <math>n+2</math> अंक <math>P_0, \ldots, P_{n+1}</math> में एम्बेड किया जा सकता है <math>\mathbb{R}^n</math> जैसा <math>A_0, \ldots, A_{n+1}</math>, तो उपरोक्त शर्तों के अतिरिक्त एक अतिरिक्त आवश्यक शर्त यह है कि <math>(n+1)</math>-सिम्प्लेक्स द्वारा गठित <math display="inline">A_0, A_1,\ldots, A_{n+1}</math>, नहीं होना चाहिए <math>(n+1)</math>-आयामी मात्रा। वह है, <math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+1}) = 0</math>. | |||
बातचीत भी रखती है। यानी | बातचीत भी रखती है। यानी यदि सभी के लिए <math>k = 1, \ldots, n</math>, | ||
: <math>(-1)^{k+1} \operatorname{CM}(P_0, \ldots, P_k) \ge 0,</math> | : <math>(-1)^{k+1} \operatorname{CM}(P_0, \ldots, P_k) \ge 0,</math> | ||
Line 117: | Line 117: | ||
: <math> \operatorname{CM}(P_0, \ldots, P_n, P_{n+1}) = 0, </math> | : <math> \operatorname{CM}(P_0, \ldots, P_n, P_{n+1}) = 0, </math> | ||
तो ऐसी एम्बेडिंग | तो ऐसी एम्बेडिंग उपस्तिथ है। | ||
लगाने के लिए <math>n+3</math> में इंगित करता है <math>\mathbb{R}^n</math>, आवश्यक और पर्याप्त शर्तें समान हैं: | लगाने के लिए <math>n+3</math> में इंगित करता है <math>\mathbb{R}^n</math>, आवश्यक और पर्याप्त शर्तें समान हैं: | ||
Line 129: | Line 129: | ||
=== मनमाने ढंग से कई बिंदुओं को एम्बेड करना === <math>n+3</math> h> मामला सामान्य रूप से पर्याप्त निकला। | === मनमाने ढंग से कई बिंदुओं को एम्बेड करना === <math>n+3</math> h> मामला सामान्य रूप से पर्याप्त निकला। | ||
सामान्यतः, एक अर्धमितीय स्थान दिया जाता है <math>(R, d)</math>, इसे आइसोमेट्रिक रूप से एम्बेड किया जा सकता है <math>\mathbb{R}^n</math> यदि और केवल यदि उपस्तिथ है <math>P_0, \ldots, P_n\in R</math>, ऐसा कि, सभी के लिए <math>k = 1, \ldots, n</math>, <math>(-1)^{k+1} \operatorname{CM}(P_0, \ldots, P_k) \ge 0</math>, और किसी के लिए <math>P_{n+1}, P_{n+2} \in R</math>, | |||
#<math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+1}) = 0;</math> | #<math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+1}) = 0;</math> | ||
Line 136: | Line 136: | ||
और इस तरह की एम्बेडिंग आइसोमेट्री तक अद्वितीय है <math>\mathbb{R}^n</math>. | और इस तरह की एम्बेडिंग आइसोमेट्री तक अद्वितीय है <math>\mathbb{R}^n</math>. | ||
आगे, | आगे, यदि <math>\operatorname{CM}(P_0, \ldots, P_n) \neq 0</math>, तो इसे किसी में भी सममित रूप से एम्बेड नहीं किया जा सकता है <math>\mathbb{R}^m, m < n</math>. और इस तरह की एम्बेडिंग अद्वितीय आइसोमेट्री तक अद्वितीय है <math>\mathbb{R}^n</math>. | ||
