वसायुक्त अल्कोहल: Difference between revisions
(Created page with "{{Short description|Class of chemical compounds}} thumb|एक उदाहरण वसायुक्त शराबफै...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Class of chemical compounds}} | {{Short description|Class of chemical compounds}} | ||
[[File:Oleyl alcohol Structural Formula V1.svg|thumb|एक उदाहरण वसायुक्त | [[File:Oleyl alcohol Structural Formula V1.svg|thumb|एक उदाहरण वसायुक्त मद्य]]वसायुक्त [[अल्कोहल|मद्य]] (या लंबी-श्रृंखला मद्य) सामान्यतः उच्च-आणविक-भार, सीधी-श्रृंखला [[प्राथमिक शराब|प्राथमिक मद्य]] होते हैं, लेकिन प्राकृतिक वसा और तेलों से प्राप्त 4-6 कार्बन से लेकर 22-26 तक भी हो सकते हैं। सटीक श्रृंखला की लंबाई स्रोत के साथ बदलती रहती है।<ref name=Ullmann/><ref>{{GoldBookRef|file=F02330|title="Fatty alcohol"}}</ref> कुछ व्यावसायिक रूप से महत्वपूर्ण वसायुक्त मद्य सल्फ़ेट [[लॉरिल अल्कोहल|मद्य]], [[स्टीयरल अल्कोहल|स्टीयरल मद्य]] और [[ओलेल अल्कोहल|ओलेल मद्य]] हैं। वे रंगहीन तैलीय तरल पदार्थ (कम कार्बन संख्या के लिए) या मोमयुक्त ठोस होते हैं, हालांकि अशुद्ध नमूने पीले दिखाई दे सकते हैं। वसायुक्त मद्य में सामान्यतः कार्बन परमाणुओं की एक समान संख्या होती है और एक [[शराब समूह|मद्य समूह]]-OH) अवसानक कार्बन से जुड़ा होता है। कुछ असंतृप्त और कुछ शाखित होते हैं। वे उद्योग में व्यापक रूप से उपयोग किए जाते हैं। वसायुक्त अम्ल के साथ, उन्हें प्रायः अणु में कार्बन परमाणुओं की संख्या से सामान्य रूप से संदर्भित किया जाता है, जैसे C<sub>12</sub> मद्य, जो कि 12 कार्बन युक्त मद्य है, उदाहरण के लिए डोडेकेनॉल है। | ||
== उत्पादन और घटना == | == उत्पादन और घटना == | ||
1900 | 1900 के प्रारम्भ में वसायुक्त मद्य व्यावसायिक रूप से उपलब्ध हो गए। वे मूल रूप से बुवेल्ट-ब्लैंक कमी प्रक्रिया द्वारा [[सोडियम]] के साथ [[मोम एस्टर]] की कमी से प्राप्त किए गए थे। 1930 के दशक में [[उत्प्रेरक हाइड्रोजनीकरण]] का व्यावसायीकरण किया गया था, जिसने सामान्यतः लंबे, मद्य के लिए वसायुक्त अम्ल एस्टर के रूपांतरण की अनुमति दी थी। 1940 और 1950 के दशक में, पेट्रोरसायन रसायनों का एक महत्वपूर्ण स्रोत बन गया, और [[कार्ल ज़िगलर]] ने [[ईथीलीन]] के [[बहुलकीकरण]] की खोज की थी। इन दो विकासों ने कृत्रिम वसायुक्त मद्य का रास्ता खोल दिया। | ||
===प्राकृतिक स्रोतों से=== | ===प्राकृतिक स्रोतों से=== | ||
प्रकृति में अधिकांश | प्रकृति में अधिकांश वसायुक्त मद्य [[ कुछ |मोम]] के रूप में पाए जाते हैं, जो [[ वसा अम्ल |वसा अम्ल]] और वसायुक्त मद्य के [[एस्टर]] होते हैं।<ref name=Ullmann>{{Ullmann|first1=Klaus|last1=Noweck|first2=Wolfgang|last2=Grafahrend|title=Fatty Alcohols|doi=10.1002/14356007.a10_277.pub2}}</ref> वे किटाणु, पौधों और जानवरों द्वारा उपापचयी पानी और ऊर्जा के स्रोत के रूप में, [[पशु इकोलोकेशन|प्रतिध्वनि निर्धारण]] लेंस (समुद्री स्तनधारियों) और मोम के रूप में ऊष्मा रोधन के लिए (पौधों और कीड़ों में) उत्पन्न होते हैं।<ref name="mudge">{{cite journal|first1=Stephen|last1=Mudge |first2=Wolfram|last2=Meier-Augenstein |first3=Charles|last3=Eadsforth |first4=Paul|last4=DeLeo|title=What contribution do detergent fatty alcohols make to sewage discharges and the marine environment?|journal=Journal of Environmental Monitoring|year=2010|pages=1846–1856|doi=10.1039/C0EM00079E |volume=12|issue=10 |pmid=20820625 }}</ref> वसायुक्त मद्य के पारंपरिक स्रोत बड़े मापक्रम पर विभिन्न [[वनस्पति तेल]] रहे हैं, जो बड़े मापक्रम पर [[फीडस्टॉक]] बने हुए हैं। पशु वसा (लंबा) ऐतिहासिक महत्व के थे, विशेष रूप से [[व्हेल का तेल]], हालांकि अब वे बड़े मापक्रम पर उपयोग नहीं किए जाते हैं। टैलो मद्य की काफी संकीर्ण श्रेणी का उत्पादन करते हैं, मुख्य रूप से C<sub>16</sub>-C<sub>18</sub>, जबकि पौधों के स्रोत मद्य की एक विस्तृत श्रृंखला का उत्पादन करते हैं (C<sub>6</sub>-C<sub>24</sub>), उन्हें पसंदीदा स्रोत बनाते हैं। मद्य [[ट्राइग्लिसराइड]]्स (वसायुक्त अम्ल ट्राइस्टर्स) से प्राप्त होते हैं, जो तेल का बड़ा हिस्सा बनाते हैं। इस प्रक्रिया में मिथाइल [[एस्टर]] देने के लिए ट्राइग्लिसराइड्स का [[ट्रान्सएस्टरीफिकेशन]] सम्मिलित है जो तब वसायुक्त मद्य का उत्पादन करने के लिए [[हाइड्रोजनीकरण|हाइड्रोजनीकृत]] होता है।