स्पिन-सांख्यिकी प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 7: Line 7:
== पृष्ठभूमि ==
== पृष्ठभूमि ==


=== [[कितना राज्य]]एँ और अप्रभेद्य कण ===
=== [[कितना राज्य|क्वांटम राज्य]] और अप्रभेद्य कण ===
क्वांटम प्रणाली में, एक भौतिक अवस्था का वर्णन क्वांटम अवस्था द्वारा किया जाता है। अलग-अलग राज्य वैक्टर की एक जोड़ी शारीरिक रूप से समतुल्य होती है यदि वे केवल एक समग्र चरण कारक से भिन्न होते हैं, अन्य इंटरैक्शन को अनदेखा करते हैं। इस तरह के अप्रभेद्य कणों की एक जोड़ी की केवल एक ही अवस्था होती है। इसका मतलब यह है कि यदि कणों की स्थिति का आदान-प्रदान किया जाता है (अर्थात, वे एक क्रमचय से गुजरते हैं), तो यह एक नई भौतिक अवस्था की पहचान नहीं करता है, बल्कि मूल भौतिक अवस्था से मेल खाता है। वास्तव में कोई यह नहीं बता सकता कि कौन सा कण किस स्थिति में है।
क्वांटम प्रणाली में, भौतिक अवस्था राज्य सदिश द्वारा वर्णित है। राज्य वैक्टर की जोड़ी शारीरिक रूप से समतुल्य होती है यदि वे समग्र चरण कारक से भिन्न होते हैं, अन्य इंटरैक्शन को अप्रत्यक्ष करते हैं। इस प्रकार के अप्रभेद्य कणों की जोड़ी की एकमात्र अवस्था होती है। इसका मतलब यह है कि यदि कणों की स्थिति का आदान-प्रदान किया जाता है (अर्थात, वे क्रमचय से गुजरते हैं), तो यह नई भौतिक अवस्था की पहचान नहीं करता है, बल्कि मूल भौतिक अवस्था से मेल खाता है। वास्तव में कोई यह नहीं बता सकता कि कौन सा कण किस स्थिति में है।


जबकि कणों की स्थिति के आदान-प्रदान के तहत भौतिक स्थिति नहीं बदलती है, विनिमय के परिणामस्वरूप राज्य वेक्टर के लिए संकेत बदलना संभव है। चूँकि यह चिन्ह परिवर्तन केवल एक समग्र चरण है, यह भौतिक स्थिति को प्रभावित नहीं करता है।
जबकि कणों की स्थिति के आदान-प्रदान के तहत भौतिक स्थिति नहीं बदलती है, विनिमय के परिणामस्वरूप राज्य वेक्टर के लिए संकेत बदलना संभव है। चूँकि यह चिन्ह परिवर्तन केवल समग्र चरण है, यह भौतिक स्थिति को प्रभावित नहीं करता है।


स्पिन-सांख्यिकी संबंध को साबित करने में आवश्यक घटक सापेक्षता है, कि भौतिक नियम [[[[लोरेंत्ज़ परिवर्तन]]]]ों के तहत नहीं बदलते हैं। फील्ड ऑपरेटर परिभाषा के अनुसार, उनके द्वारा बनाए गए कण के स्पिन के अनुसार लोरेंत्ज़ परिवर्तनों के तहत रूपांतरित होते हैं।
स्पिन-सांख्यिकी संबंध को साबित करने में आवश्यक घटक सापेक्षता है, कि भौतिक नियम [[[[लोरेंत्ज़ परिवर्तन]]]]ों के तहत नहीं बदलते हैं। फील्ड ऑपरेटर परिभाषा के अनुसार, उनके द्वारा बनाए गए कण के स्पिन के अनुसार लोरेंत्ज़ परिवर्तनों के तहत रूपांतरित होते हैं।


इसके अतिरिक्त, धारणा (सूक्ष्मविषमता के रूप में जाना जाता है) कि अंतरिक्ष-समान-पृथक क्षेत्र या तो कम्यूट या एंटीकॉम्यूट केवल एक समय दिशा के साथ सापेक्ष सिद्धांतों के लिए बनाया जा सकता है। अन्यथा, स्पेसलाइक होने की धारणा अर्थहीन है। हालाँकि, प्रमाण में स्पेसटाइम के यूक्लिडियन संस्करण को देखना शामिल है, जिसमें समय की दिशा को एक स्थानिक के रूप में माना जाता है, जैसा कि अब समझाया जाएगा।
इसके अतिरिक्त, धारणा (सूक्ष्मविषमता के रूप में जाना जाता है) कि अंतरिक्ष-समान-पृथक क्षेत्र या तो कम्यूट या एंटीकॉम्यूट केवल समय दिशा के साथ सापेक्ष सिद्धांतों के लिए बनाया जा सकता है। अन्यथा, स्पेसलाइक होने की धारणा अर्थहीन है। हालाँकि, प्रमाण में स्पेसटाइम के यूक्लिडियन संस्करण को देखना शामिल है, जिसमें समय की दिशा को स्थानिक के रूप में माना जाता है, जैसा कि अब समझाया जाएगा।


लोरेंत्ज़ परिवर्तनों में 3-आयामी घुमाव और [[लोरेंत्ज़ बूस्ट]] शामिल हैं। एक बढ़ावा एक अलग वेग के साथ संदर्भ के एक फ्रेम में स्थानांतरित होता है और गणितीय रूप से समय में रोटेशन की तरह होता है। क्वांटम फील्ड सिद्धांत के सहसंबंध कार्यों की [[विश्लेषणात्मक निरंतरता]] से, समय समन्वय [[काल्पनिक संख्या]] बन सकता है, और फिर रोटेशन बन जाता है। नए स्पेसटाइम में केवल स्थानिक दिशाएं होती हैं और इसे यूक्लिडियन कहा जाता है।
लोरेंत्ज़ परिवर्तनों में 3-आयामी घुमाव और [[लोरेंत्ज़ बूस्ट]] शामिल हैं। बढ़ावा अलग वेग के साथ संदर्भ के फ्रेम में स्थानांतरित होता है और गणितीय रूप से समय में रोटेशन की तरह होता है। क्वांटम फील्ड सिद्धांत के सहसंबंध कार्यों की [[विश्लेषणात्मक निरंतरता]] से, समय समन्वय [[काल्पनिक संख्या]] बन सकता है, और फिर रोटेशन बन जाता है। नए स्पेसटाइम में केवल स्थानिक दिशाएं होती हैं और इसे यूक्लिडियन कहा जाता है।


=== विनिमय समरूपता या क्रमपरिवर्तन समरूपता ===
=== विनिमय समरूपता या क्रमपरिवर्तन समरूपता ===


[[बोसॉन]] ऐसे कण होते हैं जिनकी तरंग क्रिया ऐसे विनिमय या क्रमपरिवर्तन के तहत सममित होती है, इसलिए यदि हम कणों की अदला-बदली करते हैं, तो तरंग क्रिया नहीं बदलती है। [[फर्मियन]] ऐसे कण होते हैं जिनका वेवफंक्शन एंटीसिमेट्रिक होता है, इसलिए इस तरह के स्वैप के तहत वेवफंक्शन को माइनस साइन मिलता है, जिसका अर्थ है कि एक ही स्थिति पर कब्जा करने के लिए दो समान फर्मों का आयाम शून्य होना चाहिए। यह [[पाउली अपवर्जन सिद्धांत]] है: दो समान फ़र्मियन एक ही अवस्था में नहीं रह सकते। यह नियम बोसोन के लिए लागू नहीं होता है।
[[बोसॉन]] ऐसे कण होते हैं जिनकी तरंग क्रिया ऐसे विनिमय या क्रमपरिवर्तन के तहत सममित होती है, इसलिए यदि हम कणों की अदला-बदली करते हैं, तो तरंग क्रिया नहीं बदलती है। [[फर्मियन]] ऐसे कण होते हैं जिनका वेवफंक्शन एंटीसिमेट्रिक होता है, इसलिए इस तरह के स्वैप के तहत वेवफंक्शन को माइनस साइन मिलता है, जिसका अर्थ है कि ही स्थिति पर कब्जा करने के लिए दो समान फर्मों का आयाम शून्य होना चाहिए। यह [[पाउली अपवर्जन सिद्धांत]] है: दो समान फ़र्मियन ही अवस्था में नहीं रह सकते। यह नियम बोसोन के लिए लागू नहीं होता है।


क्वांटम फील्ड थ्योरी में, एक राज्य या एक तरंग समारोह का वर्णन [[क्षेत्र संचालक]] द्वारा किया जाता है जो वैक्यूम राज्य नामक कुछ बुनियादी अवस्था पर काम करते हैं। ऑपरेटरों के लिए वेवफंक्शन बनाने के सममित या एंटीसिमेट्रिक घटक को प्रोजेक्ट करने के लिए, उनके पास उपयुक्त कम्यूटेशन कानून होना चाहिए। परिचालक
क्वांटम फील्ड थ्योरी में, राज्य या तरंग समारोह का वर्णन [[क्षेत्र संचालक]] द्वारा किया जाता है जो वैक्यूम राज्य नामक कुछ बुनियादी अवस्था पर काम करते हैं। ऑपरेटरों के लिए वेवफंक्शन बनाने के सममित या एंटीसिमेट्रिक घटक को प्रोजेक्ट करने के लिए, उनके पास उपयुक्त कम्यूटेशन कानून होना चाहिए। परिचालक


:<math>
:<math>
\iint \psi(x,y) \phi(x)\phi(y)\,dx\,dy
\iint \psi(x,y) \phi(x)\phi(y)\,dx\,dy
</math>
</math>
(साथ <math>\phi</math> एक ऑपरेटर और <math>\psi(x,y)</math> एक संख्यात्मक फ़ंक्शन) वेवफंक्शन के साथ दो-कण स्थिति बनाता है <math>\psi(x,y)</math>, और क्षेत्रों के रूपान्तरण गुणों के आधार पर, या तो केवल एंटीसिमेट्रिक भाग या सममित भाग मायने रखते हैं।
(साथ <math>\phi</math> ऑपरेटर और <math>\psi(x,y)</math> संख्यात्मक फ़ंक्शन) वेवफंक्शन के साथ दो-कण स्थिति बनाता है <math>\psi(x,y)</math>, और क्षेत्रों के रूपान्तरण गुणों के आधार पर, या तो केवल एंटीसिमेट्रिक भाग या सममित भाग मायने रखते हैं।


