रम्ब रेखा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 28: Line 28:
एक मिथ्याबोध उत्पन्न हो सकता है क्योंकि शब्द "रूम्ब" का प्रयोग में आने पर इसका कोई सटीक अर्थ नहीं था। यह [[इन्द्रोंसे लाइन|विंडरोज रेखाओं]] के लिए समान रूप से अच्छी तरह से प्रयुक्त होता है क्योंकि यह एकदिश नौपथ के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से प्रयुक्त होता है और इसका अर्थ केवल वही होता है जो एक नाविक ने अपरिवर्ती दिक्कोण के साथ नौकायन करने के लिए जो कुछ भी किया है, जो कि सभी अशुद्धियों के साथ होता है। इसलिए, रूम्ब [[पोर्टोलन|पत्तन दर्शिका]] पर सीधी रेखाओं पर अनुप्रयुक्त होता था, जब पत्तन दर्शिका उपयोग में होते थे, साथ ही सदैव मर्केटर रेखाचित्र पर  सीधी रेखाओं पर अनुप्रयुक्त होते था। छोटी दूरी के लिए पत्तन दर्शिका "रूम्ब" अर्थपूर्ण रूप से मर्केटर रूम्ब से भिन्न नहीं होते हैं, परन्तु इन दिनों "रूम्ब" गणितीय रूप से सटीक "एकदिश नौपथ" का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से समानार्थी बना दिया गया है।
एक मिथ्याबोध उत्पन्न हो सकता है क्योंकि शब्द "रूम्ब" का प्रयोग में आने पर इसका कोई सटीक अर्थ नहीं था। यह [[इन्द्रोंसे लाइन|विंडरोज रेखाओं]] के लिए समान रूप से अच्छी तरह से प्रयुक्त होता है क्योंकि यह एकदिश नौपथ के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से प्रयुक्त होता है और इसका अर्थ केवल वही होता है जो एक नाविक ने अपरिवर्ती दिक्कोण के साथ नौकायन करने के लिए जो कुछ भी किया है, जो कि सभी अशुद्धियों के साथ होता है। इसलिए, रूम्ब [[पोर्टोलन|पत्तन दर्शिका]] पर सीधी रेखाओं पर अनुप्रयुक्त होता था, जब पत्तन दर्शिका उपयोग में होते थे, साथ ही सदैव मर्केटर रेखाचित्र पर  सीधी रेखाओं पर अनुप्रयुक्त होते था। छोटी दूरी के लिए पत्तन दर्शिका "रूम्ब" अर्थपूर्ण रूप से मर्केटर रूम्ब से भिन्न नहीं होते हैं, परन्तु इन दिनों "रूम्ब" गणितीय रूप से सटीक "एकदिश नौपथ" का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से समानार्थी बना दिया गया है।


जैसा कि लियो बग्रो कहते हैं:<ref name="Bagrow2010">{{cite book|author=Leo Bagrow|title=कार्टोग्राफी का इतिहास|url=https://books.google.com/books?id=OBeB4tDmJv8C&pg=PA65|year=2010|publisher=Transaction Publishers|isbn=978-1-4128-2518-4|page=65}}</ref> शब्द ('रूम्ब रेखा') इस अवधि के समुद्र-रेखा चित्र पर गलत तरीके से अनुप्रयुक्त किया गया है, क्योंकि एक एकदिश नौपथ एक सटीक पाठ्यक्रम देता है, जब रेखा चित्र एक उपयुक्त प्रक्षेपण पर खींचा जाता है। मानचित्रमितीय जांच से पता चला है कि प्रारम्भिक रेखा चित्र में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पत्तन दर्शिका' नाम रखते हैं।
जैसा कि लियो बग्रो कहते हैं:<ref name="Bagrow2010">{{cite book|author=Leo Bagrow|title=कार्टोग्राफी का इतिहास|url=https://books.google.com/books?id=OBeB4tDmJv8C&pg=PA65|year=2010|publisher=Transaction Publishers|isbn=978-1-4128-2518-4|page=65}}</ref> शब्द ('रूम्ब रेखा') इस अवधि के समुद्र-रेखा चित्र पर अनुचित तरीके से अनुप्रयुक्त किया गया है, क्योंकि एक एकदिश नौपथ केवल एक सटीक पाठ्यक्रम देता है, जब रेखाचित्र एक उपयुक्त प्रक्षेपण पर खींचा जाता है। मानचित्रमितीय जांच से पता चला है कि प्रारम्भिक रेखाचित्रों में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पत्तन दर्शिका' नाम रखते हैं।