<ref>{{cite journal|last1=Kreutzer|first1=Udo R.|title=प्राकृतिक वसा और तेलों पर आधारित फैटी अल्कोहल का निर्माण|journal=Journal of the American Oil Chemists' Society|date=February 1984|volume=61|issue=2|pages=343–348|doi=10.1007/BF02678792|s2cid=84849226}}</ref> उच्च मद्य (C<sub>20</sub>-C<sub>22</sub>) [[श्वेत सरसों का तेल|राई]] या सरसों के बीज के तेल से प्राप्त किया जा सकता है। मध्य कट मद्य नारियल के तेल से प्राप्त किया जाता है (C<sub>12</sub>-C<sub>14</sub>) या ताड़ की गिरी का तेल (C<sub>16</sub>-C<sub>18</sub>)। | ||
=== | === शैलरसायन स्रोतों से === | ||
शैलरसायन स्रोतों से वसायुक्त मद्य भी तैयार किए जाते हैं। [[ज़िगलर प्रक्रिया]] में, एथिलीन ऑलिगोमेराइज़ किया जाता है, जिसके बाद ट्राइएथिल एल्युमिनियम का उपयोग किया जाता है, जिसके बाद वायु ऑक्सीकरण होता है। यह प्रक्रिया सम-संख्या वाले मद्य प्रदान करती है: | |||
: | : Al(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub> + 18 C<sub>2</sub>H<sub>4</sub> → Al(C<sub>14</sub>H<sub>29</sub>)<sub>3</sub> | ||
: | : Al(C<sub>14</sub>H<sub>29</sub>)<sub>3</sub> + 3⁄2 O<sub>2</sub> + 3⁄2 H<sub>2</sub>O → 3 HOC<sub>14</sub>H<sub>29</sub> + 1⁄2 Al<sub>2</sub>O<sub>3</sub> | ||
वैकल्पिक रूप से एथिलीन को अल्केन्स के मिश्रण देने के लिए | वैकल्पिक रूप से एथिलीन को अल्केन्स के मिश्रण देने के लिए ऑलिगोमेराइज किया जा सकता है, जो कि हाइड्रोफॉर्मिलन के अधीन हैं, यह प्रक्रिया विषम संख्या वाले एल्डिहाइड की पुष्टि करती है, जो बाद में हाइड्रोजनीकृत होती है। उदाहरण के लिए, 1-डिसीन से, [[hydroformylation|हाइड्रोफॉर्मिलन]] C<sub>11</sub> मद्य देता है: | ||
: | :C<sub>8</sub>H<sub>17</sub>CH=CH<sub>2</sub> + H<sub>2</sub> + CO → C<sub>8</sub>H<sub>17</sub>CH<sub>2</sub>CH<sub>2</sub>CHO | ||
: | :C<sub>8</sub>H<sub>17</sub>CH<sub>2</sub>CH<sub>2</sub>CHO + H<sub>2</sub> → C<sub>8</sub>H<sub>17</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH | ||
शेल हायर ओलेफ़िन प्रक्रिया में, एल्केन ओलिगोमर्स के प्रारंभिक मिश्रण में श्रृंखला-लंबाई वितरण को समायोजित किया जाता है ताकि बाज़ार की मांग से अधिक निकटता से मिलान किया जा सके। शेल यह एक मध्यवर्ती [[ओलेफिन मेटाथिसिस]] प्रतिक्रिया के माध्यम से करता है।<ref>{{cite book|title=एशफोर्ड डिक्शनरी ऑफ इंडस्ट्रियल केमिकल्स|edition=3rd|date=2011|pages=6706–6711}}{{ISBN missing}}</ref> परिणामी मिश्रण को बाद के चरण में विभाजित और हाइड्रोफॉर्मिलेटेड/हाइड्रोजनीकृत किया जाता है। | शेल हायर ओलेफ़िन प्रक्रिया में, एल्केन ओलिगोमर्स के प्रारंभिक मिश्रण में श्रृंखला-लंबाई वितरण को समायोजित किया जाता है ताकि बाज़ार की मांग से अधिक निकटता से मिलान किया जा सके। शेल यह एक मध्यवर्ती [[ओलेफिन मेटाथिसिस|ओलेफिन विनिमय]] प्रतिक्रिया के माध्यम से करता है।<ref>{{cite book|title=एशफोर्ड डिक्शनरी ऑफ इंडस्ट्रियल केमिकल्स|edition=3rd|date=2011|pages=6706–6711}}{{ISBN missing}}</ref> परिणामी मिश्रण को बाद के चरण में विभाजित और हाइड्रोफॉर्मिलेटेड/हाइड्रोजनीकृत किया जाता है। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
व'''सायुक्त मद्य का उ'''पयोग मुख्य रूप से डिटर्जेंट और [[पृष्ठसक्रियकारक]] के उत्पादन में किया जाता है। वे सौंदर्य प्रसाधन, खाद्य पदार्थ और औद्योगिक [[विलायक]] के घटक भी हैं। उनके उभयलिंगी प्रकृति के कारण, वसायुक्त मद्य नॉनऑनिक सर्फेक्टेंट के रूप में व्यवहार करते हैं। वे सौंदर्य प्रसाधन और [[खाद्य उद्योग]] में सह-[[पायसीकारकों]], [[कम करनेवाला]] और थिकनेस के रूप में उपयोग करते हैं। व्यावसायिक रूप से उपयोग किए जाने वाले वसायुक्त मद्य का लगभग 50% प्राकृतिक मूल का होता है, शेष कृत्रिम होता है।<ref name=Ullmann/> | |||
=== पोषण === | === पोषण === | ||