चलिए मान लेते हैं <math>x \ne y</math> और दो ऑपरेटर एक ही समय में होते हैं; अधिक आम तौर पर, उनके पास [[ spacelike ]] अलगाव हो सकता है, जैसा कि इसके बाद बताया गया है।
चलिए मान लेते हैं <math>x \ne y</math> और दो ऑपरेटर ही समय में होते हैं; अधिक आम तौर पर, उनके पास [[ spacelike ]] अलगाव हो सकता है, जैसा कि इसके बाद बताया गया है।


यदि फ़ील्ड यात्रा करते हैं, जिसका अर्थ है कि निम्नलिखित धारण करता है:
यदि फ़ील्ड यात्रा करते हैं, जिसका अर्थ है कि निम्नलिखित धारण करता है:
Line 45: Line 45:
=== स्पिन-सांख्यिकी संबंध ===
=== स्पिन-सांख्यिकी संबंध ===


स्पिन-सांख्यिकी संबंध पहली बार 1939 में [[मार्कस फ़िएरज़]] द्वारा तैयार किया गया था<ref>{{cite journal|author1=Markus Fierz|title=Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin|journal=Helvetica Physica Acta|volume=12|issue=1|pages=3–37|year=1939|doi=10.5169/seals-110930|author1-link=Markus Fierz|bibcode=1939AcHPh..12....3F}}</ref> और [[वोल्फगैंग पाउली]] द्वारा अधिक व्यवस्थित तरीके से पुनर्व्युत्पन्न किया गया था।<ref>{{cite journal|author1=Wolfgang Pauli|title=स्पिन और सांख्यिकी के बीच संबंध|journal=[[Physical Review]]|volume=58|issue=8|pages=716–722|date=15 October 1940|doi=10.1103/PhysRev.58.716|url=http://web.ihep.su/dbserv/compas/src/pauli40b/eng.pdf|bibcode = 1940PhRv...58..716P |author1-link=Wolfgang Pauli}}</ref> फ़िएर्ज़ और पाउली ने सभी मुक्त क्षेत्र सिद्धांतों की गणना करके अपने परिणाम का तर्क दिया, आवश्यकता के अधीन कि स्थानीय रूप से आने-जाने के लिए द्विघात रूप हों{{clarify|date=June 2012}} एक सकारात्मक-निश्चित ऊर्जा घनत्व सहित वेधशालाएँ। 1950 में [[जूलियन श्विंगर]] द्वारा एक अधिक वैचारिक तर्क प्रदान किया गया था। [[रिचर्ड फेनमैन]] ने एक बाहरी क्षमता के रूप में बिखरने के लिए एकता की मांग करके एक प्रदर्शन दिया, जो विविध है,<ref>{{cite book|author1=Richard Feynman|title=क्वांटम इलेक्ट्रोडायनामिक्स|publisher=[[Basic Books]]|year=1961|isbn=978-0-201-36075-2|author1-link=Richard Feynman}}</ref> जो क्षेत्र की भाषा में अनुवादित होने पर द्विघात संकारक पर एक शर्त है जो क्षमता से जुड़ता है।<ref>{{cite journal|author1=Wolfgang Pauli|title=स्पिन और सांख्यिकी के बीच संबंध पर|journal=[[Progress of Theoretical Physics]]|volume=5|issue=4|pages=526–543|year=1950|doi=10.1143/ptp/5.4.526|bibcode=1950PThPh...5..526P|doi-access=free}}</ref>
स्पिन-सांख्यिकी संबंध पहली बार 1939 में [[मार्कस फ़िएरज़]] द्वारा तैयार किया गया था<ref>{{cite journal|author1=Markus Fierz|title=Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin|journal=Helvetica Physica Acta|volume=12|issue=1|pages=3–37|year=1939|doi=10.5169/seals-110930|author1-link=Markus Fierz|bibcode=1939AcHPh..12....3F}}</ref> और [[वोल्फगैंग पाउली]] द्वारा अधिक व्यवस्थित तरीके से पुनर्व्युत्पन्न किया गया था।<ref>{{cite journal|author1=Wolfgang Pauli|title=स्पिन और सांख्यिकी के बीच संबंध|journal=[[Physical Review]]|volume=58|issue=8|pages=716–722|date=15 October 1940|doi=10.1103/PhysRev.58.716|url=http://web.ihep.su/dbserv/compas/src/pauli40b/eng.pdf|bibcode = 1940PhRv...58..716P |author1-link=Wolfgang Pauli}}</ref> फ़िएर्ज़ और पाउली ने सभी मुक्त क्षेत्र सिद्धांतों की गणना करके अपने परिणाम का तर्क दिया, आवश्यकता के अधीन कि स्थानीय रूप से आने-जाने के लिए द्विघात रूप हों{{clarify|date=June 2012}} सकारात्मक-निश्चित ऊर्जा घनत्व सहित वेधशालाएँ। 1950 में [[जूलियन श्विंगर]] द्वारा अधिक वैचारिक तर्क प्रदान किया गया था। [[रिचर्ड फेनमैन]] ने बाहरी क्षमता के रूप में बिखरने के लिए ता की मांग करके प्रदर्शन दिया, जो विविध है,<ref>{{cite book|author1=Richard Feynman|title=क्वांटम इलेक्ट्रोडायनामिक्स|publisher=[[Basic Books]]|year=1961|isbn=978-0-201-36075-2|author1-link=Richard Feynman}}</ref> जो क्षेत्र की भाषा में अनुवादित होने पर द्विघात संकारक पर शर्त है जो क्षमता से जुड़ता है।<ref>{{cite journal|author1=Wolfgang Pauli|title=स्पिन और सांख्यिकी के बीच संबंध पर|journal=[[Progress of Theoretical Physics]]|volume=5|issue=4|pages=526–543|year=1950|doi=10.1143/ptp/5.4.526|bibcode=1950PThPh...5..526P|doi-access=free}}</ref>




=== प्रमेय कथन ===
=== प्रमेय कथन ===
प्रमेय कहता है कि:
प्रमेय कहता है कि:
* [[समान कण]]ों पूर्णांक-स्पिन कणों की एक प्रणाली के तरंग कार्य का समान मूल्य होता है जब किन्हीं दो कणों की स्थिति बदली जाती है। विनिमय के तहत सममित तरंग कार्यों वाले कणों को बोसोन कहा जाता है।
* [[समान कण]]ों पूर्णांक-स्पिन कणों की प्रणाली के तरंग कार्य का समान मूल्य होता है जब किन्हीं दो कणों की स्थिति बदली जाती है। विनिमय के तहत सममित तरंग कार्यों वाले कणों को बोसोन कहा जाता है।
* दो कणों की अदला-बदली करने पर समान अर्ध-पूर्णांक-स्पिन कणों की प्रणाली का तरंग कार्य संकेत बदलता है। [[ तरंग क्रिया ]] वाले पार्टिकल्स जो एक्सचेंज के तहत एडिटिव व्युत्क्रम होते हैं, फर्मियन कहलाते हैं।
* दो कणों की अदला-बदली करने पर समान अर्ध-पूर्णांक-स्पिन कणों की प्रणाली का तरंग कार्य संकेत बदलता है। [[ तरंग क्रिया ]] वाले पार्टिकल्स जो ्सचेंज के तहत एडिटिव व्युत्क्रम होते हैं, फर्मियन कहलाते हैं।
दूसरे शब्दों में, स्पिन-सांख्यिकी प्रमेय में कहा गया है कि पूर्णांक-स्पिन कण बोसोन हैं, जबकि अर्ध-पूर्णांक-स्पिन कण फ़र्मियन हैं।
दूसरे शब्दों में, स्पिन-सांख्यिकी प्रमेय में कहा गया है कि पूर्णांक-स्पिन कण बोसोन हैं, जबकि अर्ध-पूर्णांक-स्पिन कण फ़र्मियन हैं।


Line 60: Line 60:


:<math> R(\pi)\phi(x) \phi(-x), </math>
:<math> R(\pi)\phi(x) \phi(-x), </math>
जहाँ R वह मैट्रिक्स है जो क्षेत्र के स्पिन ध्रुवीकरण को 180 डिग्री घुमाता है जब कोई किसी विशेष अक्ष के चारों ओर 180 डिग्री का घुमाव करता है। के घटक <math>\phi</math> इस नोटेशन में नहीं दिखाया गया है। <math>\phi</math> कई घटक हैं, और मैट्रिक्स आर उन्हें एक दूसरे के साथ मिलाता है।
जहाँ R वह मैट्रिक्स है जो क्षेत्र के स्पिन ध्रुवीकरण को 180 डिग्री घुमाता है जब कोई किसी विशेष अक्ष के चारों ओर 180 डिग्री का घुमाव करता है। के घटक <math>\phi</math> इस नोटेशन में नहीं दिखाया गया है। <math>\phi</math> कई घटक हैं, और मैट्रिक्स आर उन्हें दूसरे के साथ मिलाता है।