इस प्रकार, केली-मेंजर निर्धारक यह गणना करने का एक ठोस | इस प्रकार, केली-मेंजर निर्धारक यह गणना करने का एक ठोस विधि देते हैं कि क्या एक अर्धमितीय स्थान को एम्बेड किया जा सकता है <math>\mathbb{R}^n</math>, कुछ परिमित के लिए <math>n</math>, और यदि हां, तो न्यूनतम क्या है <math>n</math>. | ||
== अनुप्रयोग == | == अनुप्रयोग == |
Revision as of 19:44, 27 April 2023
दूरी ज्यामिति गणित की वह शाखा है जो अंक के जोड़े के बीच की दूरी के दिए गए मानों पर 'केवल' आधारित बिंदुओं के लक्षण वर्णन (गणित) और अध्ययन सेट (गणित) से संबंधित है।[1][2][3]अधिक संक्षेप में, यह अर्धमितीय स्थान स्थान और उनके बीच आइसोमेट्री का अध्ययन है। इस दृष्टि से, इसे सामान्य टोपोलॉजी के अंतर्गत एक विषय के रूप में माना जा सकता है।[4]
ऐतिहासिक रूप से, दूरी ज्यामिति में पहला परिणाम पहली शताब्दी ईस्वी में हीरोन का सूत्र है। आधुनिक सिद्धांत की शुरुआत 19वीं सदी में आर्थर केली के काम से हुई, इसके बाद 20वीं सदी में कार्ल मेन्जर और अन्य लोगों ने और अधिक व्यापक विकास किए।
दूरी ज्यामिति की समस्याएँ तब उत्पन्न होती हैं जब किसी को उनके बीच की दूरियों से बिंदुओं के विन्यास (सापेक्ष स्थिति) के आकार का अनुमान लगाने की आवश्यकता होती है, जैसे जीव विज्ञान में,[4]सेंसर नेटवर्क,[5]सर्वेक्षण, मार्गदर्शन , नक्शानवीसी और भौतिकी।
परिचय और परिभाषाएँ
The concepts of distance geometry will first be explained by describing two particular problems.
पहली समस्या: अतिशयोक्तिपूर्ण नेविगेशन
तीन ग्राउंड रेडियो स्टेशनों ए, बी, सी पर विचार करें, जिनके स्थान ज्ञात हैं। एक रेडियो रिसीवर अज्ञात स्थान पर है। स्टेशनों से रिसीवर तक रेडियो सिग्नल की यात्रा करने में लगने वाला समय, , अज्ञात हैं, किन्तु समय के अंतर, और , ज्ञात हैं। उनसे दूरी के अंतर को जाना जा सकता है और जिससे रिसीवर की स्थिति का पता लगाया जा सकता है।
दूसरी समस्या: आयामीता में कमी
डेटा विश्लेषण में, किसी को अधिकांशतः वेक्टर के रूप में दर्शाए गए डेटा की एक सूची दी जाती है , और किसी को यह पता लगाने की जरूरत है कि क्या वे कम-आयामी एफ़िन सबस्पेस के भीतर हैं। डेटा के निम्न-आयामी प्रतिनिधित्व के कई फायदे हैं, जैसे भंडारण स्थान की बचत, गणना समय, और डेटा में उत्तम अंतर्दृष्टि प्रदान करना।
परिभाषाएँ
अब हम कुछ परिभाषाओं को औपचारिक रूप देते हैं जो स्वाभाविक रूप से हमारी समस्याओं पर विचार करने से उत्पन्न होती हैं।
अर्धमितीय स्थान
बिंदुओं की सूची दी गई है , , हम मनमाने ढंग से बिंदुओं के जोड़े के बीच की दूरी को एक सूची द्वारा निर्दिष्ट कर सकते हैं , . यह अर्ध मीट्रिक स्थान को परिभाषित करता है: त्रिकोण असमानता के बिना एक मीट्रिक स्थान।
स्पष्ट रूप से, हम एक अर्धमितीय स्थान को एक गैर-खाली सेट के रूप में परिभाषित करते हैं एक सेमीमेट्रिक से लैस ऐसा कि, सभी के लिए ,
- सकारात्मकता: यदि और केवल यदि.
- समरूपता: .