वनस्पति [[मोम]] और मोम से प्राप्त बहुत लंबी श्रृंखला | वनस्पति [[मोम]] और मोम से प्राप्त बहुत लंबी श्रृंखला वसायुक्त मद्य (वीएलसीएफए) मनुष्यों में प्लाज्मा [[कोलेस्ट्रॉल]] को कम करने की सूचना दी गई है। वे अपरिष्कृत अनाज के दानों, मोम और कई पौधों से प्राप्त खाद्य पदार्थों में पाए जा सकते हैं। रिपोर्ट बताती है कि मिश्रित सी के प्रति दिन 5-20 मिलीग्राम<sub>24</sub>-सी<sub>34</sub> मद्य, जिसमें [[ऑक्टाकोसानॉल]] और [[triacontanol]] सम्मिलित हैं, कम घनत्व वाले लिपोप्रोटीन (एलडीएल) कोलेस्ट्रॉल को 21% -29% तक कम करते हैं और उच्च घनत्व वाले लिपोप्रोटीन कोलेस्ट्रॉल को 8% -15% तक बढ़ाते हैं।{{Citation needed|date=October 2011}} वैक्स एस्टर को पित्त नमक पर निर्भर [[अग्नाशय]]ी [[ esterase ]]़ द्वारा [[हाइड्रोलाइज्ड]] किया जाता है, जो लंबी-श्रृंखला मद्य और [[वसायुक्त अम्ल]] जारी करता है जो [[ जठरांत्र पथ ]] में अवशोषित होते हैं। [[ fibroblasts ]]्स में वसायुक्त मद्य चयापचय के अध्ययन से पता चलता है कि बहुत लंबी-श्रृंखला वाले वसायुक्त मद्य, [[वसायुक्त एल्डिहाइड]] और वसायुक्त अम्ल एक वसायुक्त मद्य चक्र में विपरीत रूप से अंतर-परिवर्तित होते हैं। इन यौगिकों का चयापचय कई विरासत में [[यहां तक की ]] मानव [[पेरोक्सीसोमल]] विकारों में बिगड़ा हुआ है, जिसमें [[एड्रेनोलुकोडिस्ट्रोफी]] और सोजोग्रेन-लार्सन सिंड्रोम सम्मिलित हैं।<ref>{{cite journal|first1=James L.|last1=Hargrove|first2=Phillip|last2=Greenspan|first3=Diane K.|last3=Hartle|date=2004|title=डायटरी वैक्स से वेरी लॉन्ग चेन फैटी अल्कोहल और एसिड का पोषण संबंधी महत्व और मेटाबोलिज्म|journal=Exp. Biol. Med.|volume=229|issue=3|pages=215–226|doi=10.1177/153537020422900301|pmid=14988513|s2cid=38905297}}</ref> | ||
<!--Mostly red-links, possibly of future use:==Types== | <!--Mostly red-links, possibly of future use:==Types== | ||
* [[Normal-chain alcohol]]s | * [[Normal-chain alcohol]]s | ||
Line 41: | Line 41: | ||
=== मानव स्वास्थ्य === | === मानव स्वास्थ्य === | ||
वसायुक्त | वसायुक्त मद्य LD50|LD के साथ अपेक्षाकृत सौम्य पदार्थ होते हैं<sub>50</sub>(मौखिक, चूहा) हेक्सानॉल के लिए 3.1–4 g/kg से लेकर ऑक्टाडेकेनॉल के लिए 6–8 g/kg तक।<ref name=Ullmann/>50 किलो के व्यक्ति के लिए, ये मान 100 ग्राम से अधिक हो जाते हैं। तीव्र और बार-बार होने वाले जोखिम के परीक्षणों ने वसायुक्त मद्य के साँस लेना, मौखिक या त्वचीय जोखिम से विषाक्तता के निम्न स्तर का खुलासा किया है। वसायुक्त मद्य बहुत अस्थिर नहीं होते हैं और तीव्र घातक सांद्रता संतृप्त वाष्प दबाव से अधिक होती है। लंबी-श्रृंखला (सी<sub>12</sub>-सी<sub>16</sub>) वसायुक्त मद्य शॉर्ट-चेन (सी से छोटा) की तुलना में कम स्वास्थ्य प्रभाव पैदा करते हैं<sub>12</sub>). शॉर्ट-चेन वसायुक्त मद्य को आंखों में परेशानी माना जाता है, जबकि लंबी श्रृंखला मद्य नहीं होती है।<ref name="Veenstra">{{cite journal|last1=Veenstra|first1=Gauke|first2=Catherine|last2=Webb|first3=Hans|last3=Sanderson|first4=Scott E.|last4=Belanger|first5=Peter|last5=Fisk|first6=Allen|last6=Nielson|first7=Yutaka|last7=Kasai|first8=Andreas|last8=Willing|first9=Scott|last9=Dyer|first10=David|last10=Penney|first11=Hans|last11=Certa|first12=Kathleen|last12=Stanton|first13=Richard|last13=Sedlak|title=लंबी श्रृंखला अल्कोहल का मानव स्वास्थ्य जोखिम मूल्यांकन|journal=Ecotoxicology and Environmental Safety|volume=72|issue=4|year=2009|url=https://pure.au.dk/portal/en/publications/human-health-risk-assessment-of-long-chain-alcohols-lcoh(0656c100-20d3-11dd-be51-000ea68e967b).html|issn=0147-6513|pages=1016–1030|doi=10.1016/j.ecoenv.2008.07.012|pmid=19237197}}</ref> वसायुक्त मद्य कोई त्वचा संवेदीकरण प्रदर्शित नहीं करते हैं। <रेफरी नाम = यूके/आईसीसीए>{{cite web|last=UK/ICCA|title=SIDS प्रारंभिक मूल्यांकन प्रोफ़ाइल|work=OECD Existing Chemicals Database|url=http://webnet.oecd.org/hpv/UI/handler.axd?id=03441f78-d135-4cab-b832-edfb1d0d677e|year=2006}}</ref> | ||