एक गैर-सापेक्षतावादी सिद्धांत में, इस उत्पाद की व्याख्या पदों पर दो कणों के विनाश के रूप में की जा सकती है <math>x</math> और <math>-x</math> द्वारा घुमाए गए ध्रुवीकरणों के साथ <math>\pi</math> एक दूसरे के सापेक्ष। अब इस कॉन्फ़िगरेशन को घुमाएँ <math>\pi</math> उत्पत्ति के आसपास। इस रोटेशन के तहत, दो बिंदु <math>x</math> और <math>-x</math> स्विच स्थान, और दो क्षेत्र ध्रुवीकरण अतिरिक्त रूप से घुमाए जाते हैं <math>\pi</math>. तो हम प्राप्त करते हैं
गैर-सापेक्षतावादी सिद्धांत में, इस उत्पाद की व्याख्या पदों पर दो कणों के विनाश के रूप में की जा सकती है <math>x</math> और <math>-x</math> द्वारा घुमाए गए ध्रुवीकरणों के साथ <math>\pi</math> दूसरे के सापेक्ष। अब इस कॉन्फ़िगरेशन को घुमाएँ <math>\pi</math> उत्पत्ति के आसपास। इस रोटेशन के तहत, दो बिंदु <math>x</math> और <math>-x</math> स्विच स्थान, और दो क्षेत्र ध्रुवीकरण अतिरिक्त रूप से घुमाए जाते हैं <math>\pi</math>. तो हम प्राप्त करते हैं


:<math> R(2\pi)\phi(-x) R(\pi)\phi(x),</math>
:<math> R(2\pi)\phi(-x) R(\pi)\phi(x),</math>
Line 74: Line 74:


:<math>R(\pi)\phi(x) \phi(-x) = \begin{cases}\phi(-x) R(\pi)\phi(x) & \text{ for integral spins}, \\ -\phi(-x) R(\pi)\phi(x) & \text{ for half-integral spins}.\end{cases}</math>
:<math>R(\pi)\phi(x) \phi(-x) = \begin{cases}\phi(-x) R(\pi)\phi(x) & \text{ for integral spins}, \\ -\phi(-x) R(\pi)\phi(x) & \text{ for half-integral spins}.\end{cases}</math>
तो आधे-पूर्णांक मामले में एक संकेत की कीमत पर, वैक्यूम में दो उचित रूप से ध्रुवीकृत ऑपरेटर सम्मिलन के क्रम का आदान-प्रदान एक रोटेशन द्वारा किया जा सकता है।
तो आधे-पूर्णांक मामले में संकेत की कीमत पर, वैक्यूम में दो उचित रूप से ध्रुवीकृत ऑपरेटर सम्मिलन के क्रम का आदान-प्रदान रोटेशन द्वारा किया जा सकता है।


यह तर्क अपने आप में स्पिन-सांख्यिकी संबंध जैसा कुछ भी साबित नहीं करता है। यह देखने के लिए कि क्यों, एक मुक्त श्रोडिंगर समीकरण द्वारा वर्णित एक गैर-सापेक्ष स्पिन-0 क्षेत्र पर विचार करें। ऐसा क्षेत्र एंटीकम्यूटिंग या कम्यूटिंग हो सकता है। यह देखने के लिए कि यह कहाँ विफल रहता है, विचार करें कि एक गैर-सापेक्ष स्पिन-0 क्षेत्र में कोई ध्रुवीकरण नहीं है, ताकि उपरोक्त उत्पाद बस हो:
यह तर्क अपने आप में स्पिन-सांख्यिकी संबंध जैसा कुछ भी साबित नहीं करता है। यह देखने के लिए कि क्यों, मुक्त श्रोडिंगर समीकरण द्वारा वर्णित गैर-सापेक्ष स्पिन-0 क्षेत्र पर विचार करें। ऐसा क्षेत्र एंटीकम्यूटिंग या कम्यूटिंग हो सकता है। यह देखने के लिए कि यह कहाँ विफल रहता है, विचार करें कि गैर-सापेक्ष स्पिन-0 क्षेत्र में कोई ध्रुवीकरण नहीं है, ताकि उपरोक्त उत्पाद बस हो:


:<math> \phi(-x) \phi(x).</math>
:<math> \phi(-x) \phi(x).</math>
Line 85: Line 85:


=== बोगस तर्क विफल क्यों होता है ===
=== बोगस तर्क विफल क्यों होता है ===
स्पिन-सांख्यिकी प्रमेय को सिद्ध करने के लिए, सापेक्षता का उपयोग करना आवश्यक है, जैसा कि गैर-सापेक्षतावादी स्पिनलेस फ़र्मियन और गैर-सापेक्षतावादी स्पिनिंग बोसॉन की संगति से स्पष्ट है। स्पिन-सांख्यिकी प्रमेय के प्रमाण के साहित्य में ऐसे दावे हैं जिन्हें सापेक्षता की आवश्यकता नहीं है,<ref name=spin-stat-arthur>{{cite journal|last=Jabs|first=Arthur|title=क्वांटम यांत्रिकी में स्पिन और सांख्यिकी को जोड़ना|journal=Foundations of Physics|date=5 April 2002|volume=40|issue=7|pages=776–792|doi=10.1007/s10701-009-9351-4|bibcode = 2010FoPh...40..776J |arxiv = 0810.2399 |s2cid=122488238}}</ref><ref name=spin-stat-joshua>{{cite journal|last=Horowitz|first=Joshua|title=पथ समाकलन से भिन्नात्मक क्वांटम सांख्यिकी तक|date=14 April 2009|url=http://web.mit.edu/joshuah/www/projects/fractional.pdf}}</ref> लेकिन वे एक प्रमेय के प्रमाण नहीं हैं, जैसा कि प्रतिउदाहरण दिखाते हैं, बल्कि वे तर्क हैं कि क्यों स्पिन-सांख्यिकी स्वाभाविक है, जबकि गलत-सांख्यिकी{{clarify|date=December 2014}} अप्राकृतिक है। सापेक्षता में, संबंध आवश्यक है।
स्पिन-सांख्यिकी प्रमेय को सिद्ध करने के लिए, सापेक्षता का उपयोग करना आवश्यक है, जैसा कि गैर-सापेक्षतावादी स्पिनलेस फ़र्मियन और गैर-सापेक्षतावादी स्पिनिंग बोसॉन की संगति से स्पष्ट है। स्पिन-सांख्यिकी प्रमेय के प्रमाण के साहित्य में ऐसे दावे हैं जिन्हें सापेक्षता की आवश्यकता नहीं है,<ref name=spin-stat-arthur>{{cite journal|last=Jabs|first=Arthur|title=क्वांटम यांत्रिकी में स्पिन और सांख्यिकी को जोड़ना|journal=Foundations of Physics|date=5 April 2002|volume=40|issue=7|pages=776–792|doi=10.1007/s10701-009-9351-4|bibcode = 2010FoPh...40..776J |arxiv = 0810.2399 |s2cid=122488238}}</ref><ref name=spin-stat-joshua>{{cite journal|last=Horowitz|first=Joshua|title=पथ समाकलन से भिन्नात्मक क्वांटम सांख्यिकी तक|date=14 April 2009|url=http://web.mit.edu/joshuah/www/projects/fractional.pdf}}</ref> लेकिन वे प्रमेय के प्रमाण नहीं हैं, जैसा कि प्रतिउदाहरण दिखाते हैं, बल्कि वे तर्क हैं कि क्यों स्पिन-सांख्यिकी स्वाभाविक है, जबकि गलत-सांख्यिकी{{clarify|date=December 2014}} अप्राकृतिक है। सापेक्षता में, संबंध आवश्यक है।


सापेक्षता में, कोई भी स्थानीय क्षेत्र नहीं है जो शुद्ध निर्माण संचालक या विनाश संचालक हैं। प्रत्येक स्थानीय क्षेत्र कण बनाता है और संबंधित एंटीपार्टिकल को नष्ट कर देता है। इसका मतलब यह है कि सापेक्षता में, मुक्त वास्तविक स्पिन-0 क्षेत्र के उत्पाद में एक गैर-शून्य वैक्यूम अपेक्षा मूल्य होता है, क्योंकि ऐसे कणों को बनाने के अलावा जो नष्ट नहीं होते हैं और जो बाद में नहीं बनाए जाते हैं, इसमें एक हिस्सा भी शामिल होता है जो बनाता है और आभासी कणों का सत्यानाश कर देता है जिसका अस्तित्व अंतःक्रियात्मक गणनाओं में प्रवेश करता है - लेकिन कभी भी बिखरने वाले मैट्रिक्स सूचकांकों या स्पर्शोन्मुख अवस्थाओं के रूप में नहीं।
सापेक्षता में, कोई भी स्थानीय क्षेत्र नहीं है जो शुद्ध निर्माण संचालक या विनाश संचालक हैं। प्रत्येक स्थानीय क्षेत्र कण बनाता है और संबंधित एंटीपार्टिकल को नष्ट कर देता है। इसका मतलब यह है कि सापेक्षता में, मुक्त वास्तविक स्पिन-0 क्षेत्र के उत्पाद में गैर-शून्य वैक्यूम अपेक्षा मूल्य होता है, क्योंकि ऐसे कणों को बनाने के अलावा जो नष्ट नहीं होते हैं और जो बाद में नहीं बनाए जाते हैं, इसमें हिस्सा भी शामिल होता है जो बनाता है और आभासी कणों का सत्यानाश कर देता है जिसका अस्तित्व अंतःक्रियात्मक गणनाओं में प्रवेश करता है - लेकिन कभी भी बिखरने वाले मैट्रिक्स सूचकांकों या स्पर्शोन्मुख अवस्थाओं के रूप में नहीं।


:<math> G(x)= \langle 0 | \phi(-x) \phi(x) | 0\rangle.</math>
:<math> G(x)= \langle 0 | \phi(-x) \phi(x) | 0\rangle.</math>
Line 94: Line 94:
== प्रमाण ==
== प्रमाण ==


यूक्लिडियन एक्सटी विमान में एक π रोटेशन पिछले खंड के क्षेत्र उत्पाद के वैक्यूम उम्मीद मूल्यों को घुमाने के लिए इस्तेमाल किया जा सकता है। समय रोटेशन पिछले खंड के तर्क को स्पिन-सांख्यिकी प्रमेय में बदल देता है।
यूक्लिडियन ्सटी विमान में π रोटेशन पिछले खंड के क्षेत्र उत्पाद के वैक्यूम उम्मीद मूल्यों को घुमाने के लिए इस्तेमाल किया जा सकता है। समय रोटेशन पिछले खंड के तर्क को स्पिन-सांख्यिकी प्रमेय में बदल देता है।
   