कोई भी मीट्रिक स्पेस Argumentum a fortiori a semimetric space होता है। विशेष रूप से, , द -डायमेंशनल यूक्लिडियन अंतरिक्ष , डिस्टेंस ज्योमेट्री में कानूनी फॉर्म मेट्रिक स्पेस है।
परिभाषा में त्रिभुज असमानता को छोड़ दिया गया है, क्योंकि हम दूरियों पर अधिक प्रतिबंध लागू नहीं करना चाहते हैं केवल आवश्यकता से अधिक कि वे सकारात्मक हों।
व्यवहार में, अर्धमितीय स्थान स्वाभाविक रूप से गलत माप से उत्पन्न होते हैं। उदाहरण के लिए, तीन अंक दिए गए एक लाइन पर, के साथ , एक गलत माप दे सकता है , त्रिकोण असमानता का उल्लंघन।
आइसोमेट्रिक एम्बेडिंग
दो अर्धमितीय रिक्त स्थान दिए गए हैं, , एक आइसोमेट्री से को एक नक्शा है जो सेमीमेट्रिक यानी सभी के लिए सुरक्षित रखता है , .
उदाहरण के लिए, परिमित सेमीमेट्रिक स्पेस दिया गया है ऊपर परिभाषित, एक आइसोमेट्रिक एम्बेडिंग को बिंदुओं द्वारा परिभाषित किया गया है , ऐसा है कि सभी के लिए .
स्वाधीनता
बिन्दुओं को देखते हुए , उन्हें Affineस्वतंत्रता के रूप में परिभाषित किया गया है, यदि वे एक के भीतर फिट नहीं हो सकते हैं -आयामी संबंध उप-स्थान , किसी के लिए , यदि संकेतन वे फैले हुए हैं, , सकारात्मक है - मात्रा, यानी .
सामान्यतः, जब , वे घनिष्ठ रूप से स्वतंत्र हैं, क्योंकि एक सामान्य संपत्ति n-simplex nondegenerate है। उदाहरण के लिए, समतल में 3 बिंदु, सामान्य रूप से, समरेख नहीं होते हैं, क्योंकि जिस त्रिभुज पर वे फैले हैं, वह एक रेखा खंड में पतित नहीं होता है। इसी तरह, अंतरिक्ष में 4 बिंदु, सामान्य रूप से समतलीय नहीं होते हैं, क्योंकि जिस चतुष्फलक का वे विस्तार करते हैं वह समतल त्रिभुज में पतित नहीं होता है।
कब , उन्हें आत्मीयता से निर्भर होना चाहिए। यह ध्यान देने से देखा जा सकता है कि कोई भी -सिम्प्लेक्स जो अंदर फिट हो सकता है समतल होना चाहिए।
केली-मेंजर निर्धारक
केली-मेंजर निर्धारक, आर्थर केली और कार्ल मेन्जर के नाम पर, बिंदुओं के सेट के बीच की दूरी के मैट्रिक्स के निर्धारक हैं।
होने देना एक अर्धमितीय स्थान में n + 1 अंक हो, उनके केली-मेंजर निर्धारक द्वारा परिभाषित किया गया है
यदि , फिर वे संभवतः डीजेनेरेसी (गणित) एन-सिम्प्लेक्स के शिखर बनाते हैं में . यह दिखाया जा सकता है[6] सिम्प्लेक्स का एन-डायमेंशनल वॉल्यूम संतुष्ट
ध्यान दें कि, के स्थितियोंके लिए , अपने पास , जिसका अर्थ है कि 0-सिंप्लेक्स का 0-आयामी आयतन 1 है, अर्थात 0-सिंप्लेक्स में 1 बिंदु है।
आत्मीयता से स्वतंत्र iff हैं , वह है, . इस प्रकार केली-मेंजर निर्धारक आत्मीय स्वतंत्रता को सिद्ध करने के लिए एक कम्प्यूटेशनल विधि देते हैं।
यदि , तो बिंदुओं को निश्चित रूप से निर्भर होना चाहिए, इस प्रकार . केली के 1841 के पेपर ने विशेष स्थितियोंका अध्ययन किया , यानी कोई पाँच बिंदु 3-आयामी अंतरिक्ष में होना चाहिए .