वसायुक्त मद्य के बार-बार संपर्क में आने से निम्न-स्तर की विषाक्तता उत्पन्न होती है और इस श्रेणी के कुछ यौगिक संपर्क या निम्न-श्रेणी के यकृत प्रभाव पर स्थानीय जलन पैदा कर सकते हैं (अनिवार्य रूप से रैखिक मद्य में इन प्रभावों की घटना की दर थोड़ी अधिक होती है)। साँस लेना और मौखिक जोखिम के साथ केंद्रीय तंत्रिका तंत्र पर कोई प्रभाव नहीं देखा गया है। 1-हेक्सानॉल और 1-ऑक्टेनॉल की बार-बार [[बोलस (दवा)]] खुराक के परीक्षणों ने सीएनएस अवसाद और प्रेरित श्वसन संकट के लिए संभावित दिखाया। परिधीय न्यूरोपैथी की कोई संभावना नहीं पाई गई है। चूहों में, अंतर्ग्रहण द्वारा नो ऑब्जर्वेबल प्रतिकूल प्रभाव स्तर ([[NOAEL]]) 200 mg/kg/दिन से 1000 mg/kg/दिन तक होता है। इस बात का कोई सबूत नहीं है कि वसायुक्त मद्य उत्परिवर्तजन हैं या प्रजनन विषाक्तता या बांझपन का कारण बनते हैं। वसायुक्त मद्य शरीर से प्रभावी ढंग से समाप्त हो जाते हैं, प्रतिधारण या जैव संचय की संभावना को सीमित करते हैं।<ref name= UK/ICCA /> | |||
[[आर्थिक सहयोग और विकास संगठन]] (OECD) के उच्च उत्पादन मात्रा वाले रसायन कार्यक्रम द्वारा निर्धारित इन रसायनों के उपभोक्ता उपयोग से उत्पन्न जोखिम के मार्जिन मानव स्वास्थ्य की सुरक्षा के लिए पर्याप्त हैं।<ref name=Veenstra /><ref name="Sanderson">{{cite journal|last1=Sanderson|first1=Hans |first2=Scott E.|last2= Belanger |first3=Peter R.|last3= Fisk |first4=Christoph|last4= Schäfers |first5=Gauke |last5=Veenstra |first6=Allen M. |last6=Nielsen |first7=Yutaka|last7= Kasai |first8=Andreas |last8=Willing |first9=Scott D.|last9= Dyer |first10=Kathleen|last10= Stanton |first11=Richard|last11= Sedlak|title=An overview of hazard and risk assessment of the OECD high production volume chemical category—Long chain alcohols [C<sub>6</sub>–C<sub>22</sub>] (LCOH)|journal=Ecotoxicology and Environmental Safety|date=May 2009|volume=72|issue=4|pages=973–979|doi=10.1016/j.ecoenv.2008.10.006|pmid=19038453 }}</ref> | [[आर्थिक सहयोग और विकास संगठन]] (OECD) के उच्च उत्पादन मात्रा वाले रसायन कार्यक्रम द्वारा निर्धारित इन रसायनों के उपभोक्ता उपयोग से उत्पन्न जोखिम के मार्जिन मानव स्वास्थ्य की सुरक्षा के लिए पर्याप्त हैं।<ref name=Veenstra /><ref name="Sanderson">{{cite journal|last1=Sanderson|first1=Hans |first2=Scott E.|last2= Belanger |first3=Peter R.|last3= Fisk |first4=Christoph|last4= Schäfers |first5=Gauke |last5=Veenstra |first6=Allen M. |last6=Nielsen |first7=Yutaka|last7= Kasai |first8=Andreas |last8=Willing |first9=Scott D.|last9= Dyer |first10=Kathleen|last10= Stanton |first11=Richard|last11= Sedlak|title=An overview of hazard and risk assessment of the OECD high production volume chemical category—Long chain alcohols [C<sub>6</sub>–C<sub>22</sub>] (LCOH)|journal=Ecotoxicology and Environmental Safety|date=May 2009|volume=72|issue=4|pages=973–979|doi=10.1016/j.ecoenv.2008.10.006|pmid=19038453 }}</ref> | ||
Line 49: | Line 49: | ||
=== पर्यावरण === | === पर्यावरण === | ||
श्रृंखला की लंबाई तक वसायुक्त | श्रृंखला की लंबाई तक वसायुक्त मद्य C<sub>18</sub> बायोडिग्रेडेबल हैं, सी तक की लंबाई के साथ<sub>16</sub> 10 दिनों के भीतर पूरी तरह से बायोडिग्रेडिंग। चेन सी<sub>16</sub> सी के लिए<sub>18</sub> 10 दिनों में 62% से 76% तक बायोडिग्रेड पाए गए। सी से बड़ी चेन<sub>18</sub> 10 दिनों में 37% तक गिरावट पाई गई। अपशिष्ट जल उपचार संयंत्रों के क्षेत्र अध्ययनों से पता चला है कि 99% वसायुक्त मद्य की लंबाई सी<sub>12</sub>-सी<sub>18</sub> हटा दिए जाते हैं। <रेफरी नाम = यूके/आईसीसीए /> | ||
फुगसिटी मॉडलिंग का उपयोग करते हुए भाग्य की भविष्यवाणी से पता चला है कि सी की श्रृंखला लंबाई वाले | फुगसिटी मॉडलिंग का उपयोग करते हुए भाग्य की भविष्यवाणी से पता चला है कि सी की श्रृंखला लंबाई वाले वसायुक्त अल्कोहल<sub>10</sub> और तलछट में पानी के विभाजन में अधिक। लंबाई सी<sub>14</sub> और ऊपर के रिलीज होने पर हवा में रहने की भविष्यवाणी की जाती है। मॉडलिंग से पता चलता है कि प्रत्येक प्रकार की वसायुक्त मद्य पर्यावरण रिलीज पर स्वतंत्र रूप से प्रतिक्रिया देगी। <रेफरी नाम = यूके/आईसीसीए /> | ||