   
प्रमाण के लिए निम्नलिखित मान्यताओं की आवश्यकता होती है:
प्रमाण के लिए निम्नलिखित मान्यताओं की आवश्यकता होती है:
# सिद्धांत में एक लोरेंत्ज़-इनवेरिएंट लैग्रैंगियन है।
# सिद्धांत में लोरेंत्ज़-इनवेरिएंट लैग्रैंगियन है।
# निर्वात लोरेंट्ज़-इनवेरिएंट है।
# निर्वात लोरेंट्ज़-इनवेरिएंट है।
# कण एक स्थानीय उत्तेजना है। सूक्ष्म रूप से, यह एक स्ट्रिंग या डोमेन वॉल से जुड़ा नहीं है।
# कण स्थानीय उत्तेजना है। सूक्ष्म रूप से, यह स्ट्रिंग या डोमेन वॉल से जुड़ा नहीं है।
# कण प्रचार कर रहा है, जिसका अर्थ है कि इसका एक परिमित है, अनंत नहीं, द्रव्यमान।
# कण प्रचार कर रहा है, जिसका अर्थ है कि इसका परिमित है, अनंत नहीं, द्रव्यमान।
# कण एक वास्तविक उत्तेजना है, जिसका अर्थ है कि इस कण वाले राज्यों में एक सकारात्मक-निश्चित मानदंड है।
# कण वास्तविक उत्तेजना है, जिसका अर्थ है कि इस कण वाले राज्यों में सकारात्मक-निश्चित मानदंड है।


अधिकांश भाग के लिए ये धारणाएँ आवश्यक हैं, जैसा कि निम्नलिखित उदाहरण दिखाते हैं:
अधिकांश भाग के लिए ये धारणाएँ आवश्यक हैं, जैसा कि निम्नलिखित उदाहरण दिखाते हैं:


# श्रोडिंगर क्षेत्र से पता चलता है कि स्पिनलेस फ़र्मियन गैर-सापेक्ष रूप से सुसंगत हैं। इसी तरह, एक स्पिनर कम्यूटिंग फील्ड के सिद्धांत से पता चलता है कि स्पिनिंग बोसोन भी हैं।
# श्रोडिंगर क्षेत्र से पता चलता है कि स्पिनलेस फ़र्मियन गैर-सापेक्ष रूप से सुसंगत हैं। इसी तरह, स्पिनर कम्यूटिंग फील्ड के सिद्धांत से पता चलता है कि स्पिनिंग बोसोन भी हैं।
# यह धारणा कमजोर पड़ सकती है।
# यह धारणा कमजोर पड़ सकती है।
# 2+1 आयामों में, चेर्न-सीमन्स सिद्धांत के स्रोतों में विदेशी स्पिन हो सकते हैं, इस तथ्य के बावजूद कि त्रि-आयामी रोटेशन समूह में केवल पूर्णांक और आधा-पूर्णांक स्पिन प्रतिनिधित्व होते हैं।
# 2+1 आयामों में, चेर्न-सीमन्स सिद्धांत के स्रोतों में विदेशी स्पिन हो सकते हैं, इस तथ्य के बावजूद कि त्रि-आयामी रोटेशन समूह में केवल पूर्णांक और आधा-पूर्णांक स्पिन प्रतिनिधित्व होते हैं।
# एक अल्ट्रालोकल फ़ील्ड में इसके स्पिन से स्वतंत्र रूप से या तो आँकड़े हो सकते हैं। यह लोरेंत्ज़ के आक्रमण से संबंधित है, क्योंकि एक असीम रूप से विशाल कण हमेशा गैर-सापेक्षवादी होता है, और स्पिन गतिकी से अलग हो जाता है। हालांकि रंगीन क्वार्क एक क्यूसीडी स्ट्रिंग से जुड़े होते हैं और अनंत द्रव्यमान होते हैं, क्वार्क के लिए स्पिन-सांख्यिकी संबंध को कम दूरी की सीमा में सिद्ध किया जा सकता है।
# अल्ट्रालोकल फ़ील्ड में इसके स्पिन से स्वतंत्र रूप से या तो आँकड़े हो सकते हैं। यह लोरेंत्ज़ के आक्रमण से संबंधित है, क्योंकि असीम रूप से विशाल कण हमेशा गैर-सापेक्षवादी होता है, और स्पिन गतिकी से अलग हो जाता है। हालांकि रंगीन क्वार्क क्यूसीडी स्ट्रिंग से जुड़े होते हैं और अनंत द्रव्यमान होते हैं, क्वार्क के लिए स्पिन-सांख्यिकी संबंध को कम दूरी की सीमा में सिद्ध किया जा सकता है।
# Faddeev-Popov भूत स्पिनलेस फ़र्मियन हैं, लेकिन उनमें नकारात्मक मानदंड की अवस्थाएँ शामिल हैं।
# Faddeev-Popov भूत स्पिनलेस फ़र्मियन हैं, लेकिन उनमें नकारात्मक मानदंड की अवस्थाएँ शामिल हैं।


मान्यताओं 1 और 2 का अर्थ है कि सिद्धांत एक पथ अभिन्न द्वारा वर्णित है, और धारणा 3 का अर्थ है कि एक स्थानीय क्षेत्र है जो कण बनाता है।
मान्यताओं 1 और 2 का अर्थ है कि सिद्धांत पथ अभिन्न द्वारा वर्णित है, और धारणा 3 का अर्थ है कि स्थानीय क्षेत्र है जो कण बनाता है।


रोटेशन प्लेन में समय शामिल है, और यूक्लिडियन सिद्धांत में समय से जुड़े एक विमान में रोटेशन मिन्कोव्स्की सिद्धांत में [[सीपीटी समरूपता]] परिवर्तन को परिभाषित करता है। यदि सिद्धांत को पथ अभिन्न द्वारा वर्णित किया गया है, तो एक सीपीटी परिवर्तन राज्यों को उनके संयुग्मों में ले जाता है, ताकि सहसंबंध कार्य
रोटेशन प्लेन में समय शामिल है, और यूक्लिडियन सिद्धांत में समय से जुड़े विमान में रोटेशन मिन्कोव्स्की सिद्धांत में [[सीपीटी समरूपता]] परिवर्तन को परिभाषित करता है। यदि सिद्धांत को पथ अभिन्न द्वारा वर्णित किया गया है, तो सीपीटी परिवर्तन राज्यों को उनके संयुग्मों में ले जाता है, ताकि सहसंबंध कार्य
<math display="block"> \langle 0 | R\phi(x) \phi(-x)|0\rangle </math>
<math display="block"> \langle 0 | R\phi(x) \phi(-x)|0\rangle </math>
धारणा 5 द्वारा x = 0 पर सकारात्मक निश्चित होना चाहिए, कण राज्यों में सकारात्मक मानदंड हैं। परिमित द्रव्यमान की धारणा का अर्थ है कि यह सहसंबंध समारोह x स्पेसेलिक के लिए गैर-शून्य है। लोरेंत्ज़ इनवेरिएंस अब फ़ील्ड को पिछले अनुभाग के तर्क के तरीके से सहसंबंध फ़ंक्शन के अंदर घुमाने की अनुमति देता है:
धारणा 5 द्वारा x = 0 पर सकारात्मक निश्चित होना चाहिए, कण राज्यों में सकारात्मक मानदंड हैं। परिमित द्रव्यमान की धारणा का अर्थ है कि यह सहसंबंध समारोह x स्पेसेलिक के लिए गैर-शून्य है। लोरेंत्ज़ इनवेरिएंस अब फ़ील्ड को पिछले अनुभाग के तर्क के तरीके से सहसंबंध फ़ंक्शन के अंदर घुमाने की अनुमति देता है:
Line 123: Line 123:
आधा-पूर्णांक-स्पिन क्षेत्रों के लिए।
आधा-पूर्णांक-स्पिन क्षेत्रों के लिए।


चूंकि ऑपरेटर स्पेसलाइक से अलग होते हैं, एक अलग क्रम केवल उन राज्यों को बना सकता है जो एक चरण से भिन्न होते हैं। तर्क स्पिन के अनुसार -1 या 1 होने के चरण को ठीक करता है। चूंकि स्थानीय गड़बड़ी से स्वतंत्र रूप से अंतरिक्ष की तरह अलग-अलग ध्रुवीकरणों को घुमाने के लिए संभव है, इसलिए चरण उचित रूप से चुने गए क्षेत्र निर्देशांक में ध्रुवीकरण पर निर्भर नहीं होना चाहिए।
चूंकि ऑपरेटर स्पेसलाइक से अलग होते हैं, अलग क्रम केवल उन राज्यों को बना सकता है जो चरण से भिन्न होते हैं। तर्क स्पिन के अनुसार -1 या 1 होने के चरण को ठीक करता है। चूंकि स्थानीय गड़बड़ी से स्वतंत्र रूप से अंतरिक्ष की तरह अलग-अलग ध्रुवीकरणों को घुमाने के लिए संभव है, इसलिए चरण उचित रूप से चुने गए क्षेत्र निर्देशांक में ध्रुवीकरण पर निर्भर नहीं होना चाहिए।