इतिहास
दूरी ज्यामिति में पहला परिणाम हेरॉन का सूत्र है, जो पहली शताब्दी ईस्वी से है, जो त्रिभुज का क्षेत्रफल उसके 3 शीर्षों के बीच की दूरी से देता है। ब्रह्मगुप्त का सूत्र, 7वीं शताब्दी ईस्वी से, इसे चक्रीय चतुर्भुजों के लिए सामान्यीकृत करता है। निकोलो फोंटाना टार्टाग्लिया, 16वीं शताब्दी ईस्वी से, इसे निकोलो फोंटाना टार्टाग्लिया#वॉल्यूम ऑफ़ टेट्राहेड्रॉन को इसके 4 शीर्षों के बीच की दूरी से देने के लिए सामान्यीकृत किया।
दूरी ज्यामिति का आधुनिक सिद्धांत आर्थर केली और कार्ल मेन्जर के साथ प्रारंभ हुआ।[7] केली ने 1841 में केली निर्धारक प्रकाशित किया,[8] जो सामान्य केली-मेंजर निर्धारक का एक विशेष मामला है। मेन्जर ने 1928 में सिद्ध किया कि सभी अर्धमितीय स्थानों का एक लक्षण वर्णन प्रमेय है जो कि एन-डायमेंशनल यूक्लिडियन स्पेस में आइसोमेट्रिक रूप से एम्बेड करने योग्य है। .[9][10] 1931 में, मेन्जर ने यूक्लिडियन ज्यामिति का एक स्वयंसिद्ध उपचार देनेनियत के लिए दूरस्थ संबंधों का उपयोग किया।[11] लियोनार्ड ब्लूमेंथल की किताब[12]स्नातक स्तर पर दूरी ज्यामिति के लिए एक सामान्य अवलोकन देता है, जिसका एक बड़ा हिस्सा पहली बार प्रकाशित होने पर अंग्रेजी में व्यवहार किया जाता है।
मेन्जर लक्षण वर्णन प्रमेयचूँकि
मेन्जर ने सेमीमेट्रिक रिक्त स्थान के निम्नलिखित लक्षण वर्णन (गणित) को सिद्ध किया:[2]
एक सेमीमेट्रिक स्पेस isometrically में एम्बेड करने योग्य है -आयामी यूक्लिडियन अंतरिक्ष , किन्तु अंदर नहीं किसी के लिए , यदि और केवल यदि:
- एक सम्मिलित है -बिंदु सबसेट जो एक आत्मीयता से स्वतंत्र के साथ सममितीय है -बिंदु का सबसेट ;
- कोई -बिंदु सबसेट , के किन्हीं दो अतिरिक्त बिंदुओं को जोड़कर प्राप्त किया गया को , एक के अनुरूप है -बिंदु का सबसेट .
इस प्रमेय का एक प्रमाण थोड़ा कमजोर रूप में (सेमीमेट्रिक रिक्त स्थान के अतिरिक्त मीट्रिक रिक्त स्थान के लिए) में है।[13]
केली-मेंजर निर्धारकों के माध्यम से विशेषता
ब्लूमेथल की पुस्तक में निम्नलिखित परिणाम सिद्ध होते हैं।[12]
एम्बेडिंग में इंगित करता है
एक सेमीमेट्रिक स्पेस दिया गया है , साथ , और , , का एक आइसोमेट्रिक एम्बेडिंग में द्वारा परिभाषित किया गया है , ऐसा है कि सभी के लिए .
दोबारा, कोई पूछता है कि क्या ऐसा आइसोमेट्रिक एम्बेडिंग उपस्तिथ है .
