रम्ब रेखा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Arc crossing all meridians of longitude at the same angle}}
{{short description|Arc crossing all meridians of longitude at the same angle}}
{{Use dmy dates|date=October 2019}}
{{Use dmy dates|date=October 2019}}
[[File:Loxodrome.png|thumb|right|220px|एकदिश नौपथ, या एकदिश नौपथ की छवि, जो [[उत्तरी ध्रुव]] की ओर बढ़ती है।]][[ मार्गदर्शन |मार्गनिर्देशन]] में, रंब रेखा, रंब ({{IPAc-en|r|ʌ|m}}), या एकदिश नौपथ एक [[चाप (ज्यामिति)|चाप]] है जो एक ही [[कोण]] पर देशांतर के सभी [[मेरिडियन (भूगोल)|भूमध्य रेखाओं]] को पार करता है, अर्थात, वास्तविक उत्तर के सापेक्ष मापा गया स्थिर [[असर (नेविगेशन)|दिक्कोण]] वाला पथ है।
[[File:Loxodrome.png|thumb|right|220px|एकदिश नौपथ, या एकदिश नौपथ की छवि, जो [[उत्तरी ध्रुव]] की ओर बढ़ती है।]][[ मार्गदर्शन |मार्गनिर्देशन]] में, एक रंब रेखा, रंब ({{IPAc-en|r|ʌ|m}}), या एकदिश नौपथ एक [[चाप (ज्यामिति)|चाप]] है जो एक ही [[कोण]] पर देशांतर के सभी [[मेरिडियन (भूगोल)|भूमध्य रेखाओं]] को पार करता है, जोकि वास्तविक उत्तर दिशा के सापेक्ष मापा गया स्थिर [[असर (नेविगेशन)|दिक्कोण]] वाला पथ है।


== परिचय ==
== परिचय ==
एक भूमंडल की सतह पर रंब रेखा अध्ययनों का पालन करने के प्रभाव पर प्रथम बार 1537 में [[पुर्तगाली लोग|पुर्तगाली]] [[गणितज्ञ]] [[पेड्रो नून्स]] ने 1590 के दशक में [[थॉमस हैरियट]] द्वारा आगे के गणितीय विकास के साथ समुद्री रेखाचित्र की रक्षा में अपने ग्रंथ में चर्चा की थी।
एक भूमंडल की सतह पर रंब रेखा पाठ्यक्रम का पालन करने के प्रभाव पर पहली बार 1537 में [[पुर्तगाली लोग|पुर्तगाली]] [[गणितज्ञ]] [[पेड्रो नून्स]] ने 1590 के दशक में [[थॉमस हैरियट]] द्वारा आगे के गणितीय विकास के साथ समुद्रीय रेखाचित्र की रक्षा में अपने ग्रंथ में चर्चा की थी।


एक रंब रेखा की तुलना एक बड़े वृत्त से की जा सकती है, जो एक वृत्त की सतह पर दो बिंदुओं के मध्य की सबसे छोटी दूरी का मार्ग है। एक बड़े वृत्त पर, गंतव्य बिंदु का दिक्कोण स्थिर नहीं रहता है। यदि किसी को बृहत् वृत के साथ एक मोटर गाड़ी चलानी होती है तो वह चालन चक्र को स्थिर रखता है, परन्तु एक एकदिश नौपथ (रंब रेखा) का पालन करने के लिए पहिये को घुमाना पड़ता है, जैसे-जैसे ध्रुव पास आते हैं, इसे और अधिक तीव्रता से घुमाते हैं। दूसरे शब्दों में, एक बड़ा वृत्त शून्य [[जियोडेसिक वक्रता|अल्पांतरी वक्रता]] के साथ स्थानीय रूप से "सीधा" होता है, जबकि रंब रेखा में गैर-शून्य अल्पांतरी वक्रता होती है।
एक रंब रेखा की तुलना एक बड़े वृत्त से की जा सकती है, जो एक वृत्त की सतह पर दो बिंदुओं के मध्य की सबसे छोटी दूरी का पथ है। एक बड़े वृत्त पर, गंतव्य बिंदु का दिक्कोण स्थिर नहीं रहता है। यदि किसी को बृहत् वृत के साथ एक मोटर गाड़ी चलानी होती है तो वह चालन चक्र को स्थिर रखता है, परन्तु रंब रेखाओं का पालन करने के लिए पहिये को घुमाना पड़ता है, जैसे-जैसे स्तंभ पास आते हैं, इसे और अधिक तीव्रता से घुमाते हैं। दूसरे शब्दों में, एक बड़ा वृत्त शून्य [[जियोडेसिक वक्रता|अल्पांतरी वक्रता]] के साथ स्थानीय रूप से "सीधा" होता है, जबकि एक रंब रेखा में गैर-शून्य अल्पांतरी वक्रता होती है।


देशांतर के याम्योत्तर और अक्षांश के समानांतर रंब रेखाओं की विशेष स्थितियां प्रदान करते हैं, जहां उनके प्रतिच्छेदन के कोण क्रमशः 0° और 90° होते हैं। एक उत्तर-दक्षिण पंथ पर रंब रेखा पाठ्यक्रम एक बृहत् वृत के अनुरूप है, जैसे कि यह [[भूमध्य रेखा|भूमध्य रेखाओं]] के साथ पूर्व-पश्चिम मार्ग पर होता है।
देशांतर के याम्योत्तर और अक्षांश के समानांतर रंब रेखाओं की विशेष स्थितियां प्रदान करते हैं, जहां उनके प्रतिच्छेदन के कोण क्रमशः 0° और 90° होते हैं। एक उत्तर-दक्षिण पथ पर रंब रेखा पाठ्यक्रम एक बृहत् वृत के अनुरूप है, जैसे कि यह [[भूमध्य रेखा|भूमध्य रेखाओं]] के साथ पूर्व-पश्चिम पथ पर होता है।