यह तर्क जूलियन श्विंगर के कारण है।<ref>{{cite journal|title=खेतों की क्वांटम थ्योरी I|author1=Julian Schwinger|journal=Physical Review |volume=82 | issue=6| pages=914–917| date=June 15, 1951| doi=10.1103/PhysRev.82.914 | bibcode = 1951PhRv...82..914S |s2cid=121971249 }}. The only difference between the argument in this paper and the argument presented here is that the operator "R" in Schwinger's paper is a pure time reversal, instead of a CPT operation, but this is the same for CP invariant free field theories which were all that Schwinger considered.</ref>
यह तर्क जूलियन श्विंगर के कारण है।<ref>{{cite journal|title=खेतों की क्वांटम थ्योरी I|author1=Julian Schwinger|journal=Physical Review |volume=82 | issue=6| pages=914–917| date=June 15, 1951| doi=10.1103/PhysRev.82.914 | bibcode = 1951PhRv...82..914S |s2cid=121971249 }}. The only difference between the argument in this paper and the argument presented here is that the operator "R" in Schwinger's paper is a pure time reversal, instead of a CPT operation, but this is the same for CP invariant free field theories which were all that Schwinger considered.</ref>
स्पिन-सांख्यिकी प्रमेय के लिए एक प्रारंभिक स्पष्टीकरण इस तथ्य के बावजूद नहीं दिया जा सकता है कि प्रमेय इतना सरल है। फिजिक्स पर फेनमैन लेक्चर्स में रिचर्ड फेनमैन ने कहा कि यह
स्पिन-सांख्यिकी प्रमेय के लिए प्रारंभिक स्पष्टीकरण इस तथ्य के बावजूद नहीं दिया जा सकता है कि प्रमेय इतना सरल है। फिजिक्स पर फेनमैन लेक्चर्स में रिचर्ड फेनमैन ने कहा कि यह
शायद इसका मतलब यह है कि हमें इसमें शामिल मूलभूत सिद्धांत की पूरी समझ नहीं है। आगे पढ़ने के लिए नीचे देखें।
शायद इसका मतलब यह है कि हमें इसमें शामिल मूलभूत सिद्धांत की पूरी समझ नहीं है। आगे पढ़ने के लिए नीचे देखें।


Line 135: Line 135:


=== फर्मियोनिक क्षेत्र ===
=== फर्मियोनिक क्षेत्र ===
स्पिन-सांख्यिकी प्रमेय का अर्थ है कि अर्ध-पूर्णांक-स्पिन कण पाउली बहिष्करण सिद्धांत के अधीन हैं, जबकि पूर्णांक-स्पिन कण नहीं हैं। किसी भी समय केवल एक फ़र्मियन एक दी गई क्वांटम स्थिति पर कब्जा कर सकता है, जबकि बोसोन की संख्या जो क्वांटम राज्य पर कब्जा कर सकती है, प्रतिबंधित नहीं है। [[प्रोटॉन]], [[न्यूट्रॉन]] और [[इलेक्ट्रॉन]] जैसे पदार्थ के मूल निर्माण खंड फ़र्मियन हैं। फोटॉन जैसे कण, जो पदार्थ के कणों के बीच बलों की मध्यस्थता करते हैं, बोसोन हैं।
स्पिन-सांख्यिकी प्रमेय का अर्थ है कि अर्ध-पूर्णांक-स्पिन कण पाउली बहिष्करण सिद्धांत के अधीन हैं, जबकि पूर्णांक-स्पिन कण नहीं हैं। किसी भी समय केवल फ़र्मियन दी गई क्वांटम स्थिति पर कब्जा कर सकता है, जबकि बोसोन की संख्या जो क्वांटम राज्य पर कब्जा कर सकती है, प्रतिबंधित नहीं है। [[प्रोटॉन]], [[न्यूट्रॉन]] और [[इलेक्ट्रॉन]] जैसे पदार्थ के मूल निर्माण खंड फ़र्मियन हैं। फोटॉन जैसे कण, जो पदार्थ के कणों के बीच बलों की मध्यस्थता करते हैं, बोसोन हैं।


फ़र्मी-डिराक वितरण फ़र्मियन का वर्णन करते हुए दिलचस्प गुणों की ओर ले जाता है। चूँकि केवल एक फ़र्मियन किसी दिए गए क्वांटम राज्य पर कब्जा कर सकता है, स्पिन-1/2 फ़र्मियन के लिए सबसे कम एकल-कण ऊर्जा स्तर में अधिकतम दो कण होते हैं, जिसमें कणों के स्पिन विपरीत रूप से संरेखित होते हैं। इस प्रकार, पूर्ण शून्य पर भी, इस मामले में दो से अधिक फ़र्मियन की एक प्रणाली में अभी भी महत्वपूर्ण मात्रा में ऊर्जा है। नतीजतन, इस तरह की फर्मीओनिक प्रणाली एक बाहरी [[दबाव]] डालती है। गैर-शून्य तापमान पर भी ऐसा दबाव मौजूद हो सकता है। गुरुत्वाकर्षण के कारण कुछ बड़े सितारों को ढहने से बचाने के लिए यह [[अध: पतन दबाव]] जिम्मेदार है। सफेद बौना, [[न्यूट्रॉन स्टार]] और [[ब्लैक होल]] देखें।
फ़र्मी-डिराक वितरण फ़र्मियन का वर्णन करते हुए दिलचस्प गुणों की ओर ले जाता है। चूँकि केवल फ़र्मियन किसी दिए गए क्वांटम राज्य पर कब्जा कर सकता है, स्पिन-1/2 फ़र्मियन के लिए सबसे कम -कण ऊर्जा स्तर में अधिकतम दो कण होते हैं, जिसमें कणों के स्पिन विपरीत रूप से संरेखित होते हैं। इस प्रकार, पूर्ण शून्य पर भी, इस मामले में दो से अधिक फ़र्मियन की प्रणाली में अभी भी महत्वपूर्ण मात्रा में ऊर्जा है। नतीजतन, इस तरह की फर्मीओनिक प्रणाली बाहरी [[दबाव]] डालती है। गैर-शून्य तापमान पर भी ऐसा दबाव मौजूद हो सकता है। गुरुत्वाकर्षण के कारण कुछ बड़े सितारों को ढहने से बचाने के लिए यह [[अध: पतन दबाव]] जिम्मेदार है। सफेद बौना, [[न्यूट्रॉन स्टार]] और [[ब्लैक होल]] देखें।


=== बोसोनिक क्षेत्र ===
=== बोसोनिक क्षेत्र ===
दो प्रकार के आँकड़ों से उत्पन्न होने वाली कुछ रोचक घटनाएँ हैं। बोस-आइंस्टीन वितरण जो बोसोन का वर्णन करता है, बोस-आइंस्टीन संघनन की ओर जाता है | बोस-आइंस्टीन संघनन। एक निश्चित तापमान के नीचे, एक बोसोनिक प्रणाली के अधिकांश कण जमीनी अवस्था (न्यूनतम ऊर्जा की स्थिति) पर कब्जा कर लेंगे। अतिप्रवाहिता जैसे असामान्य गुणों का परिणाम हो सकता है।
दो प्रकार के आँकड़ों से उत्पन्न होने वाली कुछ रोचक घटनाएँ हैं। बोस-आइंस्टीन वितरण जो बोसोन का वर्णन करता है, बोस-आइंस्टीन संघनन की ओर जाता है | बोस-आइंस्टीन संघनन। निश्चित तापमान के नीचे, बोसोनिक प्रणाली के अधिकांश कण जमीनी अवस्था (न्यूनतम ऊर्जा की स्थिति) पर कब्जा कर लेंगे। अतिप्रवाहिता जैसे असामान्य गुणों का परिणाम हो सकता है।


=== भूत क्षेत्र ===
=== भूत क्षेत्र ===
Line 147: Line 147:


== [[लोरेंत्ज़ समूह]] == के प्रतिनिधित्व सिद्धांत से संबंध
== [[लोरेंत्ज़ समूह]] == के प्रतिनिधित्व सिद्धांत से संबंध
लोरेंत्ज़ समूह के पास परिमित आयाम का कोई गैर-तुच्छ [[एकात्मक प्रतिनिधित्व]] नहीं है। इस प्रकार हिल्बर्ट अंतरिक्ष का निर्माण करना असंभव लगता है जिसमें सभी राज्यों में परिमित, गैर-शून्य स्पिन और सकारात्मक, लोरेंत्ज़-इनवेरिएंट मानदंड हैं। पार्टिकल स्पिन-सांख्यिकी के आधार पर इस समस्या को अलग-अलग तरीकों से दूर किया जाता है।
लोरेंत्ज़ समूह के पास परिमित आयाम का कोई गैर-तुच्छ [[एकात्मक प्रतिनिधित्व|ात्मक प्रतिनिधित्व]] नहीं है। इस प्रकार हिल्बर्ट अंतरिक्ष का निर्माण करना असंभव लगता है जिसमें सभी राज्यों में परिमित, गैर-शून्य स्पिन और सकारात्मक, लोरेंत्ज़-इनवेरिएंट मानदंड हैं। पार्टिकल स्पिन-सांख्यिकी के आधार पर इस समस्या को अलग-अलग तरीकों से दूर किया जाता है।


पूर्णांक स्पिन की स्थिति के लिए नकारात्मक मानक राज्य (अभौतिक ध्रुवीकरण के रूप में जाना जाता है) शून्य पर सेट होते हैं, जो [[गेज समरूपता]] का उपयोग आवश्यक बनाता है।
पूर्णांक स्पिन की स्थिति के लिए नकारात्मक मानक राज्य (अभौतिक ध्रुवीकरण के रूप में जाना जाता है) शून्य पर सेट होते हैं, जो [[गेज समरूपता]] का उपयोग आवश्यक बनाता है।
Line 156: Line 156:
== सीमाएं: 2 आयामों में कोई भी ==
== सीमाएं: 2 आयामों में कोई भी ==
{{main|Anyon}}
{{main|Anyon}}
1982 में, भौतिक विज्ञानी [[फ्रैंक विल्जेक]] ने संभावित आंशिक-स्पिन कणों की संभावनाओं पर एक शोध पत्र प्रकाशित किया, जिसे उन्होंने किसी भी स्पिन को लेने की उनकी क्षमता से किसी को भी करार दिया।<ref name="WilczekAnyons">{{cite journal
1982 में, भौतिक विज्ञानी [[फ्रैंक विल्जेक]] ने संभावित आंशिक-स्पिन कणों की संभावनाओं पर शोध पत्र प्रकाशित किया, जिसे उन्होंने किसी भी स्पिन को लेने की उनकी क्षमता से किसी को भी करार दिया।<ref name="WilczekAnyons">{{cite journal
| title = Quantum Mechanics of Fractional-Spin Particles
| title = Quantum Mechanics of Fractional-Spin Particles
| journal = Physical Review Letters
| journal = Physical Review Letters