एक आवश्यक शर्त को देखना आसान है: सभी के लिए , होने देना द्वारा गठित के-सिम्प्लेक्स बनें , तब
बातचीत भी रखती है। यानी यदि सभी के लिए ,
तो ऐसी एम्बेडिंग उपस्तिथ है।
इसके अतिरिक्त, इस तरह की एम्बेडिंग आइसोमेट्री तक अद्वितीय है . यही है, किसी भी दो आइसोमेट्रिक एम्बेडिंग द्वारा परिभाषित किया गया है , और , एक (आवश्यक रूप से अद्वितीय नहीं) आइसोमेट्री उपस्तिथ है , ऐसा है कि सभी के लिए . ऐसा अद्वितीय है यदि और केवल यदि , वह है, आत्मीयता से स्वतंत्र हैं।
एम्बेडिंग और अंक
यदि अंक में एम्बेड किया जा सकता है जैसा , तो उपरोक्त शर्तों के अतिरिक्त एक अतिरिक्त आवश्यक शर्त यह है कि -सिम्प्लेक्स द्वारा गठित , नहीं होना चाहिए -आयामी मात्रा। वह है, .
बातचीत भी रखती है। यानी यदि सभी के लिए ,
और
तो ऐसी एम्बेडिंग उपस्तिथ है।
लगाने के लिए में इंगित करता है , आवश्यक और पर्याप्त शर्तें समान हैं:
- सभी के लिए , ;
=== मनमाने ढंग से कई बिंदुओं को एम्बेड करना === h> मामला सामान्य रूप से पर्याप्त निकला।
सामान्यतः, एक अर्धमितीय स्थान दिया जाता है , इसे आइसोमेट्रिक रूप से एम्बेड किया जा सकता है यदि और केवल यदि उपस्तिथ है , ऐसा कि, सभी के लिए , , और किसी के लिए ,
और इस तरह की एम्बेडिंग आइसोमेट्री तक अद्वितीय है .
आगे, यदि , तो इसे किसी में भी सममित रूप से एम्बेड नहीं किया जा सकता है . और इस तरह की एम्बेडिंग अद्वितीय आइसोमेट्री तक अद्वितीय है .
इस प्रकार, केली-मेंजर निर्धारक यह गणना करने का एक ठोस विधि देते हैं कि क्या एक अर्धमितीय स्थान को एम्बेड किया जा सकता है , कुछ परिमित के लिए , और यदि हां, तो न्यूनतम क्या है .
अनुप्रयोग
दूरस्थ ज्यामिति के कई अनुप्रयोग हैं।[3]
ग्लोबल पोजिशनिंग सिस्टम जैसे दूरसंचार नेटवर्क में, कुछ सेंसर की स्थिति ज्ञात होती है (जिन्हें एंकर कहा जाता है) और सेंसर के बीच की कुछ दूरी भी ज्ञात होती है: समस्या सभी सेंसर के लिए स्थिति की पहचान करना है।[5]हाइपरबोलिक नेविगेशन एक प्री-जीपीएस तकनीक है जो सिग्नल को एंकर तक पहुंचने में लगने वाले समय के आधार पर जहाजों का पता लगाने के लिए दूरी ज्यामिति का उपयोग करती है।
रसायन विज्ञान में कई अनुप्रयोग हैं।[4][12]परमाणु चुंबकीय अनुनाद जैसी तकनीकें किसी दिए गए अणु के परमाणुओं के जोड़े के बीच की दूरी को माप सकती हैं, और समस्या उन दूरियों से अणु के 3-आयामी आकार का अनुमान लगाने की है।
अनुप्रयोगों के लिए कुछ सॉफ्टवेयर पैकेज हैं:
- DGSOL। आण्विक मॉडलिंग में बड़ी दूरी की ज्यामिति समस्याओं को हल करता है।
- Xplor-NIH। एनएमआर प्रयोगों से डेटा के आधार पर अणुओं की संरचना निर्धारित करने के लिए एक्स-पीएलओआर पर आधारित। यह ह्यूरिस्टिक विधियों (जैसे तैयार किए हुयी धातु पे पानी चढाने की कला ) और स्थानीय खोज विधियों (जैसे संयुग्म ग्रेडिएंट विधि) के साथ दूरी की ज्यामिति की समस्याओं को हल करता है।
- TINKER। आणविक मॉडलिंग और डिजाइन। यह दूरी ज्यामिति की समस्याओं को हल कर सकता है।
- SNLSDPclique। सेंसर के बीच की दूरी के आधार पर सेंसर नेटवर्क में सेंसर लगाने के लिए MATLAB कोड।
यह भी देखें
- यूक्लिडियन दूरी मैट्रिक्स
- बहुआयामी स्केलिंग (एक सांख्यिकीय तकनीक जिसका उपयोग तब किया जाता है जब दूरियों को यादृच्छिक त्रुटियों से मापा जाता है)
- मीट्रिक स्थान
- टार्टाग्लिया का सूत्र
- त्रिकोणासन
- त्रयीकरण
संदर्भ
- ↑ Yemini, Y. (1978). "The positioning problem — a draft of an intermediate summary". Conference on Distributed Sensor Networks, Pittsburgh.