[[मर्केटर प्रोजेक्शन|मर्केटर]] [[त्रिविम प्रक्षेपण|प्रक्षेपण]] मानचित्र पर, कोई भी रंब रेखा एक सीधी रेखा है; इस प्रकार के प्रतिचित्रों पर पृथ्वी पर किन्हीं दो बिंदुओं के मध्य बिना प्रतिचित्र के किनारे से हटे रंब रेखा खींची जा सकती है। परन्तु सैद्धांतिक रूप से एक एकदिश नौपथ प्रतिचित्र के दाहिने किनारे से आगे बढ़ सकता है, जहां यह फिर उसी प्रवणता के साथ बाएं किनारे पर जारी रहता है (यह मानते हुए कि प्रतिचित्र बिल्कुल 360 डिग्री देशांतर को आच्छादित करता है)।
[[मर्केटर प्रोजेक्शन|मर्केटर]] [[त्रिविम प्रक्षेपण|प्रक्षेपण]] मानचित्र पर, कोई भी रंब रेखा एक सीधी रेखा है; इस प्रकार के मानचित्रों पर पृथ्वी पर किन्हीं दो बिंदुओं के मध्य बिना मानचित्र के किनारे से हटे रंब रेखा खींची जा सकती है। परन्तु सैद्धांतिक रूप से एकदिश नौपथ मानचित्र के दाहिने किनारे से आगे बढ़ सकता है, जहां यह फिर उसी प्रवणता के साथ बाएं किनारे पर जारी रहता है (यह मानते हुए कि प्रतिचित्र बिल्कुल 360 डिग्री देशांतर को आच्छादित करता है)।


रंब रेखा जो याम्योत्तरों को तिर्यक् कोणों पर काटती हैं, वे एकदिश नौपथ वक्र हैं जो ध्रुवों की ओर कुंडलित होती हैं।<ref name="EOS" />मर्केटर प्रक्षेपण पर [[उत्तरी ध्रुव]] और [[दक्षिणी ध्रुव]] अनंत पर होते हैं और इसलिए इन्हें कभी नहीं दर्शाया जाता है। हालांकि असीमित उच्च मानचित्रों पर पूर्ण एकदिश नौपथ में दो किनारों के मध्य अनंततः कई रेखा खंड सम्मिलित होंगे। त्रिविम प्रक्षेपण मानचित्र पर, एक एकदिश नौपथ एक [[समकोणीय सर्पिल|समकोणीय कुंडली]] है जिसका केंद्र उत्तर या दक्षिण ध्रुव है।
रंब रेखाएं जो [[भूमध्य रेखा|भूमध्य रेखाओं]] को तिर्यक् कोणों पर काटती हैं, वे एकदिश नौपथ वक्र हैं जो ध्रुवों की ओर कुंडलित होती हैं।<ref name="EOS" />मर्केटर प्रक्षेपण पर [[उत्तरी ध्रुव]] और [[दक्षिणी ध्रुव]] अनंत पर होते हैं और इसलिए इन्हें कभी दर्शाया नहीं जाता है। हालांकि असीमित उच्च मानचित्रों पर पूर्ण एकदिश नौपथ में दो किनारों के मध्य अनंततः कई रेखा खंड सम्मिलित होंगे। त्रिविम प्रक्षेपण मानचित्र पर, एकदिश नौपथ एक [[समकोणीय सर्पिल|समकोणीय कुंडली]] है जिसका केंद्र उत्तर या दक्षिण ध्रुव है।


सभी एकदिश नौपथ एक ध्रुव से दूसरे ध्रुव की ओर कुंडलित होते हैं। ध्रुवों के पास, वे लघुगणकीय कुंडली के निकट हैं (जो कि वे एक [[त्रिविम प्रक्षेपण]] पर हैं, नीचे देखें), इसलिए वे प्रत्येक ध्रुव के चारों ओर अनंत बार चक्कर लगाते हैं परन्तु एक सीमित दूरी में ध्रुव तक पहुंचते हैं। एक एकदिश नौपथो की ध्रुव-से-ध्रुव लंबाई (एक आदर्श क्षेत्र मानते हुए) भूमध्य रेखा (भूगोल) वास्तविक उत्तर से दूर दिक्कोण के [[ कोज्या |कोज्या]] से विभाजित याम्योत्तरों की लंबाई है। एकदिश नौपथो को ध्रुवों पर परिभाषित नहीं किया गया है।
सभी एकदिश नौपथ एक ध्रुव से दूसरे ध्रुव की ओर कुंडलित होते हैं। ध्रुवों के पास, वे लागेरिथ्मीय कुंडली होने के निकट हैं (जो कि वे एक [[त्रिविम प्रक्षेपण]] पर हैं, नीचे देखें), इसलिए वे प्रत्येक ध्रुव के चारों ओर अनंत बार चक्कर लगाते हैं परन्तु एक सीमित दूरी में ध्रुव तक पहुंचते हैं। एकदिश नौपथ की ध्रुव-से-ध्रुव लंबाई (एक आदर्श क्षेत्र मानते हुए) वास्तविक उत्तर दिशा से दूर दिक्कोण के [[ कोज्या |कोज्या]] द्वारा विभाजित [[भूमध्य रेखा|भूमध्य रेखाओं]] की लंबाई है। एकदिश नौपथो को ध्रुवों पर परिभाषित नहीं किया गया है।


== व्युत्पत्ति और ऐतिहासिक विवरण ==
== व्युत्पत्ति और ऐतिहासिक विवरण ==
एकदिश नौपथ शब्द प्राचीन यूनानी भाषा λοξός loxos से आया है: तिर्यक् + δρόμος ''drómos'': परिचालन (δραμεῖν drameîn से: चलाने के लिए) है। रंब शब्द [[स्पेनिश भाषा|स्पेनी भाषा]] या [[पुर्तगाली भाषा]] रूंबो/रुमो (अध्ययन या दिशा) और यूनानी ῥόμβος rhómbos,<ref>''[http://www.thefreedictionary.com/rhumb Rhumb]'' at TheFreeDictionary</ref> से आया हो सकता है।
एकदिश नौपथ शब्द प्राचीन यूनानी भाषा λοξός loxos से आया है: तिर्यक् + δρόμος ''drómos'': संचालन (δραμεῖν drameîn से: चलाने के लिए) है। रंब शब्द [[स्पेनिश भाषा|स्पेनी भाषा]] या [[पुर्तगाली भाषा]] रंबो/रंमो ("पाठ्यक्रम" या "दिशा") और यूनानी ῥόμβος rhómbos,<ref>''[http://www.thefreedictionary.com/rhumb Rhumb]'' at TheFreeDictionary</ref> से आया हो सकता है।


सार्वभौमिक सूचना के भूमंडलीय विश्वज्ञानकोष के 1878 संस्करण में एकदिश नौपथ रेखाओं का वर्णन इस प्रकार है:<ref name="Globe"/>
सार्वभौमिक सूचना के भूमंडलीय विश्वज्ञानकोष के 1878 संस्करण में एकदिश नौपथ रेखाओं का वर्णन इस प्रकार है:<ref name="Globe"/>


