आंतरिक क्षेत्र इलेक्ट्रॉन स्थानांतरण: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (5 revisions imported from alpha:आंतरिक_क्षेत्र_इलेक्ट्रॉन_स्थानांतरण) |
(No difference)
|
Revision as of 10:31, 3 May 2023
आंतरिक वृत्तीय इलेक्ट्रॉन स्थानांतरण (ISET) या बंध इलेक्ट्रॉन स्थानांतरण एक रेडॉक्स रासायनिक अभिक्रिया है जो एक सहसंयोजक लिंकेज के माध्यम से आगे बढ़ती है - एक मजबूत इलेक्ट्रॉनिक पारस्परिक प्रभाव - ऑक्सीकारक और अपचायक अभिकारक के बीच अभिक्रिया को दर्शाता है। आंतरिक क्षेत्र इलेक्ट्रॉन स्थानांतरण में, इलेक्ट्रॉन स्थानांतरण घटना के दौरान एक लिगैंड दो धातु रेडॉक्स केंद्रों को सेतुबद्ध करता है। आंतरिक क्षेत्र की अभिक्रियाएं बड़े लिगेंड द्वारा बाधित होती हैं, जो महत्वपूर्ण सेतु मध्यवर्ती के गठन को रोकती हैं। इस प्रकार, जैविक प्रणालियों में आंतरिक क्षेत्र ET दुर्लभ है, जहां रेडॉक्स स्थितियों को प्रायः भारी प्रोटीन द्वारा परिरक्षित किया जाता है। आंतरिक वृत्तीय ET का प्रयोग प्रायः संक्रमण धातु परिसरों से जुड़ी अभिक्रियाओं का वर्णन करने के लिए किया जाता है और इस लेख का अधिकांश भाग इसी दृष्टिकोण से लिखा गया है। यद्यपि, रेडॉक्स केंद्रों में धातु केंद्रों के बजाय जैविक समूह सम्मिलित हो सकते हैं। ऑक्सीकरण और अपचयन होने वाली दो धातुओं द्वारा साझा किए गए लिगेंड के माध्यम से होने वाले इलेक्ट्रॉन स्थानान्तरण को "आंतरिक क्षेत्र" इलेक्ट्रॉन स्थानान्तरण कहा जाता है। 1983 में ताउबे को रसायन विज्ञान में नोबेल पुरस्कार से सम्मानित किया गया; पुरस्कार इलेक्ट्रॉन हस्तांतरण प्रतिक्रियाओं के तंत्र पर उनके काम पर आधारित था।
सेतुबद्ध लिगैंड वस्तुतः कोई भी इकाई हो सकती है जो इलेक्ट्रॉनों को संप्रेषित कर सकती है। साधारणतया, ऐसे लिगैंड में एक से अधिक एकाकी इलेक्ट्रॉन युग्म होते हैं, जैसे कि यह अपचायक और ऑक्सीकारक दोनों के लिए इलेक्ट्रॉन दाता के रूप में काम कर सकता है। साधारण सेतुबद्ध लिगैंड् में हैलाइड् और स्यूडोहैलाइड् जैसे हाइड्रॉक्साइड और थायोसाइनेट सम्मिलित हैं। ऑक्सालेट, मैलोनेट और पाइराज़ीन सहित अधिक जटिल सेतुबद्ध लिगेंड भी अच्छे प्रकार से जाने जाते हैं। ET से पहले,सेतु परिसर बनना चाहिए, और ऐसी प्रक्रियाएं प्रायः अत्यधिक संशोधित होती हैं। एक बार स्थापित होने के बाद पुल के माध्यम से इलेक्ट्रॉन स्थानांतरण होता है। कुछ कारको में, स्थिर अवस्था में स्थिर पुल संरचना उपस्थित हो सकती है; अन्य कारको में, ब्रिजित संरचना क्षणिक रूप से निर्मित मध्यवर्ती हो सकती है, या फिर अभिक्रिया के दौरान यह एक संक्रमण अवस्था के रूप में हो सकती है।अभिक्रियाओं के लिए समान दर वृद्धि प्राप्त की गई है जिसमें धातुओं में से एक के समन्वय क्षेत्र में अन्य हलाइड लिगैंड शामिल हैं।