== गणितीय विवरण ==
== गणितीय विवरण ==
त्रिज्या 1 के वृत्त के लिए, दिगंशीय कोण {{mvar|λ}}, ध्रुवीय कोण {{math|−{{sfrac|π|2}} ≤ ''φ'' ≤ {{sfrac|π|2}}}} (अक्षांश के अनुरूप यहां परिभाषित), और कार्तीय इकाई  सदिश # मानक आधार में एक सदिश का प्रतिनिधित्व करना {{math|'''i'''}}, {{math|'''j'''}}, और {{math|'''k'''}} का उपयोग त्रिज्या सदिश लिखने के लिए किया जा सकता है {{math|'''r'''}} जैसा
त्रिज्या 1 के वृत्त के लिए, दिगंशीय कोण {{mvar|λ}}, ध्रुवीय कोण {{math|−{{sfrac|π|2}} ≤ ''φ'' ≤ {{sfrac|π|2}}}} (अक्षांश के अनुरूप यहां परिभाषित) और कार्तीय इकाई  सदिश {{math|'''i'''}}, {{math|'''j'''}}, और {{math|'''k'''}} का उपयोग त्रिज्या सदिश {{math|'''r'''}} को लिखने के लिए किया जा सकता है।


:<math>\mathbf{r}(\lambda,\varphi) = (\cos{\lambda} \cdot \cos{\varphi})  \mathbf{i} + (\sin{\lambda} \cdot \cos{\varphi})  \mathbf{j} + (\sin{\varphi}) \mathbf{k} \, .</math>
:<math>\mathbf{r}(\lambda,\varphi) = (\cos{\lambda} \cdot \cos{\varphi})  \mathbf{i} + (\sin{\lambda} \cdot \cos{\varphi})  \mathbf{j} + (\sin{\varphi}) \mathbf{k} \, .</math>
लंबकोणीय इकाई सदिश रिक्त स्थान दिगंशीय और वृत्त के ध्रुवीय दिशाओं में लिखा जा सकता है
वृत्त के दिगंशीय और ध्रुवीय दिशाओं में लंबकोणीय इकाई सदिश लिखे जा सकते हैं;


:<math>\begin{align}
:<math>\begin{align}
Line 40: Line 40:
\boldsymbol{\hat\varphi}(\lambda,\varphi) &= \frac{\partial\mathbf{r}}{\partial\varphi} = (-\cos{\lambda} \cdot \sin{\varphi}) \mathbf{i} + (-\sin{\lambda} \cdot \sin{\varphi}) \mathbf{j} + (\cos{\varphi}) \mathbf{k} \, ,
\boldsymbol{\hat\varphi}(\lambda,\varphi) &= \frac{\partial\mathbf{r}}{\partial\varphi} = (-\cos{\lambda} \cdot \sin{\varphi}) \mathbf{i} + (-\sin{\lambda} \cdot \sin{\varphi}) \mathbf{j} + (\cos{\varphi}) \mathbf{k} \, ,
\end{align}</math>
\end{align}</math>
जिसकी अदिश गुणनफल ज्यामितीय परिभाषा है
जिनके पास अदिश गुणनफल है