Revision as of 09:32, 14 April 2023

क्वांटम यांत्रिकी में, स्पिन-सांख्यिकी प्रमेय कण केआंतरिक स्पिन (भौतिकी) से संबंधित है (कोणीय संवेग कक्षीय गति के कारण नहीं) कण आँकड़ों का अनुसरण करते है। अल्प प्लैंक स्थिरांक ħ की इकाइयों में, 3 आयामों में गति करने वाले सभी कण जो पूर्णांक स्पिन या अर्ध-पूर्णांक स्पिन होते हैं।[1][2]


पृष्ठभूमि

क्वांटम राज्य और अप्रभेद्य कण

क्वांटम प्रणाली में, भौतिक अवस्था राज्य सदिश द्वारा वर्णित है। राज्य वैक्टर की जोड़ी शारीरिक रूप से समतुल्य होती है यदि वे समग्र चरण कारक से भिन्न होते हैं, अन्य इंटरैक्शन को अप्रत्यक्ष करते हैं। इस प्रकार के अप्रभेद्य कणों की जोड़ी की एकमात्र अवस्था होती है। इसका मतलब यह है कि यदि कणों की स्थिति का आदान-प्रदान किया जाता है (अर्थात, वे क्रमचय से गुजरते हैं), तो यह नई भौतिक अवस्था की पहचान नहीं करता है, बल्कि मूल भौतिक अवस्था से मेल खाता है। वास्तव में कोई यह नहीं बता सकता कि कौन सा कण किस स्थिति में है।

जबकि कणों की स्थिति के आदान-प्रदान के तहत भौतिक स्थिति नहीं बदलती है, विनिमय के परिणामस्वरूप राज्य वेक्टर के लिए संकेत बदलना संभव है। चूँकि यह चिन्ह परिवर्तन केवल समग्र चरण है, यह भौतिक स्थिति को प्रभावित नहीं करता है।

स्पिन-सांख्यिकी संबंध को साबित करने में आवश्यक घटक सापेक्षता है, कि भौतिक नियम [[लोरेंत्ज़ परिवर्तन]]ों के तहत नहीं बदलते हैं। फील्ड ऑपरेटर परिभाषा के अनुसार, उनके द्वारा बनाए गए कण के स्पिन के अनुसार लोरेंत्ज़ परिवर्तनों के तहत रूपांतरित होते हैं।

इसके अतिरिक्त, धारणा (सूक्ष्मविषमता के रूप में जाना जाता है) कि अंतरिक्ष-समान-पृथक क्षेत्र या तो कम्यूट या एंटीकॉम्यूट केवल समय दिशा के साथ सापेक्ष सिद्धांतों के लिए बनाया जा सकता है। अन्यथा, स्पेसलाइक होने की धारणा अर्थहीन है। हालाँकि, प्रमाण में स्पेसटाइम के यूक्लिडियन संस्करण को देखना शामिल है, जिसमें समय की दिशा को स्थानिक के रूप में माना जाता है, जैसा कि अब समझाया जाएगा।

लोरेंत्ज़ परिवर्तनों में 3-आयामी घुमाव और लोरेंत्ज़ बूस्ट शामिल हैं। बढ़ावा अलग वेग के साथ संदर्भ के फ्रेम में स्थानांतरित होता है और गणितीय रूप से समय में रोटेशन की तरह होता है। क्वांटम फील्ड सिद्धांत के सहसंबंध कार्यों की विश्लेषणात्मक निरंतरता से, समय समन्वय काल्पनिक संख्या बन सकता है, और फिर रोटेशन बन जाता है। नए स्पेसटाइम में केवल स्थानिक दिशाएं होती हैं और इसे यूक्लिडियन कहा जाता है।

विनिमय समरूपता या क्रमपरिवर्तन समरूपता

बोसॉन ऐसे कण होते हैं जिनकी तरंग क्रिया ऐसे विनिमय या क्रमपरिवर्तन के तहत सममित होती है, इसलिए यदि हम कणों की अदला-बदली करते हैं, तो तरंग क्रिया नहीं बदलती है। फर्मियन ऐसे कण होते हैं जिनका वेवफंक्शन एंटीसिमेट्रिक होता है, इसलिए इस तरह के स्वैप के तहत वेवफंक्शन को माइनस साइन मिलता है, जिसका अर्थ है कि ही स्थिति पर कब्जा करने के लिए दो समान फर्मों का आयाम शून्य होना चाहिए। यह पाउली अपवर्जन सिद्धांत है: दो समान फ़र्मियन ही अवस्था में नहीं रह सकते। यह नियम बोसोन के लिए लागू नहीं होता है।

क्वांटम फील्ड थ्योरी में, राज्य या तरंग समारोह का वर्णन क्षेत्र संचालक द्वारा किया जाता है जो वैक्यूम राज्य नामक कुछ बुनियादी अवस्था पर काम करते हैं। ऑपरेटरों के लिए वेवफंक्शन बनाने के सममित या एंटीसिमेट्रिक घटक को प्रोजेक्ट करने के लिए, उनके पास उपयुक्त कम्यूटेशन कानून होना चाहिए। परिचालक

(साथ ऑपरेटर और संख्यात्मक फ़ंक्शन) वेवफंक्शन के साथ दो-कण स्थिति बनाता है , और क्षेत्रों के रूपान्तरण गुणों के आधार पर, या तो केवल एंटीसिमेट्रिक भाग या सममित भाग मायने रखते हैं।

चलिए मान लेते हैं और दो ऑपरेटर ही समय में होते हैं; अधिक आम तौर पर, उनके पास spacelike अलगाव हो सकता है, जैसा कि इसके बाद बताया गया है।

यदि फ़ील्ड यात्रा करते हैं, जिसका अर्थ है कि निम्नलिखित धारण करता है:

तब केवल सममित भाग योगदान देता है, ताकि , और क्षेत्र बोसोनिक कणों का निर्माण करेगा।

दूसरी ओर, यदि फ़ील्ड विरोधी यात्रा, इसका मतलब है संपत्ति है कि

तब केवल एंटीसिमेट्रिक भाग योगदान देता है, ताकि , और कण फर्मीओनिक होंगे।

स्वाभाविक रूप से, न तो स्पिन से कोई लेना-देना है, जो कणों के घूर्णन गुणों को निर्धारित करता है, विनिमय गुणों को नहीं।

स्पिन-सांख्यिकी संबंध

स्पिन-सांख्यिकी संबंध पहली बार 1939 में मार्कस फ़िएरज़ द्वारा तैयार किया गया था[3] और वोल्फगैंग पाउली द्वारा अधिक व्यवस्थित तरीके से पुनर्व्युत्पन्न किया गया था।[4] फ़िएर्ज़ और पाउली ने सभी मुक्त क्षेत्र सिद्धांतों की गणना करके अपने परिणाम का तर्क दिया, आवश्यकता के अधीन कि स्थानीय रूप से आने-जाने के लिए द्विघात रूप हों[clarification needed] सकारात्मक-निश्चित ऊर्जा घनत्व सहित वेधशालाएँ। 1950 में जूलियन श्विंगर द्वारा अधिक वैचारिक तर्क प्रदान किया गया था। रिचर्ड फेनमैन ने बाहरी क्षमता के रूप में बिखरने के लिए ता की मांग करके प्रदर्शन दिया, जो विविध है,[5] जो क्षेत्र की भाषा में अनुवादित होने पर द्विघात संकारक पर शर्त है जो क्षमता से जुड़ता है।[6]


प्रमेय कथन

प्रमेय कहता है कि:

  • समान कणों पूर्णांक-स्पिन कणों की प्रणाली के तरंग कार्य का समान मूल्य होता है जब किन्हीं दो कणों की स्थिति बदली जाती है। विनिमय के तहत सममित तरंग कार्यों वाले कणों को बोसोन कहा जाता है।
  • दो कणों की अदला-बदली करने पर समान अर्ध-पूर्णांक-स्पिन कणों की प्रणाली का तरंग कार्य संकेत बदलता है। तरंग क्रिया वाले पार्टिकल्स जो ्सचेंज के तहत एडिटिव व्युत्क्रम होते हैं, फर्मियन कहलाते हैं।

दूसरे शब्दों में, स्पिन-सांख्यिकी प्रमेय में कहा गया है कि पूर्णांक-स्पिन कण बोसोन हैं, जबकि अर्ध-पूर्णांक-स्पिन कण फ़र्मियन हैं।

सामान्य चर्चा

सुझाव देने वाला फर्जी तर्क

दो-फ़ील्ड ऑपरेटर उत्पाद पर विचार करें

जहाँ R वह मैट्रिक्स है जो क्षेत्र के स्पिन ध्रुवीकरण को 180 डिग्री घुमाता है जब कोई किसी विशेष अक्ष के चारों ओर 180 डिग्री का घुमाव करता है। के घटक इस नोटेशन में नहीं दिखाया गया है। कई घटक हैं, और मैट्रिक्स आर उन्हें दूसरे के साथ मिलाता है।

गैर-सापेक्षतावादी सिद्धांत में, इस उत्पाद की व्याख्या पदों पर दो कणों के विनाश के रूप में की जा सकती है और द्वारा घुमाए गए ध्रुवीकरणों के साथ दूसरे के सापेक्ष। अब इस कॉन्फ़िगरेशन को घुमाएँ उत्पत्ति के आसपास। इस रोटेशन के तहत, दो बिंदु और स्विच स्थान, और दो क्षेत्र ध्रुवीकरण अतिरिक्त रूप से घुमाए जाते हैं . तो हम प्राप्त करते हैं