===जलीय जीव === | ===जलीय जीव === | ||
[[मछली]], [[अकशेरूकीय]] और [[शैवाल]] | [[मछली]], [[अकशेरूकीय]] और [[शैवाल]] वसायुक्त मद्य के साथ विषाक्तता के समान स्तर का अनुभव करते हैं, हालांकि यह श्रृंखला की लंबाई पर निर्भर है जिसमें छोटी श्रृंखला में अधिक विषाक्तता क्षमता होती है। लंबी श्रृंखला की लंबाई जलीय जीवों के लिए कोई विषाक्तता नहीं दिखाती है। <रेफरी नाम = यूके/आईसीसीए /> | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 72: | Line 72: | ||
== सामान्य नामों वाली तालिका == | == सामान्य नामों वाली तालिका == | ||
यह तालिका कुछ अल्काइल | यह तालिका कुछ अल्काइल मद्य सूचीबद्ध करती है। ध्यान दें कि सामान्य तौर पर कार्बन परमाणुओं की सम संख्या वाले मद्य के सामान्य नाम होते हैं, क्योंकि वे प्रकृति में पाए जाते हैं, जबकि कार्बन परमाणुओं की विषम संख्या वाले मद्य का सामान्य नाम नहीं होता है। | ||
{| class="wikitable" | {| class="wikitable" | ||
! Name !! Carbon atoms !! Branches/saturation !! Formula | ! Name !! Carbon atoms !! Branches/saturation !! Formula |
Revision as of 22:23, 24 April 2023
वसायुक्त मद्य (या लंबी-श्रृंखला मद्य) सामान्यतः उच्च-आणविक-भार, सीधी-श्रृंखला प्राथमिक मद्य होते हैं, लेकिन प्राकृतिक वसा और तेलों से प्राप्त 4-6 कार्बन से लेकर 22-26 तक भी हो सकते हैं। सटीक श्रृंखला की लंबाई स्रोत के साथ बदलती रहती है।[1][2] कुछ व्यावसायिक रूप से महत्वपूर्ण वसायुक्त मद्य सल्फ़ेट मद्य, स्टीयरल मद्य और ओलेल मद्य हैं। वे रंगहीन तैलीय तरल पदार्थ (कम कार्बन संख्या के लिए) या मोमयुक्त ठोस होते हैं, हालांकि अशुद्ध नमूने पीले दिखाई दे सकते हैं। वसायुक्त मद्य में सामान्यतः कार्बन परमाणुओं की एक समान संख्या होती है और एक मद्य समूह-OH) अवसानक कार्बन से जुड़ा होता है। कुछ असंतृप्त और कुछ शाखित होते हैं। वे उद्योग में व्यापक रूप से उपयोग किए जाते हैं। वसायुक्त अम्ल के साथ, उन्हें प्रायः अणु में कार्बन परमाणुओं की संख्या से सामान्य रूप से संदर्भित किया जाता है, जैसे C12 मद्य, जो कि 12 कार्बन युक्त मद्य है, उदाहरण के लिए डोडेकेनॉल है।
उत्पादन और घटना
1900 के प्रारम्भ में वसायुक्त मद्य व्यावसायिक रूप से उपलब्ध हो गए। वे मूल रूप से बुवेल्ट-ब्लैंक कमी प्रक्रिया द्वारा सोडियम के साथ मोम एस्टर की कमी से प्राप्त किए गए थे। 1930 के दशक में उत्प्रेरक हाइड्रोजनीकरण का व्यावसायीकरण किया गया था, जिसने सामान्यतः लंबे, मद्य के लिए वसायुक्त अम्ल एस्टर के रूपांतरण की अनुमति दी थी। 1940 और 1950 के दशक में, पेट्रोरसायन रसायनों का एक महत्वपूर्ण स्रोत बन गया, और कार्ल ज़िगलर ने ईथीलीन के बहुलकीकरण की खोज की थी। इन दो विकासों ने कृत्रिम वसायुक्त मद्य का रास्ता खोल दिया।
प्राकृतिक स्रोतों से
प्रकृति में अधिकांश वसायुक्त मद्य मोम के रूप में पाए जाते हैं, जो वसा अम्ल और वसायुक्त मद्य के एस्टर होते हैं।[1] वे किटाणु, पौधों और जानवरों द्वारा उपापचयी पानी और ऊर्जा के स्रोत के रूप में, प्रतिध्वनि निर्धारण लेंस (समुद्री स्तनधारियों) और मोम के रूप में ऊष्मा रोधन के लिए (पौधों और कीड़ों में) उत्पन्न होते हैं।[3] वसायुक्त मद्य के पारंपरिक स्रोत बड़े मापक्रम पर विभिन्न वनस्पति तेल रहे हैं, जो बड़े मापक्रम पर फीडस्टॉक बने हुए हैं। पशु वसा (लंबा) ऐतिहासिक महत्व के थे, विशेष रूप से व्हेल का तेल, हालांकि अब वे बड़े मापक्रम पर उपयोग नहीं किए जाते हैं। टैलो मद्य की काफी संकीर्ण श्रेणी का उत्पादन करते हैं, मुख्य रूप से C16-C18, जबकि पौधों के स्रोत मद्य की एक विस्तृत श्रृंखला का उत्पादन करते हैं (C6-C24), उन्हें पसंदीदा स्रोत बनाते हैं। मद्य ट्राइग्लिसराइड्स (वसायुक्त अम्ल ट्राइस्टर्स) से प्राप्त होते हैं, जो तेल का बड़ा हिस्सा बनाते हैं। इस प्रक्रिया में मिथाइल एस्टर देने के लिए ट्राइग्लिसराइड्स का ट्रान्सएस्टरीफिकेशन सम्मिलित है जो तब वसायुक्त मद्य का उत्पादन करने के लिए हाइड्रोजनीकृत होता है।[4] उच्च मद्य (C20-C22) राई या सरसों के बीज के तेल से प्राप्त किया जा सकता है। मध्य कट मद्य नारियल के तेल से प्राप्त किया जाता है (C12-C14) या ताड़ की गिरी का तेल (C16-C18)।