:<math>\boldsymbol{\hat\lambda} \cdot \boldsymbol{\hat\varphi} = \boldsymbol{\hat\lambda} \cdot \mathbf{r} = \boldsymbol{\hat\varphi} \cdot \mathbf{r} = 0 \, .</math>
:<math>\boldsymbol{\hat\lambda} \cdot \boldsymbol{\hat\varphi} = \boldsymbol{\hat\lambda} \cdot \mathbf{r} = \boldsymbol{\hat\varphi} \cdot \mathbf{r} = 0 \, </math>


{{math|'''λ̂'''}} अपरिवर्ती के लिए {{mvar|φ}} अक्षांश के समानांतर का पता लगाता है, जबकि {{math|'''φ̂'''}} अपरिवर्ती के लिए {{mvar|λ}} देशांतर के एक भूमध्य रेखा का पता लगाता है, और साथ में वे वृत्त के लिए एक तल स्पर्शरेखा उत्पन्न करते हैं।
नियतांक {{mvar|φ}} के लिए {{math|'''λ̂'''}} अक्षांश के समानांतर का पता लगाता है, जबकि नियतांक {{mvar|λ}} के लिए {{math|'''φ̂'''}} देशांतर के एक भूमध्य रेखा का पता लगाता है और साथ में वे वृत्त के लिए एक तल स्पर्शरेखा उत्पन्न करते हैं।


इकाई सदिश
इकाई सदिश
:<math>\mathbf{\boldsymbol{\hat\beta}}(\lambda,\varphi) = (\sin{\beta}) \boldsymbol{\hat\lambda} + (\cos{\beta}) \boldsymbol{\hat\varphi}</math>
:<math>\mathbf{\boldsymbol{\hat\beta}}(\lambda,\varphi) = (\sin{\beta}) \boldsymbol{\hat\lambda} + (\cos{\beta}) \boldsymbol{\hat\varphi}</math>
एक स्थिर कोण है {{mvar|β}} इकाई सदिश के साथ {{math|'''φ̂'''}} किसी के लिए {{mvar|λ}} और {{mvar|φ}}, क्योंकि उनका अदिश गुणनफल है
किसी भी {{mvar|λ}} और {{mvar|φ}} के लिए इकाई सदिश {{math|'''φ̂'''}} के साथ एक स्थिर कोण {{mvar|β}} है, क्योंकि उनका अदिश गुणनफल है।


:<math>\boldsymbol{\hat\beta} \cdot \boldsymbol{\hat\varphi} = \cos{\beta} \, .</math>
:<math>\boldsymbol{\hat\beta} \cdot \boldsymbol{\hat\varphi} = \cos{\beta} \, .</math>
एक एकदिश नौपथ को वृत्त पर एक वक्र के रूप में परिभाषित किया जाता है जिसमें एक स्थिर कोण होता है {{mvar|β}} देशांतर के सभी याम्योत्तरों के साथ, और इसलिए इकाई सदिश के समानांतर होना चाहिए {{math|'''β̂'''}}. नतीजतन, एक अंतर लंबाई {{mvar|ds}} एकदिश नौपथ के साथ एक अंतर विस्थापन उत्पन्न करेगा
एक एकदिश नौपथ को वृत्त पर एक वक्र के रूप में परिभाषित किया जाता है जिसमें देशांतर के सभी याम्योत्तरों के साथ एक स्थिर कोण {{mvar|β}} होता है और इसलिए इकाई सदिश {{math|'''β̂'''}} के समानांतर होना चाहिए। फलस्वरूप, एकदिश नौपथ के साथ एक अंतर लंबाई {{mvar|ds}} एक अंतर विस्थापन उत्पन्न करेगा।