<blockquote>एकदिश नौपथ रेखा एक वक्र है जो किसी दिए गए सतह की वक्रता की रेखाओं की प्रणाली के प्रत्येक घटकों को एक ही कोण पर काटती है। दिक्सूचक के एक ही बिंदु की ओर जाने वाला पोत एक ऐसी रेखा का वर्णन करता है जो सभी याम्योत्तरों को एक ही कोण पर काटती है। मर्केटर के प्रक्षेपण (q.v.) में एकदिश नौपथ रेखाएँ स्पष्ट रूप से सीधी होती हैं।<ref name="Globe">Ross, J.M. (editor) (1878). ''[https://archive.org/details/globeencyclopae01rossgoog The Globe Encyclopaedia of Universal Information]'', Vol. IV, Edinburgh-Scotland, Thomas C. Jack, Grange Publishing Works, retrieved from [[Google Books]] 2009-03-18;</ref>
<blockquote>एकदिश नौपथ रेखा एक वक्र है जो किसी दिए गए सतह की वक्रता की रेखाओं की प्रणाली के प्रत्येक भागो को एक ही कोण पर काटती है। दिक्सूचक के एक ही बिंदु की ओर जाने वाला पोत एक ऐसी रेखा का वर्णन करता है जो सभी याम्योत्तरों को एक ही कोण पर काटती है। मर्केटर के प्रक्षेपण (q.v.) में एकदिश नौपथ रेखाएँ स्पष्ट रूप से सीधी होती हैं।<ref name="Globe">Ross, J.M. (editor) (1878). ''[https://archive.org/details/globeencyclopae01rossgoog The Globe Encyclopaedia of Universal Information]'', Vol. IV, Edinburgh-Scotland, Thomas C. Jack, Grange Publishing Works, retrieved from [[Google Books]] 2009-03-18;</ref>


एक मिथ्याबोध उत्पन्न हो सकता है क्योंकि शब्द "रंब" का प्रयोग में आने पर इसका कोई सटीक अर्थ नहीं था। यह [[इन्द्रोंसे लाइन|विंडरोज रेखाओं]] के लिए समान रूप से अच्छी तरह से प्रयुक्त होता है क्योंकि यह एकदिश नौपथो के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से प्रयुक्त होता है और इसका अर्थ केवल वही होता है जो एक नाविक ने स्थिर दिक्कोण के साथ नौकायन करने के लिए जो कुछ भी किया है, जोकि सभी अशुद्धियों के साथ होता है। इसलिए, रंब [[पोर्टोलन|पत्तन दर्शिका]] पर सीधी रेखाओं पर अनुप्रयुक्त होता था, जब पत्तन दर्शिका उपयोग में होते थे, साथ ही सदैव मर्केटर रेखाचित्र पर सीधी रेखाओं पर अनुप्रयुक्त होते थे। छोटी दूरी के लिए पत्तन दर्शिका "रंब" अर्थपूर्ण रूप से मर्केटर रंब से भिन्न नहीं होते हैं, परन्तु इन दिनों "रंब" गणितीय रूप से सटीक "एकदिश नौपथ" का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से समानार्थी बना दिया गया है।
एक असम्मति उत्पन्न हो सकती है क्योंकि शब्द "रंब" का प्रयोग में आने पर इसका कोई सटीक अर्थ नहीं था। यह [[इन्द्रोंसे लाइन|पवन आरेख]] रेखाओं के लिए समान रूप से अच्छी तरह से अनुप्रयुक्त होता है क्योंकि यह एकदिश नौपथो के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से अनुप्रयुक्त होता है और इसका अर्थ है कि एक नौकाचालक ने स्थिर दिक्कोण के साथ नौकायन करने के लिए जो कुछ भी किया है, जोकि सभी अशुद्धियों के साथ होता है। इसलिए, रंब [[पोर्टोलन|पत्तन दर्शिकाओं]] पर सीधी रेखाओं पर अनुप्रयुक्त होता था, जब पत्तन दर्शिका उपयोग में होते थे, साथ ही सदैव मर्केटर रेखाचित्र पर सीधी रेखाओं पर भी अनुप्रयुक्त होते थे। छोटी दूरी के लिए पत्तन दर्शिका "रंब" अर्थपूर्ण रूप से मर्केटर रंब से भिन्न नहीं होते हैं, लेकिन इन दिनों "रंब" गणितीय रूप से सटीक "एकदिश नौपथ" का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से समानार्थी बना दिया गया है।


जैसा कि लियो बग्रो कहते हैं:<ref name="Bagrow2010">{{cite book|author=Leo Bagrow|title=कार्टोग्राफी का इतिहास|url=https://books.google.com/books?id=OBeB4tDmJv8C&pg=PA65|year=2010|publisher=Transaction Publishers|isbn=978-1-4128-2518-4|page=65}}</ref> शब्द ('एकदिश नौपथ') इस अवधि के समुद्र-रेखा चित्र पर अनुचित तरीके से प्रयुक्त किया गया है, क्योंकि एक एकदिश नौपथ केवल एक सटीक पाठ्यक्रम देता है, जब रेखाचित्र एक उपयुक्त प्रक्षेपण पर खींचा जाता है। मानचित्रमितीय जांच से पता चला है कि प्रारम्भिक रेखाचित्रों में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पत्तन दर्शिका' नाम रखते हैं।
जैसा कि लियो बग्रो कहते हैं:<ref name="Bagrow2010">{{cite book|author=Leo Bagrow|title=कार्टोग्राफी का इतिहास|url=https://books.google.com/books?id=OBeB4tDmJv8C&pg=PA65|year=2010|publisher=Transaction Publishers|isbn=978-1-4128-2518-4|page=65}}</ref> शब्द ('रंब रेखा') इस अवधि के समुद्रीय-रेखाचित्रों पर अनुचित तरीके से अनुप्रयुक्त किया गया है, क्योंकि एक एकदिश नौपथ केवल एक सटीक पाठ्यक्रम देता है, जब रेखाचित्र एक उपयुक्त प्रक्षेपण पर खींचा जाता है। मानचित्रमितीय जांच से पता चला है कि प्रारम्भिक रेखाचित्रों में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पत्तन दर्शिका' नाम रखते हैं।