शैलरसायन स्रोतों से
शैलरसायन स्रोतों से वसायुक्त मद्य भी तैयार किए जाते हैं। ज़िगलर प्रक्रिया में, एथिलीन ऑलिगोमेराइज़ किया जाता है, जिसके बाद ट्राइएथिल एल्युमिनियम का उपयोग किया जाता है, जिसके बाद वायु ऑक्सीकरण होता है। यह प्रक्रिया सम-संख्या वाले मद्य प्रदान करती है:
- Al(C2H5)3 + 18 C2H4 → Al(C14H29)3
- Al(C14H29)3 + 3⁄2 O2 + 3⁄2 H2O → 3 HOC14H29 + 1⁄2 Al2O3
वैकल्पिक रूप से एथिलीन को अल्केन्स के मिश्रण देने के लिए ऑलिगोमेराइज किया जा सकता है, जो कि हाइड्रोफॉर्मिलन के अधीन हैं, यह प्रक्रिया विषम संख्या वाले एल्डिहाइड की पुष्टि करती है, जो बाद में हाइड्रोजनीकृत होती है। उदाहरण के लिए, 1-डिसीन से, हाइड्रोफॉर्मिलन C11 मद्य देता है:
- C8H17CH=CH2 + H2 + CO → C8H17CH2CH2CHO
- C8H17CH2CH2CHO + H2 → C8H17CH2CH2CH2OH
शेल हायर ओलेफ़िन प्रक्रिया में, एल्केन ओलिगोमर्स के प्रारंभिक मिश्रण में श्रृंखला-लंबाई वितरण को समायोजित किया जाता है ताकि बाज़ार की मांग से अधिक निकटता से मिलान किया जा सके। शेल यह एक मध्यवर्ती ओलेफिन विनिमय प्रतिक्रिया के माध्यम से करता है।[5] परिणामी मिश्रण को बाद के चरण में विभाजित और हाइड्रोफॉर्मिलेटेड/हाइड्रोजनीकृत किया जाता है।
अनुप्रयोग
वसायुक्त मद्य का उपयोग मुख्य रूप से डिटर्जेंट और पृष्ठसक्रियकारक के उत्पादन में किया जाता है। वे सौंदर्य प्रसाधन, खाद्य पदार्थ और औद्योगिक विलायक के घटक भी हैं। उनके उभयलिंगी प्रकृति के कारण, वसायुक्त मद्य नॉनऑनिक सर्फेक्टेंट के रूप में व्यवहार करते हैं। वे सौंदर्य प्रसाधन और खाद्य उद्योग में सह-पायसीकारकों, कम करनेवाला और थिकनेस के रूप में उपयोग करते हैं। व्यावसायिक रूप से उपयोग किए जाने वाले वसायुक्त मद्य का लगभग 50% प्राकृतिक मूल का होता है, शेष कृत्रिम होता है।[1]
पोषण
वनस्पति मोम और मोम से प्राप्त बहुत लंबी श्रृंखला वसायुक्त मद्य (वीएलसीएफए) मनुष्यों में प्लाज्मा कोलेस्ट्रॉल को कम करने की सूचना दी गई है। वे अपरिष्कृत अनाज के दानों, मोम और कई पौधों से प्राप्त खाद्य पदार्थों में पाए जा सकते हैं। रिपोर्ट बताती है कि मिश्रित सी के प्रति दिन 5-20 मिलीग्राम24-सी34 मद्य, जिसमें ऑक्टाकोसानॉल और triacontanol सम्मिलित हैं, कम घनत्व वाले लिपोप्रोटीन (एलडीएल) कोलेस्ट्रॉल को 21% -29% तक कम करते हैं और उच्च घनत्व वाले लिपोप्रोटीन कोलेस्ट्रॉल को 8% -15% तक बढ़ाते हैं।[citation needed] वैक्स एस्टर को पित्त नमक पर निर्भर अग्नाशयी esterase ़ द्वारा हाइड्रोलाइज्ड किया जाता है, जो लंबी-श्रृंखला मद्य और वसायुक्त अम्ल जारी करता है जो जठरांत्र पथ में अवशोषित होते हैं। fibroblasts ्स में वसायुक्त मद्य चयापचय के अध्ययन से पता चलता है कि बहुत लंबी-श्रृंखला वाले वसायुक्त मद्य, वसायुक्त एल्डिहाइड और वसायुक्त अम्ल एक वसायुक्त मद्य चक्र में विपरीत रूप से अंतर-परिवर्तित होते हैं। इन यौगिकों का चयापचय कई विरासत में यहां तक की मानव पेरोक्सीसोमल विकारों में बिगड़ा हुआ है, जिसमें एड्रेनोलुकोडिस्ट्रोफी और सोजोग्रेन-लार्सन सिंड्रोम सम्मिलित हैं।[6]
सुरक्षा
मानव स्वास्थ्य
वसायुक्त मद्य LD50|LD के साथ अपेक्षाकृत सौम्य पदार्थ होते हैं50(मौखिक, चूहा) हेक्सानॉल के लिए 3.1–4 g/kg से लेकर ऑक्टाडेकेनॉल के लिए 6–8 g/kg तक।[1]50 किलो के व्यक्ति के लिए, ये मान 100 ग्राम से अधिक हो जाते हैं। तीव्र और बार-बार होने वाले जोखिम के परीक्षणों ने वसायुक्त मद्य के साँस लेना, मौखिक या त्वचीय जोखिम से विषाक्तता के निम्न स्तर का खुलासा किया है। वसायुक्त मद्य बहुत अस्थिर नहीं होते हैं और तीव्र घातक सांद्रता संतृप्त वाष्प दबाव से अधिक होती है। लंबी-श्रृंखला (सी12-सी16) वसायुक्त मद्य शॉर्ट-चेन (सी से छोटा) की तुलना में कम स्वास्थ्य प्रभाव पैदा करते हैं12). शॉर्ट-चेन वसायुक्त मद्य को आंखों में परेशानी माना जाता है, जबकि लंबी श्रृंखला मद्य नहीं होती है।[7] वसायुक्त मद्य कोई त्वचा संवेदीकरण प्रदर्शित नहीं करते हैं। <रेफरी नाम = यूके/आईसीसीए>UK/ICCA (2006). "SIDS प्रारंभिक मूल्यांकन प्रोफ़ाइल". OECD Existing Chemicals Database.</ref>