:<math>\begin{align}
:<math>\begin{align}
Line 62: Line 62:
\varphi(\lambda\,|\,\beta,\lambda_0,\varphi_0) &= \operatorname{gd} \big((\lambda - \lambda_0) \cot\beta + \operatorname{gd}^{-1}\varphi_0\big)
\varphi(\lambda\,|\,\beta,\lambda_0,\varphi_0) &= \operatorname{gd} \big((\lambda - \lambda_0) \cot\beta + \operatorname{gd}^{-1}\varphi_0\big)
\end{align}</math>
\end{align}</math>
जहाँ <math>\operatorname{gd}</math> और <math>\operatorname{gd}^{-1}</math> [[गुडरमैनियन समारोह|गुडेरमैनियन फलन]] और इसके व्युत्क्रम हैं, <math>\operatorname{gd}\psi = \arctan(\sinh\psi),</math> <math>\operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi),</math> और <math>\operatorname{arsinh}</math> [[उलटा अतिशयोक्तिपूर्ण कार्य|व्युत्क्रम अतिपरवलीय द्विज्या]] है।
जहाँ <math>\operatorname{gd}</math> और <math>\operatorname{gd}^{-1}</math> [[गुडरमैनियन समारोह|गुडेरमैनियन फलन]] और इसके व्युत्क्रम, <math>\operatorname{gd}\psi = \arctan(\sinh\psi),</math> <math>\operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi)</math> हैं और <math>\operatorname{arsinh}</math> [[उलटा अतिशयोक्तिपूर्ण कार्य|व्युत्क्रम अतिपरवलीय द्विज्या]] है।


इस मध्य के संबंध के साथ {{mvar|λ}} और {{mvar|φ}}, त्रिज्या सदिश एक चर का प्राचलिक फलन बन जाता है, जो वृत्त पर एकदिश नौपथ का पता लगाता है:
{{mvar|λ}} और {{mvar|φ}} के मध्य इस संबंध के साथ, त्रिज्या सदिश एक चर का प्राचलिक फलन बन जाता है, जो वृत्त पर एकदिश नौपथ का पता लगाता है:


:<math>\mathbf{r}(\lambda\,|\,\beta,\lambda_0,\varphi_0) = \big(\cos{\lambda} \cdot \operatorname{sech} \psi \big) \mathbf{i} +
:<math>\mathbf{r}(\lambda\,|\,\beta,\lambda_0,\varphi_0) = \big(\cos{\lambda} \cdot \operatorname{sech} \psi \big) \mathbf{i} +
Line 71: Line 71:


:<math>\psi \equiv (\lambda - \lambda_0) \cot\beta + \operatorname{gd}^{-1}\varphi_0 = \operatorname{gd}^{-1}\varphi</math>
:<math>\psi \equiv (\lambda - \lambda_0) \cot\beta + \operatorname{gd}^{-1}\varphi_0 = \operatorname{gd}^{-1}\varphi</math>
अक्षांश#सममितीय अक्षांश है।<ref>James Alexander, Loxodromes: A Rhumb Way to Go, "Mathematics Magazine", Vol. 77. No. 5, Dec. 2004. [http://hans.fugal.net/src/lindbergh/mathmag349-356.pdf]</ref>
सममितीय अक्षांश है।<ref>James Alexander, Loxodromes: A Rhumb Way to Go, "Mathematics Magazine", Vol. 77. No. 5, Dec. 2004. [http://hans.fugal.net/src/lindbergh/mathmag349-356.pdf]</ref>
रूम्ब रेखा में, जैसे-जैसे अक्षांश ध्रुवों की ओर जाता है, {{math|''φ'' → ±{{sfrac|π|2}}}}, {{math|sin ''φ'' → ±1}}, सममितीय अक्षांश {{math|arsinh(tan ''φ'') → ± ∞}}, और देशांतर {{mvar|λ}} बिना किसी सीमा के बढ़ता है, ध्रुव की ओर एक सर्पिल में इतनी तीव्रता से वृत्त का चक्कर लगाता है, जबकि एक परिमित कुल चाप लंबाई Δ की ओर जाता है{{math|s}} द्वारा दिए गए
 
