गेज समूह (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
यदि एक संरचना समूह <math> G</math> एक जटिल अर्ध-सरल आव्यूह समूह है, तो गेज समूह <math> G(X)</math> के सोबोलेव समापन <math>\overline G_k(X)</math> को प्रस्तुत किया जा सकता है। यह एक झूठ समूह है। एक मुख्य बिंदु यह है कि मुख्य संबंध के एक स्थान के सोबोलेव पूर्णता <math>A_k</math> पर <math>\overline G_k(X)</math> की क्रिया सुचारू है, और एक कक्षा स्थान <math>A_k/\overline G_k(X)</math> [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट स्थान]] है। यह क्वांटम गेज सिद्धांत का विन्यास स्थान है। | यदि एक संरचना समूह <math> G</math> एक जटिल अर्ध-सरल आव्यूह समूह है, तो गेज समूह <math> G(X)</math> के सोबोलेव समापन <math>\overline G_k(X)</math> को प्रस्तुत किया जा सकता है। यह एक झूठ समूह है। एक मुख्य बिंदु यह है कि मुख्य संबंध के एक स्थान के सोबोलेव पूर्णता <math>A_k</math> पर <math>\overline G_k(X)</math> की क्रिया सुचारू है, और एक कक्षा स्थान <math>A_k/\overline G_k(X)</math> [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट स्थान]] है। यह क्वांटम गेज सिद्धांत का विन्यास स्थान है। | ||
== संदर्भ == | == संदर्भ == | ||
* Mitter, P., Viallet, C., On the bundle of connections and the gauge orbit manifold in Yang – Mills theory, ''Commun. Math. Phys.'' '''79''' (1981) 457. | * Mitter, P., Viallet, C., On the bundle of connections and the gauge orbit manifold in Yang – Mills theory, ''Commun. Math. Phys.'' '''79''' (1981) 457. |
Revision as of 09:44, 24 April 2023
एक गेज समूह एक प्रमुख बंडल पर प्रमुख संबंध के यांग-मिल्स गेज सिद्धांत के गेज समरूपता का एक समूह है। झूठ समूह के साथ एक प्रमुख बंडल दिया गया है, एक गेज समूह को इसके ऊर्ध्वाधर ऑटोमोर्फिज़्म के एक समूह के रूप में परिभाषित किया गया है। यह समूह संबद्ध समूह बंडल के वैश्विक वर्गों के समूह के लिए समरूप है, जिसका विशिष्ट फाइबर एक समूह है जो आसन्न प्रतिनिधित्व द्वारा स्वयं पर कार्य करता है। का इकाई तत्व का एक स्थिर इकाई-मान खंड है।
इसी समय, गेज गुरुत्वाकर्षण सिद्धांत सहसंयोजक मौलिक क्षेत्र सिद्धांत को एक प्रमुख फ्रेम बंडल पर उदाहरण देता है, जिसकी गेज समरूपता सामान्य सहसंयोजक परिवर्तन हैं जो एक गेज समूह के तत्व नहीं हैं।
गेज सिद्धांत पर भौतिक साहित्य में, मुख्य बंडल के एक संरचना समूह को प्रायः गेज समूह कहा जाता है।
क्वांटम गेज सिद्धांत में, गेज समूह के एक सामान्य उपसमूह पर विचार किया जाता है जो स्टेबलाइजर है
समूह बंडल के किसी बिंदु का। इसे बिंदु गेज समूह कहा जाता है। यह समूह प्रमुख संबंध के स्थान पर स्वतंत्र रूप से कार्य करता है। जाहिर है, एक प्रभावी गेज समूह का भी परिचय देता है जहां एक गेज समूह का केंद्र है। यह समूह अलघुकरणीय प्रमुख संयोजनों के स्थान पर स्वतंत्र रूप से कार्य करता है।
यदि एक संरचना समूह एक जटिल अर्ध-सरल आव्यूह समूह है, तो गेज समूह के सोबोलेव समापन को प्रस्तुत किया जा सकता है। यह एक झूठ समूह है। एक मुख्य बिंदु यह है कि मुख्य संबंध के एक स्थान के सोबोलेव पूर्णता पर की क्रिया सुचारू है, और एक कक्षा स्थान हिल्बर्ट स्थान है। यह क्वांटम गेज सिद्धांत का विन्यास स्थान है।
संदर्भ
- Mitter, P., Viallet, C., On the bundle of connections and the gauge orbit manifold in Yang – Mills theory, Commun. Math. Phys. 79 (1981) 457.
- Marathe, K., Martucci, G., The Mathematical Foundations of Gauge Theories (North Holland, 1992) ISBN 0-444-89708-9.
- Mangiarotti, L., Sardanashvily, G., Connections in Classical and Quantum Field Theory (World Scientific, 2000) ISBN 981-02-2013-8
यह भी देखें
- गेज समरूपता (गणित)
- गेज सिद्धांत
- गेज सिद्धांत (गणित)
- प्रिंसिपल बंडल
श्रेणी:विभेदक ज्यामिति
श्रेणी:गेज सिद्धांत
श्रेणी:सैद्धांतिक भौतिकी