== गणितीय विवरण ==
== गणितीय विवरण ==
त्रिज्या 1 के गोले के लिए, दिगंशीय कोण {{mvar|λ}}, ध्रुवीय कोण {{math|−{{sfrac|π|2}} ≤ ''φ'' ≤ {{sfrac|π|2}}}} (अक्षांश के अनुरूप यहां परिभाषित) और कार्तीय इकाई सदिश {{math|'''i'''}}, {{math|'''j'''}}, और {{math|'''k'''}} का उपयोग त्रिज्या सदिश {{math|'''r'''}} को लिखने के लिए किया जा सकता है।
त्रिज्या 1 के वृत्तों के लिए, दिगंशीय कोण {{mvar|λ}}, ध्रुवीय कोण {{math|−{{sfrac|π|2}} ≤ ''φ'' ≤ {{sfrac|π|2}}}} (अक्षांश के अनुरूप यहां परिभाषित) और कार्तीय इकाई सदिश {{math|'''i'''}}, {{math|'''j'''}}, और {{math|'''k'''}} का उपयोग त्रिज्या सदिश {{math|'''r'''}} को लिखने के लिए किया जा सकता है।


:<math>\mathbf{r}(\lambda,\varphi) = (\cos{\lambda} \cdot \cos{\varphi})  \mathbf{i} + (\sin{\lambda} \cdot \cos{\varphi})  \mathbf{j} + (\sin{\varphi}) \mathbf{k} \, </math>
:<math>\mathbf{r}(\lambda,\varphi) = (\cos{\lambda} \cdot \cos{\varphi})  \mathbf{i} + (\sin{\lambda} \cdot \cos{\varphi})  \mathbf{j} + (\sin{\varphi}) \mathbf{k} \, </math>
गोले के दिगंशीय और ध्रुवीय दिशाओं में लंबकोणीय इकाई सदिश लिखे जा सकते हैं;
वृत्तों के दिगंशीय और ध्रुवीय दिशाओं में लंबकोणीय इकाई सदिश लिखे जा सकते हैं;


:<math>\begin{align}
:<math>\begin{align}
Line 41: Line 41:
:<math>\boldsymbol{\hat\lambda} \cdot \boldsymbol{\hat\varphi} = \boldsymbol{\hat\lambda} \cdot \mathbf{r} = \boldsymbol{\hat\varphi} \cdot \mathbf{r} = 0 \, </math>
:<math>\boldsymbol{\hat\lambda} \cdot \boldsymbol{\hat\varphi} = \boldsymbol{\hat\lambda} \cdot \mathbf{r} = \boldsymbol{\hat\varphi} \cdot \mathbf{r} = 0 \, </math>


नियतांक {{mvar|φ}} के लिए {{math|'''λ̂'''}} अक्षांश के समानांतर का पता लगाता है, जबकि नियतांक {{mvar|λ}} के लिए {{math|'''φ̂'''}}  देशांतर के एक भूमध्य रेखा का पता लगाता है और साथ में वे वृत्त के लिए एक तल स्पर्शरेखा उत्पन्न करते हैं।
नियतांक {{mvar|φ}} के लिए {{math|'''λ̂'''}} अक्षांश के समानांतर का पता लगाता है, जबकि नियतांक {{mvar|λ}} के लिए {{math|'''φ̂'''}}  देशांतर के भूमध्य रेखाओं का पता लगाता है और साथ में वे वृत्तों के लिए एक समतल स्पर्शरेखा उत्पन्न करते हैं।


इकाई सदिश
इकाई सदिश
Line 48: Line 48:


:<math>\boldsymbol{\hat\beta} \cdot \boldsymbol{\hat\varphi} = \cos{\beta} \, .</math>
:<math>\boldsymbol{\hat\beta} \cdot \boldsymbol{\hat\varphi} = \cos{\beta} \, .</math>
एक एकदिश नौपथो को गोले पर एक वक्र के रूप में परिभाषित किया जाता है जिसमें देशांतर के सभी याम्योत्तरों के साथ एक स्थिर कोण {{mvar|β}} होता है और इसलिए इकाई सदिश {{math|'''β̂'''}} के समानांतर होना चाहिए। फलस्वरूप, एकदिश नौपथो के साथ एक अंतर लंबाई {{mvar|ds}}  एक अंतर विस्थापन उत्पन्न करेगा।
एकदिश नौपथो को वृत्तों पर एक वक्र के रूप में परिभाषित किया जाता है जिसमें देशांतर के सभी याम्योत्तरों के साथ एक स्थिर कोण {{mvar|β}} होता है और इसलिए इकाई सदिश {{math|'''β̂'''}} के समानांतर होना चाहिए। फलस्वरूप, एकदिश नौपथो के साथ एक अंतर लंबाई {{mvar|ds}}  एक अंतर विस्थापन का उत्पादन करेगा।


:<math>\begin{align}
:<math>\begin{align}
Line 61: Line 61:
जहाँ <math>\operatorname{gd}</math> और <math>\operatorname{gd}^{-1}</math> [[गुडरमैनियन समारोह|गुडेरमैनियन फलन]] और इसके व्युत्क्रम, <math>\operatorname{gd}\psi = \arctan(\sinh\psi),</math> <math>\operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi)</math> हैं और <math>\operatorname{arsinh}</math> [[उलटा अतिशयोक्तिपूर्ण कार्य|व्युत्क्रम अतिपरवलीय द्विज्या]] है।
जहाँ <math>\operatorname{gd}</math> और <math>\operatorname{gd}^{-1}</math> [[गुडरमैनियन समारोह|गुडेरमैनियन फलन]] और इसके व्युत्क्रम, <math>\operatorname{gd}\psi = \arctan(\sinh\psi),</math> <math>\operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi)</math> हैं और <math>\operatorname{arsinh}</math> [[उलटा अतिशयोक्तिपूर्ण कार्य|व्युत्क्रम अतिपरवलीय द्विज्या]] है।


{{mvar|λ}} और {{mvar|φ}} के मध्य इस संबंध के साथ, त्रिज्या सदिश एक चर का प्राचलिक फलन बन जाता है, जो गोले पर एकदिश नौपथो का पता लगाता है:
{{mvar|λ}} और {{mvar|φ}} के मध्य इस संबंध के साथ, त्रिज्या सदिश एक चर का प्राचलिक फलन बन जाता है, जो वृत्तों पर एकदिश नौपथो का पता लगाता है:


:<math>\mathbf{r}(\lambda\,|\,\beta,\lambda_0,\varphi_0) = \big(\cos{\lambda} \cdot \operatorname{sech} \psi \big) \mathbf{i} +
:<math>\mathbf{r}(\lambda\,|\,\beta,\lambda_0,\varphi_0) = \big(\cos{\lambda} \cdot \operatorname{sech} \psi \big) \mathbf{i} +
Line 70: Line 70:
सममितीय अक्षांश है।<ref>James Alexander, Loxodromes: A Rhumb Way to Go, "Mathematics Magazine", Vol. 77. No. 5, Dec. 2004. [http://hans.fugal.net/src/lindbergh/mathmag349-356.pdf]</ref>
सममितीय अक्षांश है।<ref>James Alexander, Loxodromes: A Rhumb Way to Go, "Mathematics Magazine", Vol. 77. No. 5, Dec. 2004. [http://hans.fugal.net/src/lindbergh/mathmag349-356.pdf]</ref>