रूम्ब रेखा में, जैसे-जैसे अक्षांश ध्रुवों, {{math|''φ'' → ±{{sfrac|π|2}}}}, {{math|sin ''φ'' → ±1}} की ओर जाता है, सममितीय अक्षांश {{math|arsinh(tan ''φ'') → ± ∞}} और देशांतर {{mvar|λ}} बिना किसी सीमा के बढ़ता है, ध्रुव की ओर एक सर्पिल में इतनी तीव्रता से वृत्त का चक्कर लगाता है, जबकि एक परिमित कुल चाप लंबाई Δs द्वारा दिया जाता है।
:<math>\Delta s = R \, \big|(\pm\pi/2 - \varphi_0) \cdot \sec \beta\big|</math>
:<math>\Delta s = R \, \big|(\pm\pi/2 - \varphi_0) \cdot \sec \beta\big|</math>




== मर्केटर प्रक्षेप से सम्बन्ध ==
== मर्केटर प्रक्षेप से सम्बन्ध ==
[[File:Rhumb line vs great-circle arc.png|thumb|upright=1.3|लिस्बन, पुर्तगाल और हवाना, क्यूबा के मध्य एक ग्रेट-सर्कल आर्क (लाल) की तुलना में एक रम्ब रेखा (नीला)। शीर्ष: लिखने का प्रक्षेपण। नीचे: मर्केटर प्रक्षेप।]]होने देना {{mvar|λ}} वृत्त पर एक बिंदु का देशांतर हो, और {{mvar|φ}} इसका अक्षांश। फिर, यदि हम मर्केटर प्रक्षेप के प्रतिचित्र निर्देशांक को परिभाषित करते हैं
[[File:Rhumb line vs great-circle arc.png|thumb|upright=1.3|लिस्बन, पुर्तगाल और हवाना, क्यूबा के मध्य एक ग्रेट-सर्कल आर्क (लाल) की तुलना में एक रम्ब रेखा (नीला)। शीर्ष: लिखने का प्रक्षेपण। नीचे: मर्केटर प्रक्षेप।]]मान लीजिए {{mvar|λ}} वृत्त पर एक बिंदु का देशांतर है और {{mvar|φ}} इसका अक्षांश है। फिर, यदि हम मर्केटर प्रक्षेप के मानचित्र निर्देशांक को परिभाषित करते हैं
:<math>\begin{align}
:<math>\begin{align}
x &= \lambda - \lambda_0 \, , \\
x &= \lambda - \lambda_0 \, , \\

Revision as of 19:07, 22 April 2023

एकदिश नौपथ, या रम्ब रेखा की छवि, जो उत्तरी ध्रुव की ओर बढ़ती है

मार्गनिर्देशन में, एक रूम्ब रेखा, रूम्ब (/rʌm/), या एकदिश नौपथ एक चाप है जो एक ही कोण पर देशांतर के सभी भूमध्य रेखाओं को पार करता है, अर्थात, वास्तविक उत्तर के सापेक्ष मापा गया अपरिवर्ती दिक्कोण वाला पथ है।

परिचय

एक भूमंडल की सतह पर एक रूम्ब रेखा अध्ययन का पालन करने के प्रभाव पर प्रथम बार 1537 में पुर्तगाली गणितज्ञ पेड्रो नून्स ने 1590 के दशक में थॉमस हैरियट द्वारा आगे के गणितीय विकास के साथ समुद्री रेखाचित्र की रक्षा में अपने ग्रंथ में चर्चा की थी।

एक रूम्ब रेखा की तुलना एक बड़े वृत्त से की जा सकती है, जो एक वृत्त की सतह पर दो बिंदुओं के मध्य की सबसे छोटी दूरी का मार्ग है। एक बड़े वृत्त पर, गंतव्य बिंदु का दिक्कोण स्थिर नहीं रहता है। यदि किसी को एक बृहत् वृत के साथ एक मोटर गाड़ी चलानी होती है तो वह चालन चक्र को स्थिर रखता है, परन्तु एक रूम्ब रेखा का पालन करने के लिए पहिये को घुमाना पड़ता है, जैसे-जैसे स्तम्भ पास आते हैं, इसे और अधिक तीव्रता से घुमाते हैं। दूसरे शब्दों में, एक बड़ा वृत्त शून्य अल्पांतरी वक्रता के साथ स्थानीय रूप से "सीधा" होता है, जबकि एक रूम्ब रेखा में गैर-शून्य अल्पांतरी वक्रता होती है।