आंतरिक क्षेत्र इलेक्ट्रॉन हस्तांतरण का विकल्प बाहरी क्षेत्र इलेक्ट्रॉन स्थानांतरण है। किसी भी संक्रमण धातु रेडॉक्स अभिक्रिया में, तंत्र को बाहरी क्षेत्र माना जा सकता है जब तक कि आंतरिक क्षेत्र की शर्तों को पूरा नहीं किया जाता है। आंतरिक क्षेत्र इलेक्ट्रॉन स्थानांतरण प्रायः सम्मिलित धातु केंद्रों के बीच बड़ी मात्रा में आदान प्रदान के कारण बाहरी क्षेत्र इलेक्ट्रॉन हस्तांतरण की तुलना में अधिक अनुकूल होता है, यद्यपि,आंतरिक क्षेत्र इलेक्ट्रॉन हस्तांतरण प्रायः एंट्रोपिक रूप से कम अनुकूल होता है क्योंकि इसमें सम्मिलित दो स्थितियों को (एक साथ आना) एक पुल के माध्यम से) बाहरी क्षेत्र में इलेक्ट्रॉन हस्तांतरण की तुलना में अधिक व्यवस्थित होना चाहिए।
तौबे का प्रयोग
आंतरिक क्षेत्र तंत्र के खोजकर्ता हेनरी तौबे थे, जिन्हें उनके अग्रणी अध्ययन के लिए 1983 में रसायन विज्ञान में नोबेल पुरस्कार से सम्मानित किया गया था। एक विशेष रूप से ऐतिहासिक खोज मौलिक प्रकाशन के सार में संक्षेपित है।[1]
"जब Co(NH3)5Cl को M में Cr [अर्थात 1 M] HClO4 से कम किया जाता है, तो 1 Cl− प्रत्येक Cr(III) के लिए Cr से जुड़ा हुआ प्रतीत होता है जो बनता है या Co(III) कम होता है। जब अभिक्रिया को आगे बढ़ाया जाता है रेडियोधर्मी Cl युक्त एक माध्यम, Cr (III) से जुड़े Cl का मिश्रण विलयन में 0.5% से कम है। इस प्रयोग से पता चलता है कि ऑक्सीकरण एजेंट से कम करने वाले एजेंट को Cl का स्थानांतरण प्रत्यक्ष है
उपरोक्त कागज़ और अंश को निम्नलिखित समीकरण के साथ वर्णित किया जा सकता है:
- [CoCl(NH3)5]2+ + [Cr(H2O)6]2+ → [Co(NH3)5(H2O)]2+ + [CrCl(H2O)5]2+
रुचि की बात यह है कि क्लोराइड जो मूल रूप से कोबाल्ट, ऑक्सीकारक से बंधा हुआ था, क्रोमियम से बंध जाता है, जो इसके 3 ऑक्सीकरण अवस्था में, अपने लिगैंड् के लिए गतिज रूप से निष्क्रिय बंधन बनाता है। इस प्रेक्षण से द्विधात्विक संकुल [Co(NH3)5(μ-Cl)Cr(H2O)5]4 की मध्यस्थता का तात्पर्य है, जिसमें "μ-Cl" इंगित करता है कि Cr और Co परमाणुओं के बीच क्लोराइड पुल, एक लिगैंड के रूप में कार्य करता है दोनों के लिए। यह क्लोराइड Cr (II) से Co (III) तक इलेक्ट्रॉन प्रवाह के लिए एक नलिका के रूप में कार्य करता है, जिससे Cr (II) बनता है।
यह भी देखें
- आंतरिक क्षेत्र परिसर
- बाहरी क्षेत्र इलेक्ट्रॉन स्थानांतरण
- सॉल्वेटेड इलेक्ट्रॉन
संदर्भ
- ↑ Taube, H.; Myers, H.; Rich, R. L. (1953). "समाधान में इलेक्ट्रॉन स्थानांतरण का तंत्र". Journal of the American Chemical Society. 75: 4118–4119. doi:10.1021/ja01112a546.