वसायुक्त मद्य के बार-बार संपर्क में आने से निम्न-स्तर की विषाक्तता उत्पन्न होती है और इस श्रेणी के कुछ यौगिक संपर्क या निम्न-श्रेणी के यकृत प्रभाव पर स्थानीय जलन पैदा कर सकते हैं (अनिवार्य रूप से रैखिक मद्य में इन प्रभावों की घटना की दर थोड़ी अधिक होती है)। साँस लेना और मौखिक जोखिम के साथ केंद्रीय तंत्रिका तंत्र पर कोई प्रभाव नहीं देखा गया है। 1-हेक्सानॉल और 1-ऑक्टेनॉल की बार-बार बोलस (दवा) खुराक के परीक्षणों ने सीएनएस अवसाद और प्रेरित श्वसन संकट के लिए संभावित दिखाया। परिधीय न्यूरोपैथी की कोई संभावना नहीं पाई गई है। चूहों में, अंतर्ग्रहण द्वारा नो ऑब्जर्वेबल प्रतिकूल प्रभाव स्तर (NOAEL) 200 mg/kg/दिन से 1000 mg/kg/दिन तक होता है। इस बात का कोई सबूत नहीं है कि वसायुक्त मद्य उत्परिवर्तजन हैं या प्रजनन विषाक्तता या बांझपन का कारण बनते हैं। वसायुक्त मद्य शरीर से प्रभावी ढंग से समाप्त हो जाते हैं, प्रतिधारण या जैव संचय की संभावना को सीमित करते हैं।[8]
आर्थिक सहयोग और विकास संगठन (OECD) के उच्च उत्पादन मात्रा वाले रसायन कार्यक्रम द्वारा निर्धारित इन रसायनों के उपभोक्ता उपयोग से उत्पन्न जोखिम के मार्जिन मानव स्वास्थ्य की सुरक्षा के लिए पर्याप्त हैं।[7][9]
पर्यावरण
श्रृंखला की लंबाई तक वसायुक्त मद्य C18 बायोडिग्रेडेबल हैं, सी तक की लंबाई के साथ16 10 दिनों के भीतर पूरी तरह से बायोडिग्रेडिंग। चेन सी16 सी के लिए18 10 दिनों में 62% से 76% तक बायोडिग्रेड पाए गए। सी से बड़ी चेन18 10 दिनों में 37% तक गिरावट पाई गई। अपशिष्ट जल उपचार संयंत्रों के क्षेत्र अध्ययनों से पता चला है कि 99% वसायुक्त मद्य की लंबाई सी12-सी18 हटा दिए जाते हैं। <रेफरी नाम = यूके/आईसीसीए />
फुगसिटी मॉडलिंग का उपयोग करते हुए भाग्य की भविष्यवाणी से पता चला है कि सी की श्रृंखला लंबाई वाले वसायुक्त अल्कोहल10 और तलछट में पानी के विभाजन में अधिक। लंबाई सी14 और ऊपर के रिलीज होने पर हवा में रहने की भविष्यवाणी की जाती है। मॉडलिंग से पता चलता है कि प्रत्येक प्रकार की वसायुक्त मद्य पर्यावरण रिलीज पर स्वतंत्र रूप से प्रतिक्रिया देगी। <रेफरी नाम = यूके/आईसीसीए />
जलीय जीव
मछली, अकशेरूकीय और शैवाल वसायुक्त मद्य के साथ विषाक्तता के समान स्तर का अनुभव करते हैं, हालांकि यह श्रृंखला की लंबाई पर निर्भर है जिसमें छोटी श्रृंखला में अधिक विषाक्तता क्षमता होती है। लंबी श्रृंखला की लंबाई जलीय जीवों के लिए कोई विषाक्तता नहीं दिखाती है। <रेफरी नाम = यूके/आईसीसीए />
Chain size | Acute toxicity for fish | Chronic toxicity for fish |
---|---|---|
<C11 | 1–100 mg/L | 0.1–1.0 mg/L |
C11–C13 | 0.1–1.0 mg/L | 0.1–<1.0 mg/L |
C14–C15 | — | 0.01 mg/L |
>C16 | – | – |
रसायनों की इस श्रेणी का मूल्यांकन आर्थिक सहयोग और विकास संगठन (OECD) के उच्च उत्पादन मात्रा वाले रसायन कार्यक्रम के तहत किया गया था। किसी अस्वीकार्य पर्यावरणीय जोखिम की पहचान नहीं की गई।[9]
सामान्य नामों वाली तालिका
यह तालिका कुछ अल्काइल मद्य सूचीबद्ध करती है। ध्यान दें कि सामान्य तौर पर कार्बन परमाणुओं की सम संख्या वाले मद्य के सामान्य नाम होते हैं, क्योंकि वे प्रकृति में पाए जाते हैं, जबकि कार्बन परमाणुओं की विषम संख्या वाले मद्य का सामान्य नाम नहीं होता है।
Name | Carbon atoms | Branches/saturation | Formula |
---|---|---|---|
tert-Butyl alcohol | 4 carbon atoms | branched | C4H10O |
tert-Amyl alcohol | 5 carbon atoms | branched | C5H12O |
3-Methyl-3-pentanol | 6 carbon atoms | branched | C6H14O |
1-Heptanol (enanthic alcohol) | 7 carbon atoms | C7H16O | |
1-Octanol (capryl alcohol) | 8 carbon atoms | C8H18O | |
Pelargonic alcohol (1-nonanol) | 9 carbon atoms | C9H20O | |
1-Decanol (decyl alcohol, capric alcohol) | 10 carbon atoms | C10H22O | |
Undecyl alcohol (1-undecanol, undecanol, Hendecanol) | 11 carbon atoms | C11H24O | |
Lauryl alcohol (dodecanol, 1-dodecanol) | 12 carbon atoms | C12H26O | |
Tridecyl alcohol (1-tridecanol, tridecanol, isotridecanol) | 13 carbon atoms | C13H28O | |
Myristyl alcohol (1-tetradecanol) | 14 carbon atoms | C14H30O | |
Pentadecyl alcohol (1-pentadecanol, pentadecanol) | 15 carbon atoms | C15H32O | |