देशांतर के ध्रुववृत्त और अक्षांश के समानांतर रूम्ब रेखाओं की विशेष स्थितियां प्रदान करते हैं, जहां उनके प्रतिच्छेदन के कोण क्रमशः 0° और 90° होते हैं। एक उत्तर-दक्षिण पंथ पर रूम्ब रेखा अध्ययन एक बृहत् वृत के अनुरूप है, जैसा कि यह भूमध्य रेखाओं के साथ पूर्व-पश्चिम मार्ग पर होता है।

मर्केटर प्रक्षेप मानचित्र पर, कोई भी रूम्ब रेखा एक सीधी रेखा है; इस तरह के प्रतिचित्र पर पृथ्वी पर किन्हीं दो बिंदुओं के मध्य बिना प्रतिचित्र के किनारे से हटे एक रूम्ब रेखा खींची जा सकती है। परन्तु सैद्धांतिक रूप से एक एकदिश नौपथ प्रतिचित्र के दाहिने किनारे से आगे बढ़ सकता है, जहां यह फिर उसी प्रवणता के साथ बाएं किनारे पर जारी रहता है (यह मानते हुए कि प्रतिचित्र बिल्कुल 360 डिग्री देशांतर को आच्छादित करता है)।

रूंब रेखाएं जो ध्रुववृत्तों को तिर्यक् कोणों पर काटती हैं, वे एकदिश नौपथ वक्र हैं जो ध्रुवों की ओर सर्पिल होती हैं।[1]मर्केटर प्रक्षेप पर उत्तरी ध्रुव और दक्षिणी ध्रुव अनंत पर होते हैं और इसलिए इन्हें कभी नहीं दर्शाया जाता है। हालांकि असीमित उच्च मानचित्रों पर पूर्ण एकदिश नौपथ में दो किनारों के मध्य अनंततः कई रेखा खंड सम्मिलित होंगे। त्रिविम प्रक्षेप मानचित्र पर, एक एकदिश नौपथ एक समकोणीय सर्पिल है जिसका केंद्र उत्तर या दक्षिण ध्रुव है।

सभी एकदिश नौपथ एक ध्रुव से दूसरे ध्रुव की ओर सर्पिल होते हैं। ध्रुवों के पास, वे लघुगणकीय सर्पिल होने के निकट हैं (जो कि वे एक त्रिविम प्रक्षेपण पर हैं, नीचे देखें), इसलिए वे प्रत्येक ध्रुव के चारों ओर अनंत बार चक्कर लगाते हैं परन्तु एक सीमित दूरी में ध्रुव तक पहुंचते हैं। एक एकदिश नौपथ की ध्रुव-से-ध्रुव लंबाई (एक आदर्श क्षेत्र मानते हुए) भूमध्य रेखा (भूगोल) वास्तविक उत्तर से दूर दिक्कोण के कोज्या से विभाजित ध्रुववृत्तों की लंबाई है। एकदिश नौपथ को ध्रुवों पर परिभाषित नहीं किया गया है।

व्युत्पत्ति और ऐतिहासिक विवरण

एकदिश नौपथ शब्द प्राचीन यूनानी भाषा λοξός loxos से आया है: तिर्यक् + δρόμος drómos: परिचालन (δραμεῖν drameîn से: चलाने के लिए) है। रूंब शब्द स्पेनी भाषा या पुर्तगाली भाषा रूंबो/रुमो (अध्ययन या दिशा) और यूनानी ῥόμβος rhómbos,[2] से आया हो सकता है।

सार्वभौमिक सूचना का भूमंडल विश्वज्ञानकोष के 1878 संस्करण में एकदिश नौपथ रेखा का वर्णन इस प्रकार है:[3]