- ↑ 2.0 2.1 Liberti, Leo; Lavor, Carlile; MacUlan, Nelson; Mucherino, Antonio (2014). "Euclidean Distance Geometry and Applications". SIAM Review. 56: 3–69. arXiv:1205.0349. doi:10.1137/120875909. S2CID 15472897.
- ↑ 3.0 3.1 Mucherino, A.; Lavor, C.; Liberti, L.; Maculan, N. (2013). Distance Geometry: Theory, Methods and Applications.
- ↑ 4.0 4.1 4.2 Crippen, G.M.; Havel, T.F. (1988). Distance Geometry and Molecular Conformation. John Wiley & Sons.
- ↑ 5.0 5.1 Biswas, P.; Lian, T.; Wang, T.; Ye, Y. (2006). "Semidefinite programming based algorithms for sensor network localization". ACM Transactions on Sensor Networks. 2 (2): 188–220. doi:10.1145/1149283.1149286. S2CID 8002168.
- ↑ "Simplex Volumes and the Cayley–Menger Determinant". www.mathpages.com. Archived from the original on 16 May 2019. Retrieved 2019-06-08.
- ↑ Liberti, Leo; Lavor, Carlile (2016). "दूरी ज्यामिति के इतिहास से छह गणितीय रत्न". International Transactions in Operational Research (in English). 23 (5): 897–920. arXiv:1502.02816. doi:10.1111/itor.12170. ISSN 1475-3995. S2CID 17299562.
- ↑ Cayley, Arthur (1841). "स्थिति की ज्यामिति में एक प्रमेय पर". Cambridge Mathematical Journal. 2: 267–271.
- ↑ Menger, Karl (1928-12-01). "Untersuchungen über allgemeine Metrik". Mathematische Annalen (in Deutsch). 100 (1): 75–163. doi:10.1007/BF01448840. ISSN 1432-1807. S2CID 179178149.
- ↑ Blumenthal, L. M.; Gillam, B. E. (1943). "एन-स्पेस में अंकों का वितरण". The American Mathematical Monthly (in English). 50 (3): 181. doi:10.2307/2302400. JSTOR 2302400.
- ↑ Menger, Karl (1931). "यूक्लिडियन ज्यामिति का नया फाउंडेशन". American Journal of Mathematics. 53 (4): 721–745. doi:10.2307/2371222. ISSN 0002-9327. JSTOR 2371222.
- ↑ 12.0 12.1 12.2 Blumenthal, L.M. (1970). Theory and applications of distance geometry (2nd ed.). Bronx, New York: Chelsea Publishing Company. pp. 90–161. ISBN 978-0-8284-0242-2. LCCN 79113117.
- ↑ Bowers, John C.; Bowers, Philip L. (2017-12-13). "A Menger Redux: Embedding Metric Spaces Isometrically in Euclidean Space". The American Mathematical Monthly (in English). 124 (7): 621. doi:10.4169/amer.math.monthly.124.7.621. S2CID 50040864.