Cetyl alcohol (1-hexadecanol) | 16 carbon atoms | C16H34O | |
Palmitoleyl alcohol (cis-9-hexadecen-1-ol) | 16 carbon atoms | unsaturated | C16H32O |
Heptadecyl alcohol (1-n-heptadecanol, heptadecanol) | 17 carbon atoms | C17H36O | |
Stearyl alcohol (1-octadecanol) | 18 carbon atoms | C18H38O | |
Oleyl alcohol (1-octadecenol) | 18 carbon atoms | unsaturated | C18H36O |
Nonadecyl alcohol (1-nonadecanol) | 19 carbon atoms | C19H40O | |
Arachidyl alcohol (1-eicosanol) | 20 carbon atoms | C20H42O | |
Heneicosyl alcohol (1-heneicosanol) | 21 carbon atoms | C21H44O | |
Behenyl alcohol (1-docosanol) | 22 carbon atoms | C22H46O | |
Erucyl alcohol (cis-13-docosen-1-ol) | 22 carbon atoms | unsaturated | C22H44O |
Lignoceryl alcohol (1-tetracosanol) | 24 carbon atoms | C24H50O | |
Ceryl alcohol (1-hexacosanol) | 26 carbon atoms | C26H54O | |
1-Heptacosanol | 27 carbon atoms | C27H56O | |
Montanyl alcohol, cluytyl alcohol, or 1-octacosanol | 28 carbon atoms | C28H58O | |
1-Nonacosanol | 29 carbon atoms | C29H60O | |
Myricyl alcohol, melissyl alcohol, or 1-triacontanol | 30 carbon atoms | C30H62O | |
1-Dotriacontanol (Lacceryl alcohol) | 32 carbon atoms | C32H66O | |
Geddyl alcohol (1-tetratriacontanol) | 34 carbon atoms | C34H70O | |
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Noweck, Klaus; Grafahrend, Wolfgang. "Fatty Alcohols". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a10_277.pub2.
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) ""Fatty alcohol"". doi:10.1351/goldbook.F02330
- ↑ Mudge, Stephen; Meier-Augenstein, Wolfram; Eadsforth, Charles; DeLeo, Paul (2010). "What contribution do detergent fatty alcohols make to sewage discharges and the marine environment?". Journal of Environmental Monitoring. 12 (10): 1846–1856. doi:10.1039/C0EM00079E. PMID 20820625.
- ↑ Kreutzer, Udo R. (February 1984). "प्राकृतिक वसा और तेलों पर आधारित फैटी अल्कोहल का निर्माण". Journal of the American Oil Chemists' Society. 61 (2): 343–348. doi:10.1007/BF02678792. S2CID 84849226.
- ↑ एशफोर्ड डिक्शनरी ऑफ इंडस्ट्रियल केमिकल्स (3rd ed.). 2011. pp. 6706–6711.[ISBN missing]
- ↑ Hargrove, James L.; Greenspan, Phillip; Hartle, Diane K. (2004). "डायटरी वैक्स से वेरी लॉन्ग चेन फैटी अल्कोहल और एसिड का पोषण संबंधी महत्व और मेटाबोलिज्म". Exp. Biol. Med. 229 (3): 215–226. doi:10.1177/153537020422900301. PMID 14988513. S2CID 38905297.
- ↑ 7.0 7.1 Veenstra, Gauke; Webb, Catherine; Sanderson, Hans; Belanger, Scott E.; Fisk, Peter; Nielson, Allen; Kasai, Yutaka; Willing, Andreas; Dyer, Scott; Penney, David; Certa, Hans; Stanton, Kathleen; Sedlak, Richard (2009). "लंबी श्रृंखला अल्कोहल का मानव स्वास्थ्य जोखिम मूल्यांकन". Ecotoxicology and Environmental Safety. 72 (4): 1016–1030. doi:10.1016/j.ecoenv.2008.07.012. ISSN 0147-6513. PMID 19237197.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedUK/ICCA
- ↑ 9.0 9.1 Sanderson, Hans; Belanger, Scott E.; Fisk, Peter R.; Schäfers, Christoph; Veenstra, Gauke; Nielsen, Allen M.; Kasai, Yutaka; Willing, Andreas; Dyer, Scott D.; Stanton, Kathleen; Sedlak, Richard (May 2009). "An overview of hazard and risk assessment of the OECD high production volume chemical category—Long chain alcohols [C6–C22] (LCOH)". Ecotoxicology and Environmental Safety. 72 (4): 973–979. doi:10.1016/j.ecoenv.2008.10.006. PMID 19038453.
बाहरी संबंध
- Cyberlipid. "Fatty Alcohols and Aldehydes". Archived from the original on 2012-06-25. Retrieved 2007-02-06. General overview of fatty alcohols, with references.
- CONDEA. "Dr. Z Presents All about fatty alcohols" (PDF). Archived from the original (PDF) on 2007-09-27. Retrieved 2007-02-06.