एकदिश नौपथ रेखा एक वक्र है जो किसी दिए गए सतह की वक्रता की रेखाओं की प्रणाली के प्रत्येक घटकों को एक ही कोण पर काटती है। दिक्सूचक के एक ही बिंदु की ओर जाने वाला पोत एक ऐसी रेखा का वर्णन करता है जो सभी याम्योत्तरों को एक ही कोण पर काटती है। मर्केटर के प्रक्षेप (q.v.) में एकदिश नौपथ रेखाएँ स्पष्ट रूप से सीधी होती हैं।[3]

एक मिथ्याबोध उत्पन्न हो सकता है क्योंकि शब्द "रूम्ब" का प्रयोग में आने पर इसका कोई सटीक अर्थ नहीं था। यह विंडरोज रेखाओं के लिए समान रूप से अच्छी तरह से प्रयुक्त होता है क्योंकि यह एकदिश नौपथ के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से प्रयुक्त होता है और इसका अर्थ केवल वही होता है जो एक नाविक ने अपरिवर्ती दिक्कोण के साथ नौकायन करने के लिए जो कुछ भी किया है, जो कि सभी अशुद्धियों के साथ होता है। इसलिए, रूम्ब पत्तन दर्शिका पर सीधी रेखाओं पर अनुप्रयुक्त होता था, जब पत्तन दर्शिका उपयोग में होते थे, साथ ही सदैव मर्केटर रेखाचित्र पर सीधी रेखाओं पर अनुप्रयुक्त होते था। छोटी दूरी के लिए पत्तन दर्शिका "रूम्ब" अर्थपूर्ण रूप से मर्केटर रूम्ब से भिन्न नहीं होते हैं, परन्तु इन दिनों "रूम्ब" गणितीय रूप से सटीक "एकदिश नौपथ" का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से समानार्थी बना दिया गया है।

जैसा कि लियो बग्रो कहते हैं:[4] शब्द ('रूम्ब रेखा') इस अवधि के समुद्र-रेखा चित्र पर अनुचित तरीके से अनुप्रयुक्त किया गया है, क्योंकि एक एकदिश नौपथ केवल एक सटीक पाठ्यक्रम देता है, जब रेखाचित्र एक उपयुक्त प्रक्षेपण पर खींचा जाता है। मानचित्रमितीय जांच से पता चला है कि प्रारम्भिक रेखाचित्रों में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पत्तन दर्शिका' नाम रखते हैं।

गणितीय विवरण

त्रिज्या 1 के वृत्त के लिए, दिगंशीय कोण λ, ध्रुवीय कोण π/2φπ/2 (अक्षांश के अनुरूप यहां परिभाषित) और कार्तीय इकाई सदिश i, j, और k का उपयोग त्रिज्या सदिश r को लिखने के लिए किया जा सकता है।

वृत्त के दिगंशीय और ध्रुवीय दिशाओं में लंबकोणीय इकाई सदिश लिखे जा सकते हैं;

जिनके पास अदिश गुणनफल है

नियतांक φ के लिए λ̂ अक्षांश के समानांतर का पता लगाता है, जबकि नियतांक λ के लिए φ̂ देशांतर के एक भूमध्य रेखा का पता लगाता है और साथ में वे वृत्त के लिए एक तल स्पर्शरेखा उत्पन्न करते हैं।

इकाई सदिश

किसी भी λ और φ के लिए इकाई सदिश φ̂ के साथ एक स्थिर कोण β है, क्योंकि उनका अदिश गुणनफल है।

एक एकदिश नौपथ को वृत्त पर एक वक्र के रूप में परिभाषित किया जाता है जिसमें देशांतर के सभी याम्योत्तरों के साथ एक स्थिर कोण β होता है और इसलिए इकाई सदिश β̂ के समानांतर होना चाहिए। फलस्वरूप, एकदिश नौपथ के साथ एक अंतर लंबाई ds एक अंतर विस्थापन उत्पन्न करेगा।