एकदिश नौपथो (रंब रेखाओं) में, जैसे-जैसे अक्षांश ध्रुवों, {{math|''φ'' → ±{{sfrac|π|2}}}}, {{math|sin ''φ'' → ±1}} की ओर जाता है, सममितीय अक्षांश {{math|arsinh(tan ''φ'') → ± ∞}} और देशांतर {{mvar|λ}} बिना किसी सीमा के बढ़ता है, ध्रुव की ओर एक कुंडली में इतनी तीव्रता से वृत्त का चक्कर लगाता है, जबकि एक परिमित कुल चाप लंबाई Δs द्वारा दिया जाता है।
रंब रेखाओं में, जैसे-जैसे अक्षांश ध्रुवों, {{math|''φ'' → ±{{sfrac|π|2}}}}, {{math|sin ''φ'' → ±1}} की ओर जाता है, सममितीय अक्षांश {{math|arsinh(tan ''φ'') → ± ∞}} और देशांतर {{mvar|λ}} बिना किसी सीमा के बढ़ता है, ध्रुवों की ओर एक कुंडली में इतनी तीव्रता से वृत्त का चक्कर लगाता है, जबकि एक परिमित कुल चाप लंबाई Δs द्वारा दी जाती है।
:<math>\Delta s = R \, \big|(\pm\pi/2 - \varphi_0) \cdot \sec \beta\big|</math>
:<math>\Delta s = R \, \big|(\pm\pi/2 - \varphi_0) \cdot \sec \beta\big|</math>




== मर्केटर प्रक्षेपण से सम्बन्ध ==
== मर्केटर प्रक्षेपण से सम्बन्ध ==
[[File:Rhumb line vs great-circle arc.png|thumb|upright=1.3|लिस्बन, पुर्तगाल और हवाना, क्यूबा के मध्य एक बृहत् वृत चाप (लाल) की तुलना में एकदिश नौपथ (नीला) है। शीर्ष पर: लंबकोणीय प्रक्षेपण और नीचे: मर्केटर प्रक्षेपण है।]]मान लीजिए {{mvar|λ}} वृत्त पर एक बिंदु का देशांतर है और {{mvar|φ}} इसका अक्षांश है। फिर, यदि हम मर्केटर प्रक्षेपण के मानचित्र निर्देशांक को परिभाषित करते हैं
[[File:Rhumb line vs great-circle arc.png|thumb|upright=1.3|लिस्बन, पुर्तगाल और हवाना, क्यूबा के मध्य एक बृहत् वृत चाप (लाल) की तुलना में एकदिश नौपथ (नीला) है। शीर्ष पर: लंबकोणीय प्रक्षेपण और नीचे: मर्केटर प्रक्षेपण है।]]मान लीजिए {{mvar|λ}} वृत्त पर एक बिंदु का देशांतर है और {{mvar|φ}} इसका अक्षांश है। फिर, यदि हम मर्केटर प्रक्षेपण के मानचित्र निर्देशांकों को परिभाषित करते हैं
:<math>\begin{align}
:<math>\begin{align}
x &= \lambda - \lambda_0 \,  \\
x &= \lambda - \lambda_0 \,  \\
y &= \operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi)\,  
y &= \operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi)\,  
\end{align}</math>
\end{align}</math>
वास्तविक उत्तर से स्थिर दिक्कोण {{mvar|β}} एकदिश नौपथ एक सीधी रेखा होगी, क्योंकि (पिछले अनुभाग में अभिव्यक्ति का उपयोग करके)
वास्तविक उत्तर दिशा से स्थिर दिक्कोण {{mvar|β}} एकदिश नौपथ एक सीधी रेखा होगी, क्योंकि (पिछले अनुभाग में अभिव्यक्ति का उपयोग करके)
:<math>y = m x</math>
:<math>y = m x</math>
प्रवणता के साथ
प्रवणता के साथ
Line 86: Line 86:
दो दिए गए बिंदुओं के मध्य एकदिश नौपथो का पता लगाना एक मर्केटर प्रतिचित्र पर सुचित्रित रूप से किया जा सकता है, या दो अज्ञात {{math|1=''m'' = cot ''β''}} और {{math|''λ''<sub>0</sub>}} में दो समीकरणों की एक गैर-रैखिक प्रणाली को हल करके किया जा सकता है। अपरिमित रूप से अनेक हल हैं; सबसे छोटा वह है जो वास्तविक देशांतर अन्तरो को आच्छादित करता है, अर्थात अतिरिक्त चक्कर नहीं लगाता है और "अनुचित तरीके से नहीं" जाता है।
दो दिए गए बिंदुओं के मध्य एकदिश नौपथो का पता लगाना एक मर्केटर प्रतिचित्र पर सुचित्रित रूप से किया जा सकता है, या दो अज्ञात {{math|1=''m'' = cot ''β''}} और {{math|''λ''<sub>0</sub>}} में दो समीकरणों की एक गैर-रैखिक प्रणाली को हल करके किया जा सकता है। अपरिमित रूप से अनेक हल हैं; सबसे छोटा वह है जो वास्तविक देशांतर अन्तरो को आच्छादित करता है, अर्थात अतिरिक्त चक्कर नहीं लगाता है और "अनुचित तरीके से नहीं" जाता है।


एकदिश नौपथ के साथ मापी गई दो बिंदुओं {{math|Δ''s''}} के मध्य की दूरी, उत्तर-दक्षिण दूरी (अक्षांश के वृत्तों को छोड़कर जिसके लिए दूरी अनंत हो जाती है) के दिक्कोण (दिगंश) के [[छेदक (त्रिकोणमिति)|छेदक]] का पूर्ण मान है:
एकदिश नौपथो के साथ मापी गई दो बिंदुओं {{math|Δ''s''}} के मध्य की दूरी, उत्तर-दक्षिण दूरी (अक्षांश के वृत्तों को छोड़कर जिसके लिए दूरी अनंत हो जाती है) के दिक्कोण (दिगंश) के [[छेदक (त्रिकोणमिति)|छेदक]] का पूर्ण मान है:


:<math>\Delta s = R \, \big|(\varphi - \varphi_0)\cdot \sec \beta \big|</math>
:<math>\Delta s = R \, \big|(\varphi - \varphi_0)\cdot \sec \beta \big|</math>
Line 96: Line 96:
यह नाम क्रमशः प्राचीन फ्रांसीसी या स्पेनी से लिया गया है: "रंब" या "रंबो" रेखाचित्र पर एक रेखा जो एक ही कोण पर सभी मध्याह्न रेखा को काटती है।<ref name="EOS" />समतल सतह पर यह दो बिंदुओं के मध्य की सबसे छोटी दूरी होगी। पृथ्वी की सतह पर कम अक्षांशों पर या कम दूरी पर इसका उपयोग किसी वाहन, विमान या पोतो के पाठ्यक्रम का आलेखन रचने के लिए किया जा सकता है।<ref name="EOS" />लंबी दूरी और/या उच्च अक्षांशों पर बृहत् वृत मार्ग समान दो बिंदुओं के मध्य की रेखाओं से काफी छोटा है। हालांकि, एक बृहत् वृत मार्ग का संचारण करते समय दिक्कोण को निरन्तर परिवर्तित करने की असुविधा कुछ उदाहरणों में रंब रेखा मार्गनिर्देशन को आकर्षक बनाती है।<ref name="EOS" />
यह नाम क्रमशः प्राचीन फ्रांसीसी या स्पेनी से लिया गया है: "रंब" या "रंबो" रेखाचित्र पर एक रेखा जो एक ही कोण पर सभी मध्याह्न रेखा को काटती है।<ref name="EOS" />समतल सतह पर यह दो बिंदुओं के मध्य की सबसे छोटी दूरी होगी। पृथ्वी की सतह पर कम अक्षांशों पर या कम दूरी पर इसका उपयोग किसी वाहन, विमान या पोतो के पाठ्यक्रम का आलेखन रचने के लिए किया जा सकता है।<ref name="EOS" />लंबी दूरी और/या उच्च अक्षांशों पर बृहत् वृत मार्ग समान दो बिंदुओं के मध्य की रेखाओं से काफी छोटा है। हालांकि, एक बृहत् वृत मार्ग का संचारण करते समय दिक्कोण को निरन्तर परिवर्तित करने की असुविधा कुछ उदाहरणों में रंब रेखा मार्गनिर्देशन को आकर्षक बनाती है।<ref name="EOS" />


बिंदु को भूमध्य रेखाओं के साथ [[90 डिग्री]] देशांतर पर एक पूर्व-पश्चिम पंथ के साथ चित्रित किया जा सकता है, जिसके लिए 10,000 किलोमीटर (5,400 समुद्री मील) पर बृहत् वृत और रंब रेखाओं की दूरी समान हैं, 20 डिग्री उत्तर में बृहत् वृत दूरी 9,254 किमी (4,997 एनएमआई) है, जबकि रंब रेखाओं की दूरी 9,397 किमी (5,074 एनएमआई) है, लगभग 1.5% आगे है। परन्तु 60 डिग्री उत्तर में बृहत् वृत दूरी 4,602 किमी (2,485 समुद्री मील) है, जबकि रंब रेखा 5,000 किमी (2,700 समुद्री मील) है, जो 8.5% का अंतर है। एक अधिक चरम परिस्थिति [[न्यूयॉर्क शहर]] और [[हांगकांग]] के मध्य का विमान मार्ग है, जिसके लिए रंब रेखा पथ 18,000 किमी (9,700 एनएमआई) है। उत्तरी ध्रुव पर वृहत वृत्त पंथ 13,000 किमी (7,000 एनएमआई) है, या सामान्य [[क्रूज (उड़ान)|परिभ्रमण चाल]] पर {{frac|5|1|2}} घंटे कम उड़ान समय है।
बिंदु को भूमध्य रेखाओं के साथ [[90 डिग्री]] देशांतर पर एक पूर्व-पश्चिम पंथ के साथ चित्रित किया जा सकता है, जिसके लिए 10,000 किलोमीटर (5,400 समुद्रीय मील) पर बृहत् वृत और रंब रेखाओं की दूरी समान हैं, 20 डिग्री उत्तर में बृहत् वृत दूरी 9,254 किमी (4,997 एनएमआई) है, जबकि रंब रेखाओं की दूरी 9,397 किमी (5,074 एनएमआई) है, लगभग 1.5% आगे है। परन्तु 60 डिग्री उत्तर में बृहत् वृत दूरी 4,602 किमी (2,485 समुद्रीय मील) है, जबकि रंब रेखा 5,000 किमी (2,700 समुद्रीय मील) है, जो 8.5% का अंतर है। एक अधिक चरम परिस्थिति [[न्यूयॉर्क शहर]] और [[हांगकांग]] के मध्य का विमान मार्ग है, जिसके लिए रंब रेखा पथ 18,000 किमी (9,700 एनएमआई) है। उत्तरी ध्रुव पर वृहत वृत्त पंथ 13,000 किमी (7,000 एनएमआई) है, या सामान्य [[क्रूज (उड़ान)|परिभ्रमण चाल]] पर {{frac|5|1|2}} घंटे कम उड़ान समय है।