जो पूर्णांक स्पिन के लिए बराबर है

और आधे पूर्णांक के लिए स्पिन के बराबर है

(पर सिद्ध हुआ Spin (physics) § Rotations). दोनों ऑपरेटर अभी भी दो कणों को नष्ट कर देता है और . इसलिए हम दावा करते हैं कि कण राज्यों के संबंध में:

तो आधे-पूर्णांक मामले में संकेत की कीमत पर, वैक्यूम में दो उचित रूप से ध्रुवीकृत ऑपरेटर सम्मिलन के क्रम का आदान-प्रदान रोटेशन द्वारा किया जा सकता है।

यह तर्क अपने आप में स्पिन-सांख्यिकी संबंध जैसा कुछ भी साबित नहीं करता है। यह देखने के लिए कि क्यों, मुक्त श्रोडिंगर समीकरण द्वारा वर्णित गैर-सापेक्ष स्पिन-0 क्षेत्र पर विचार करें। ऐसा क्षेत्र एंटीकम्यूटिंग या कम्यूटिंग हो सकता है। यह देखने के लिए कि यह कहाँ विफल रहता है, विचार करें कि गैर-सापेक्ष स्पिन-0 क्षेत्र में कोई ध्रुवीकरण नहीं है, ताकि उपरोक्त उत्पाद बस हो:

गैर-सापेक्षवादी सिद्धांत में, यह उत्पाद दो कणों को नष्ट कर देता है और , और किसी भी राज्य में शून्य अपेक्षा मूल्य है। गैर-शून्य मैट्रिक्स तत्व होने के लिए, यह ऑपरेटर उत्पाद बाईं ओर की तुलना में दाईं ओर दो और कणों वाले राज्यों के बीच होना चाहिए:

घूर्णन करते हुए, हम जो सीखते हैं वह यह है कि 2-कण अवस्था को घुमाना ऑपरेटर ऑर्डर बदलने के समान संकेत देता है। इससे कोई अतिरिक्त जानकारी नहीं मिलती, इसलिए यह तर्क कुछ भी सिद्ध नहीं करता।

बोगस तर्क विफल क्यों होता है

स्पिन-सांख्यिकी प्रमेय को सिद्ध करने के लिए, सापेक्षता का उपयोग करना आवश्यक है, जैसा कि गैर-सापेक्षतावादी स्पिनलेस फ़र्मियन और गैर-सापेक्षतावादी स्पिनिंग बोसॉन की संगति से स्पष्ट है। स्पिन-सांख्यिकी प्रमेय के प्रमाण के साहित्य में ऐसे दावे हैं जिन्हें सापेक्षता की आवश्यकता नहीं है,[7][8] लेकिन वे प्रमेय के प्रमाण नहीं हैं, जैसा कि प्रतिउदाहरण दिखाते हैं, बल्कि वे तर्क हैं कि क्यों स्पिन-सांख्यिकी स्वाभाविक है, जबकि गलत-सांख्यिकी[clarification needed] अप्राकृतिक है। सापेक्षता में, संबंध आवश्यक है।

सापेक्षता में, कोई भी स्थानीय क्षेत्र नहीं है जो शुद्ध निर्माण संचालक या विनाश संचालक हैं। प्रत्येक स्थानीय क्षेत्र कण बनाता है और संबंधित एंटीपार्टिकल को नष्ट कर देता है। इसका मतलब यह है कि सापेक्षता में, मुक्त वास्तविक स्पिन-0 क्षेत्र के उत्पाद में गैर-शून्य वैक्यूम अपेक्षा मूल्य होता है, क्योंकि ऐसे कणों को बनाने के अलावा जो नष्ट नहीं होते हैं और जो बाद में नहीं बनाए जाते हैं, इसमें हिस्सा भी शामिल होता है जो बनाता है और आभासी कणों का सत्यानाश कर देता है जिसका अस्तित्व अंतःक्रियात्मक गणनाओं में प्रवेश करता है - लेकिन कभी भी बिखरने वाले मैट्रिक्स सूचकांकों या स्पर्शोन्मुख अवस्थाओं के रूप में नहीं।

और अब इसे देखने के लिए अनुमानी तर्क का उपयोग किया जा सकता है के बराबर है , जो हमें बताता है कि फील्ड्स एंटी-कम्यूटिंग नहीं हो सकते हैं।

प्रमाण

यूक्लिडियन ्सटी विमान में π रोटेशन पिछले खंड के क्षेत्र उत्पाद के वैक्यूम उम्मीद मूल्यों को घुमाने के लिए इस्तेमाल किया जा सकता है। समय रोटेशन पिछले खंड के तर्क को स्पिन-सांख्यिकी प्रमेय में बदल देता है।

प्रमाण के लिए निम्नलिखित मान्यताओं की आवश्यकता होती है:

  1. सिद्धांत में लोरेंत्ज़-इनवेरिएंट लैग्रैंगियन है।
  2. निर्वात लोरेंट्ज़-इनवेरिएंट है।
  3. कण स्थानीय उत्तेजना है। सूक्ष्म रूप से, यह स्ट्रिंग या डोमेन वॉल से जुड़ा नहीं है।
  4. कण प्रचार कर रहा है, जिसका अर्थ है कि इसका परिमित है, अनंत नहीं, द्रव्यमान।
  5. कण वास्तविक उत्तेजना है, जिसका अर्थ है कि इस कण वाले राज्यों में सकारात्मक-निश्चित मानदंड है।

अधिकांश भाग के लिए ये धारणाएँ आवश्यक हैं, जैसा कि निम्नलिखित उदाहरण दिखाते हैं:

  1. श्रोडिंगर क्षेत्र से पता चलता है कि स्पिनलेस फ़र्मियन गैर-सापेक्ष रूप से सुसंगत हैं। इसी तरह, स्पिनर कम्यूटिंग फील्ड के सिद्धांत से पता चलता है कि स्पिनिंग बोसोन भी हैं।
  2. यह धारणा कमजोर पड़ सकती है।
  3. 2+1 आयामों में, चेर्न-सीमन्स सिद्धांत के स्रोतों में विदेशी स्पिन हो सकते हैं, इस तथ्य के बावजूद कि त्रि-आयामी रोटेशन समूह में केवल पूर्णांक और आधा-पूर्णांक स्पिन प्रतिनिधित्व होते हैं।
  4. अल्ट्रालोकल फ़ील्ड में इसके स्पिन से स्वतंत्र रूप से या तो आँकड़े हो सकते हैं। यह लोरेंत्ज़ के आक्रमण से संबंधित है, क्योंकि असीम रूप से विशाल कण हमेशा गैर-सापेक्षवादी होता है, और स्पिन गतिकी से अलग हो जाता है। हालांकि रंगीन क्वार्क क्यूसीडी स्ट्रिंग से जुड़े होते हैं और अनंत द्रव्यमान होते हैं, क्वार्क के लिए स्पिन-सांख्यिकी संबंध को कम दूरी की सीमा में सिद्ध किया जा सकता है।
  5. Faddeev-Popov भूत स्पिनलेस फ़र्मियन हैं, लेकिन उनमें नकारात्मक मानदंड की अवस्थाएँ शामिल हैं।

मान्यताओं 1 और 2 का अर्थ है कि सिद्धांत पथ अभिन्न द्वारा वर्णित है, और धारणा 3 का अर्थ है कि स्थानीय क्षेत्र है जो कण बनाता है।

रोटेशन प्लेन में समय शामिल है, और यूक्लिडियन सिद्धांत में समय से जुड़े विमान में रोटेशन मिन्कोव्स्की सिद्धांत में सीपीटी समरूपता परिवर्तन को परिभाषित करता है। यदि सिद्धांत को पथ अभिन्न द्वारा वर्णित किया गया है, तो सीपीटी परिवर्तन राज्यों को उनके संयुग्मों में ले जाता है, ताकि सहसंबंध कार्य

धारणा 5 द्वारा x = 0 पर सकारात्मक निश्चित होना चाहिए, कण राज्यों में सकारात्मक मानदंड हैं। परिमित द्रव्यमान की धारणा का अर्थ है कि यह सहसंबंध समारोह x स्पेसेलिक के लिए गैर-शून्य है। लोरेंत्ज़ इनवेरिएंस अब फ़ील्ड को पिछले अनुभाग के तर्क के तरीके से सहसंबंध फ़ंक्शन के अंदर घुमाने की अनुमति देता है:
जहां साइन पहले की तरह स्पिन पर निर्भर करता है। सहसंबंध फ़ंक्शन का CPT व्युत्क्रम, या यूक्लिडियन घूर्णी व्युत्क्रम यह गारंटी देता है कि यह G(x) के बराबर है। इसलिए
पूर्णांक-स्पिन फ़ील्ड के लिए और
आधा-पूर्णांक-स्पिन क्षेत्रों के लिए।

चूंकि ऑपरेटर स्पेसलाइक से अलग होते हैं, अलग क्रम केवल उन राज्यों को बना सकता है जो चरण से भिन्न होते हैं। तर्क स्पिन के अनुसार -1 या 1 होने के चरण को ठीक करता है। चूंकि स्थानीय गड़बड़ी से स्वतंत्र रूप से अंतरिक्ष की तरह अलग-अलग ध्रुवीकरणों को घुमाने के लिए संभव है, इसलिए चरण उचित रूप से चुने गए क्षेत्र निर्देशांक में ध्रुवीकरण पर निर्भर नहीं होना चाहिए।

यह तर्क जूलियन श्विंगर के कारण है।[9] स्पिन-सांख्यिकी प्रमेय के लिए प्रारंभिक स्पष्टीकरण इस तथ्य के बावजूद नहीं दिया जा सकता है कि प्रमेय इतना सरल है। फिजिक्स पर फेनमैन लेक्चर्स में रिचर्ड फेनमैन ने कहा कि यह शायद इसका मतलब यह है कि हमें इसमें शामिल मूलभूत सिद्धांत की पूरी समझ नहीं है। आगे पढ़ने के लिए नीचे देखें।

प्रमेय का परीक्षण करने के लिए, ड्रेक[10] पाउली बहिष्करण सिद्धांत का उल्लंघन करने वाले परमाणु के राज्यों के लिए बहुत सटीक गणना की; उन्हें पैरानिक स्टेट्स कहा जाता है। बाद में,[11] पागल राज्य 1s2s 1एस0 ड्रेक द्वारा गणना की गई परमाणु बीम स्पेक्ट्रोमीटर का उपयोग करने के लिए उनकी तलाश की गई थी। खोज 5×10 की ऊपरी सीमा के साथ असफल रही−6.