मर्केटर प्रक्षेपण के कुछ प्राचीन मानचित्रों में [[अक्षांश]] और देशांतर की रेखाओं से बने संजाल होते हैं, परन्तु रंब रेखाएं भी दिखाई देती हैं, जो सीधे उत्तर की ओर, उत्तर से समकोण पर, या उत्तर से कुछ कोण पर होती हैं, जो कि एक समकोण कुछ सरल परिमेय भाँग है। ये रुम्ब रेखाएँ खींची जाएँगी ताकि वे प्रतिचित्र के कुछ बिंदुओं पर अभिसरित हों: प्रत्येक दिशाओं में जाने वाली रेखाएँ इनमें से प्रत्येक बिंदु पर अभिसरित होंगी। [[कम्पास गुलाब|दिक्सूचकआरेख]] देखें। इस प्रकार के प्रतिचित्र आवश्यक रूप से मर्केटर प्रक्षेपण में रहे होंगे इसलिए सभी प्राचीन प्रतिचित्र एकदिश नौपथ चिह्नों को दर्शाने में सक्षम नहीं रहे होंगे।
मर्केटर प्रक्षेपण के कुछ प्राचीन मानचित्रों में [[अक्षांश]] और देशांतर की रेखाओं से बने संजाल होते हैं, परन्तु रंब रेखाएं भी दिखाई देती हैं, जो सीधे उत्तर की ओर, उत्तर से समकोण पर, या उत्तर से कुछ कोण पर होती हैं, जो कि एक समकोण कुछ सरल परिमेय भाँग है। ये रुम्ब रेखाएँ खींची जाएँगी ताकि वे प्रतिचित्र के कुछ बिंदुओं पर अभिसरित हों: प्रत्येक दिशाओं में जाने वाली रेखाएँ इनमें से प्रत्येक बिंदु पर अभिसरित होंगी। [[कम्पास गुलाब|दिक्सूचकआरेख]] देखें। इस प्रकार के प्रतिचित्र आवश्यक रूप से मर्केटर प्रक्षेपण में रहे होंगे इसलिए सभी प्राचीन प्रतिचित्र एकदिश नौपथ चिह्नों को दर्शाने में सक्षम नहीं रहे होंगे।
Line 102: Line 102:
दिक्सूचकआरेख पर त्रिज्यीय रेखाओं को रंब भी कहा जाता है। 16वीं-19वीं शताब्दी में एक विशेष दिक्सूचक शीर्षक को इंगित करने के लिए अभिव्यक्ति "रंब पर नौकायन" का उपयोग किया गया था।<ref name="EOS" />
दिक्सूचकआरेख पर त्रिज्यीय रेखाओं को रंब भी कहा जाता है। 16वीं-19वीं शताब्दी में एक विशेष दिक्सूचक शीर्षक को इंगित करने के लिए अभिव्यक्ति "रंब पर नौकायन" का उपयोग किया गया था।<ref name="EOS" />


[[समुद्री क्रोनोमीटर|समुद्री कालमापी]] के आविष्कार से पूर्व के प्रारम्भिक नाविकों ने लंबे समुद्री मार्गों पर रंब रेखाओं अध्ययनों का उपयोग किया था, क्योंकि पोत का अक्षांश सूर्य या तारों को देखकर सटीक रूप से स्थापित किया जा सकता था परन्तु देशांतर निर्धारित करने का कोई सटीक तरीका नहीं था। गंतव्य के अक्षांश तक पहुंचने तक पोत उत्तर या दक्षिण की ओर जाएगा और पोत तब पूर्व या पश्चिम में रंब रेखा (वास्तव में एक समानांतर, जो कि एकदिश नौपथ की एक विशेष स्थिति है) के साथ एक स्थिर अक्षांश बनाए रखेगा और भूमि के साक्ष्य देखे जाने तक दूरी के नियमित अनुमानों को अंकित करना है।<ref>A Brief History of British Seapower, David Howarth, pub. Constable & Robinson, London, 2003, chapter 8.</ref>
[[समुद्री क्रोनोमीटर|समुद्रीय कालमापी]] के आविष्कार से पूर्व के प्रारम्भिक नाविकों ने लंबे समुद्रीय मार्गों पर रंब रेखाओं अध्ययनों का उपयोग किया था, क्योंकि पोत का अक्षांश सूर्य या तारों को देखकर सटीक रूप से स्थापित किया जा सकता था परन्तु देशांतर निर्धारित करने का कोई सटीक तरीका नहीं था। गंतव्य के अक्षांश तक पहुंचने तक पोत उत्तर या दक्षिण की ओर जाएगा और पोत तब पूर्व या पश्चिम में रंब रेखा (वास्तव में एक समानांतर, जो कि एकदिश नौपथ की एक विशेष स्थिति है) के साथ एक स्थिर अक्षांश बनाए रखेगा और भूमि के साक्ष्य देखे जाने तक दूरी के नियमित अनुमानों को अंकित करना है।<ref>A Brief History of British Seapower, David Howarth, pub. Constable & Robinson, London, 2003, chapter 8.</ref>
   
   



Revision as of 10:19, 25 April 2023

एकदिश नौपथ, या एकदिश नौपथ की छवि, जो उत्तरी ध्रुव की ओर बढ़ती है।

मार्गनिर्देशन में, एक रंब रेखा, रंब (/rʌm/), या एकदिश नौपथ एक चाप है जो एक ही कोण पर देशांतर के सभी भूमध्य रेखाओं को पार करता है, जोकि वास्तविक उत्तर दिशा के सापेक्ष मापा गया स्थिर दिक्कोण वाला पथ है।

परिचय

एक भूमंडल की सतह पर रंब रेखा पाठ्यक्रम का पालन करने के प्रभाव पर पहली बार 1537 में पुर्तगाली गणितज्ञ पेड्रो नून्स ने 1590 के दशक में थॉमस हैरियट द्वारा आगे के गणितीय विकास के साथ समुद्रीय रेखाचित्र की रक्षा में अपने ग्रंथ में चर्चा की थी।

एक रंब रेखा की तुलना एक बड़े वृत्त से की जा सकती है, जो एक वृत्त की सतह पर दो बिंदुओं के मध्य की सबसे छोटी दूरी का पथ है। एक बड़े वृत्त पर, गंतव्य बिंदु का दिक्कोण स्थिर नहीं रहता है। यदि किसी को बृहत् वृत के साथ एक मोटर गाड़ी चलानी होती है तो वह चालन चक्र को स्थिर रखता है, परन्तु रंब रेखाओं का पालन करने के लिए पहिये को घुमाना पड़ता है, जैसे-जैसे स्तंभ पास आते हैं, इसे और अधिक तीव्रता से घुमाते हैं। दूसरे शब्दों में, एक बड़ा वृत्त शून्य अल्पांतरी वक्रता के साथ स्थानीय रूप से "सीधा" होता है, जबकि एक रंब रेखा में गैर-शून्य अल्पांतरी वक्रता होती है।

देशांतर के याम्योत्तर और अक्षांश के समानांतर रंब रेखाओं की विशेष स्थितियां प्रदान करते हैं, जहां उनके प्रतिच्छेदन के कोण क्रमशः 0° और 90° होते हैं। एक उत्तर-दक्षिण पथ पर रंब रेखा पाठ्यक्रम एक बृहत् वृत के अनुरूप है, जैसे कि यह भूमध्य रेखाओं के साथ पूर्व-पश्चिम पथ पर होता है।

मर्केटर प्रक्षेपण मानचित्र पर, कोई भी रंब रेखा एक सीधी रेखा है; इस प्रकार के मानचित्रों पर पृथ्वी पर किन्हीं दो बिंदुओं के मध्य बिना मानचित्र के किनारे से हटे रंब रेखा खींची जा सकती है। परन्तु सैद्धांतिक रूप से एकदिश नौपथ मानचित्र के दाहिने किनारे से आगे बढ़ सकता है, जहां यह फिर उसी प्रवणता के साथ बाएं किनारे पर जारी रहता है (यह मानते हुए कि प्रतिचित्र बिल्कुल 360 डिग्री देशांतर को आच्छादित करता है)।

रंब रेखाएं जो भूमध्य रेखाओं को तिर्यक् कोणों पर काटती हैं, वे एकदिश नौपथ वक्र हैं जो ध्रुवों की ओर कुंडलित होती हैं।[1]मर्केटर प्रक्षेपण पर उत्तरी ध्रुव और दक्षिणी ध्रुव अनंत पर होते हैं और इसलिए इन्हें कभी दर्शाया नहीं जाता है। हालांकि असीमित उच्च मानचित्रों पर पूर्ण एकदिश नौपथ में दो किनारों के मध्य अनंततः कई रेखा खंड सम्मिलित होंगे। त्रिविम प्रक्षेपण मानचित्र पर, एकदिश नौपथ एक समकोणीय कुंडली है जिसका केंद्र उत्तर या दक्षिण ध्रुव है।

सभी एकदिश नौपथ एक ध्रुव से दूसरे ध्रुव की ओर कुंडलित होते हैं। ध्रुवों के पास, वे लागेरिथ्मीय कुंडली होने के निकट हैं (जो कि वे एक त्रिविम प्रक्षेपण पर हैं, नीचे देखें), इसलिए वे प्रत्येक ध्रुव के चारों ओर अनंत बार चक्कर लगाते हैं परन्तु एक सीमित दूरी में ध्रुव तक पहुंचते हैं। एकदिश नौपथ की ध्रुव-से-ध्रुव लंबाई (एक आदर्श क्षेत्र मानते हुए) वास्तविक उत्तर दिशा से दूर दिक्कोण के कोज्या द्वारा विभाजित भूमध्य रेखाओं की लंबाई है। एकदिश नौपथो को ध्रुवों पर परिभाषित नहीं किया गया है।

व्युत्पत्ति और ऐतिहासिक विवरण

एकदिश नौपथ शब्द प्राचीन यूनानी भाषा λοξός loxos से आया है: तिर्यक् + δρόμος drómos: संचालन (δραμεῖν drameîn से: चलाने के लिए) है। रंब शब्द स्पेनी भाषा या पुर्तगाली भाषा रंबो/रंमो ("पाठ्यक्रम" या "दिशा") और यूनानी ῥόμβος rhómbos,[2] से आया हो सकता है।

सार्वभौमिक सूचना के भूमंडलीय विश्वज्ञानकोष के 1878 संस्करण में एकदिश नौपथ रेखाओं का वर्णन इस प्रकार है:[3]

एकदिश नौपथ रेखा एक वक्र है जो किसी दिए गए सतह की वक्रता की रेखाओं की प्रणाली के प्रत्येक भागो को एक ही कोण पर काटती है। दिक्सूचक के एक ही बिंदु की ओर जाने वाला पोत एक ऐसी रेखा का वर्णन करता है जो सभी याम्योत्तरों को एक ही कोण पर काटती है। मर्केटर के प्रक्षेपण (q.v.) में एकदिश नौपथ रेखाएँ स्पष्ट रूप से सीधी होती हैं।[3]

एक असम्मति उत्पन्न हो सकती है क्योंकि शब्द "रंब" का प्रयोग में आने पर इसका कोई सटीक अर्थ नहीं था। यह पवन आरेख रेखाओं के लिए समान रूप से अच्छी तरह से अनुप्रयुक्त होता है क्योंकि यह एकदिश नौपथो के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से अनुप्रयुक्त होता है और इसका अर्थ है कि एक नौकाचालक ने स्थिर दिक्कोण के साथ नौकायन करने के लिए जो कुछ भी किया है, जोकि सभी अशुद्धियों के साथ होता है। इसलिए, रंब पत्तन दर्शिकाओं पर सीधी रेखाओं पर अनुप्रयुक्त होता था, जब पत्तन दर्शिका उपयोग में होते थे, साथ ही सदैव मर्केटर रेखाचित्र पर सीधी रेखाओं पर भी अनुप्रयुक्त होते थे। छोटी दूरी के लिए पत्तन दर्शिका "रंब" अर्थपूर्ण रूप से मर्केटर रंब से भिन्न नहीं होते हैं, लेकिन इन दिनों "रंब" गणितीय रूप से सटीक "एकदिश नौपथ" का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से समानार्थी बना दिया गया है।

जैसा कि लियो बग्रो कहते हैं:[4] शब्द ('रंब रेखा') इस अवधि के समुद्रीय-रेखाचित्रों पर अनुचित तरीके से अनुप्रयुक्त किया गया है, क्योंकि एक एकदिश नौपथ केवल एक सटीक पाठ्यक्रम देता है, जब रेखाचित्र एक उपयुक्त प्रक्षेपण पर खींचा जाता है। मानचित्रमितीय जांच से पता चला है कि प्रारम्भिक रेखाचित्रों में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पत्तन दर्शिका' नाम रखते हैं।

गणितीय विवरण

त्रिज्या 1 के वृत्तों के लिए, दिगंशीय कोण λ, ध्रुवीय कोण π/2φπ/2 (अक्षांश के अनुरूप यहां परिभाषित) और कार्तीय इकाई सदिश i, j, और k का उपयोग त्रिज्या सदिश r को लिखने के लिए किया जा सकता है।

वृत्तों के दिगंशीय और ध्रुवीय दिशाओं में लंबकोणीय इकाई सदिश लिखे जा सकते हैं;

जिनके पास अदिश गुणनफल है

नियतांक φ के लिए λ̂ अक्षांश के समानांतर का पता लगाता है, जबकि नियतांक λ के लिए φ̂ देशांतर के भूमध्य रेखाओं का पता लगाता है और साथ में वे वृत्तों के लिए एक समतल स्पर्शरेखा उत्पन्न करते हैं।

इकाई सदिश

किसी भी λ और φ के लिए इकाई सदिश φ̂ के साथ एक स्थिर कोण β है, क्योंकि उनका अदिश गुणनफल है।

एकदिश नौपथो को वृत्तों पर एक वक्र के रूप में परिभाषित किया जाता है जिसमें देशांतर के सभी याम्योत्तरों के साथ एक स्थिर कोण β होता है और इसलिए इकाई सदिश β̂ के समानांतर होना चाहिए। फलस्वरूप, एकदिश नौपथो के साथ एक अंतर लंबाई ds एक अंतर विस्थापन का उत्पादन करेगा।