परिणाम

फर्मियोनिक क्षेत्र

स्पिन-सांख्यिकी प्रमेय का अर्थ है कि अर्ध-पूर्णांक-स्पिन कण पाउली बहिष्करण सिद्धांत के अधीन हैं, जबकि पूर्णांक-स्पिन कण नहीं हैं। किसी भी समय केवल फ़र्मियन दी गई क्वांटम स्थिति पर कब्जा कर सकता है, जबकि बोसोन की संख्या जो क्वांटम राज्य पर कब्जा कर सकती है, प्रतिबंधित नहीं है। प्रोटॉन, न्यूट्रॉन और इलेक्ट्रॉन जैसे पदार्थ के मूल निर्माण खंड फ़र्मियन हैं। फोटॉन जैसे कण, जो पदार्थ के कणों के बीच बलों की मध्यस्थता करते हैं, बोसोन हैं।

फ़र्मी-डिराक वितरण फ़र्मियन का वर्णन करते हुए दिलचस्प गुणों की ओर ले जाता है। चूँकि केवल फ़र्मियन किसी दिए गए क्वांटम राज्य पर कब्जा कर सकता है, स्पिन-1/2 फ़र्मियन के लिए सबसे कम ल-कण ऊर्जा स्तर में अधिकतम दो कण होते हैं, जिसमें कणों के स्पिन विपरीत रूप से संरेखित होते हैं। इस प्रकार, पूर्ण शून्य पर भी, इस मामले में दो से अधिक फ़र्मियन की प्रणाली में अभी भी महत्वपूर्ण मात्रा में ऊर्जा है। नतीजतन, इस तरह की फर्मीओनिक प्रणाली बाहरी दबाव डालती है। गैर-शून्य तापमान पर भी ऐसा दबाव मौजूद हो सकता है। गुरुत्वाकर्षण के कारण कुछ बड़े सितारों को ढहने से बचाने के लिए यह अध: पतन दबाव जिम्मेदार है। सफेद बौना, न्यूट्रॉन स्टार और ब्लैक होल देखें।

बोसोनिक क्षेत्र

दो प्रकार के आँकड़ों से उत्पन्न होने वाली कुछ रोचक घटनाएँ हैं। बोस-आइंस्टीन वितरण जो बोसोन का वर्णन करता है, बोस-आइंस्टीन संघनन की ओर जाता है | बोस-आइंस्टीन संघनन। निश्चित तापमान के नीचे, बोसोनिक प्रणाली के अधिकांश कण जमीनी अवस्था (न्यूनतम ऊर्जा की स्थिति) पर कब्जा कर लेंगे। अतिप्रवाहिता जैसे असामान्य गुणों का परिणाम हो सकता है।

भूत क्षेत्र

भूत (भौतिकी) स्पिन-सांख्यिकी संबंध का पालन नहीं करते हैं। प्रमेय में खामियों को दूर करने के तरीके पर क्लेन परिवर्तन देखें।

== लोरेंत्ज़ समूह == के प्रतिनिधित्व सिद्धांत से संबंध लोरेंत्ज़ समूह के पास परिमित आयाम का कोई गैर-तुच्छ ात्मक प्रतिनिधित्व नहीं है। इस प्रकार हिल्बर्ट अंतरिक्ष का निर्माण करना असंभव लगता है जिसमें सभी राज्यों में परिमित, गैर-शून्य स्पिन और सकारात्मक, लोरेंत्ज़-इनवेरिएंट मानदंड हैं। पार्टिकल स्पिन-सांख्यिकी के आधार पर इस समस्या को अलग-अलग तरीकों से दूर किया जाता है।

पूर्णांक स्पिन की स्थिति के लिए नकारात्मक मानक राज्य (अभौतिक ध्रुवीकरण के रूप में जाना जाता है) शून्य पर सेट होते हैं, जो गेज समरूपता का उपयोग आवश्यक बनाता है।

अर्ध-पूर्णांक स्पिन की स्थिति के लिए तर्क को फ़र्मोनिक आँकड़े होने से रोका जा सकता है।[12]


सीमाएं: 2 आयामों में कोई भी

1982 में, भौतिक विज्ञानी फ्रैंक विल्जेक ने संभावित आंशिक-स्पिन कणों की संभावनाओं पर शोध पत्र प्रकाशित किया, जिसे उन्होंने किसी भी स्पिन को लेने की उनकी क्षमता से किसी को भी करार दिया।[13] उन्होंने लिखा है कि वे सैद्धांतिक रूप से निम्न-आयामी प्रणालियों में उत्पन्न होने की भविष्यवाणी की गई थी जहां गति तीन से कम स्थानिक आयामों तक सीमित है। विल्जेक ने अपने स्पिन आँकड़ों को सामान्य बोसोन और फ़र्मियन मामलों के बीच लगातार प्रक्षेपित करने के रूप में वर्णित किया।[13]1985 से 2013 तक प्रायोगिक रूप से किसी के अस्तित्व के साक्ष्य प्रस्तुत किए गए हैं,[14][15] हालांकि यह निश्चित रूप से स्थापित नहीं माना जाता है कि सभी प्रस्तावित प्रकार के कोई भी मौजूद हैं। कोई भी चोटी समरूपता और सांस्थितिक क्रम से संबंधित हैं।

यह भी देखें

संदर्भ

  1. Dirac, Paul Adrien Maurice (1981-01-01). क्वांटम यांत्रिकी के सिद्धांत (in English). Clarendon Press. p. 149. ISBN 9780198520115.
  2. Pauli, Wolfgang (1980-01-01). क्वांटम यांत्रिकी के सामान्य सिद्धांत (in English). Springer-Verlag. ISBN 9783540098423.
  3. Markus Fierz (1939). "Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin". Helvetica Physica Acta. 12 (1): 3–37. Bibcode:1939AcHPh..12....3F. doi:10.5169/seals-110930.
  4. Wolfgang Pauli (15 October 1940). "स्पिन और सांख्यिकी के बीच संबंध" (PDF). Physical Review. 58 (8): 716–722. Bibcode:1940PhRv...58..716P. doi:10.1103/PhysRev.58.716.
  5. Richard Feynman (1961). क्वांटम इलेक्ट्रोडायनामिक्स. Basic Books. ISBN 978-0-201-36075-2.
  6. Wolfgang Pauli (1950). "स्पिन और सांख्यिकी के बीच संबंध पर". Progress of Theoretical Physics. 5 (4): 526–543. Bibcode:1950PThPh...5..526P. doi:10.1143/ptp/5.4.526.
  7. Jabs, Arthur (5 April 2002). "क्वांटम यांत्रिकी में स्पिन और सांख्यिकी को जोड़ना". Foundations of Physics. 40 (7): 776–792. arXiv:0810.2399. Bibcode:2010FoPh...40..776J. doi:10.1007/s10701-009-9351-4. S2CID 122488238.
  8. Horowitz, Joshua (14 April 2009). "पथ समाकलन से भिन्नात्मक क्वांटम सांख्यिकी तक" (PDF). {{cite journal}}: Cite journal requires |journal= (help)
  9. Julian Schwinger (June 15, 1951). "खेतों की क्वांटम थ्योरी I". Physical Review. 82 (6): 914–917. Bibcode:1951PhRv...82..914S. doi:10.1103/PhysRev.82.914. S2CID 121971249.. The only difference between the argument in this paper and the argument presented here is that the operator "R" in Schwinger's paper is a pure time reversal, instead of a CPT operation, but this is the same for CP invariant free field theories which were all that Schwinger considered.
  10. Drake, G.W.F. (1989). ""पैरोनिक" हीलियम के लिए अनुमानित ऊर्जा परिवर्तन". Phys. Rev. A. 39 (2): 897–899. Bibcode:1989PhRvA..39..897D. doi:10.1103/PhysRevA.39.897. PMID 9901315. S2CID 35775478.
  11. Deilamian, K.; et al. (1995). "हीलियम की उत्तेजित अवस्था में समरूपता के छोटे उल्लंघनों की खोज करें". Phys. Rev. Lett. 74 (24): 4787–4790. Bibcode:1995PhRvL..74.4787D. doi:10.1103/PhysRevLett.74.4787. PMID 10058599.
  12. Peskin, Michael E.; Schroeder, Daniel V. (1995). क्वांटम फील्ड थ्योरी का परिचय. Addison-Wesley. ISBN 0-201-50397-2.
  13. 13.0 13.1 Wilczek, Frank (4 October 1982). "Quantum Mechanics of Fractional-Spin Particles" (PDF). Physical Review Letters. 49 (14): 957–959. Bibcode:1982PhRvL..49..957W. doi:10.1103/PhysRevLett.49.957.
  14. Camino, Fernando E.; Zhou, Wei; Goldman, Vladimir J. (17 August 2005). "Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics" (PDF). Physical Review B. 72 (7): 075342. arXiv:cond-mat/0502406. Bibcode:2005PhRvB..72g5342C. doi:10.1103/PhysRevB.72.075342. S2CID 52245802. Archived from the original (PDF) on 19 June 2015., see fig. 2.B
  15. R. L. Willett; C. Nayak; L. N. Pfeiffer; K. W. West (12 January 2013). "Magnetic field-tuned Aharonov–Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2". Physical Review Letters. 111 (18): 186401. arXiv:1301.2639. Bibcode:2013PhRvL.111r6401W. doi:10.1103/PhysRevLett.111.186401. PMID 24237543. S2CID 22780228.


अग्रिम पठन


बाहरी संबंध