पतित द्विरेखीय रूप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
गणित में, विशेष रूप से रेखीय बीजगणित, सदिश समष्टि V पर एक [[द्विरेखीय रूप]] {{nowrap|''f''&hairsp;(''x'', ''y''&hairsp;)}} द्विरेखीय रूप है जैसे कि V से V<sup>∗</sup> (V&hairsp; की द्वैतसदिशसमष्‍टि) का प्रतिचित्रण {{nowrap|''v'' ↦ (''x'' ↦ ''f''&hairsp;(''x'',&thinsp;''v''&hairsp;))}} द्वारा दी गई तुल्याकारिता नहीं है। एक समतुल्य परिभाषा जब V [[आयाम (वेक्टर स्थान)|परिमित-आयामी (सदिश समष्टि]]) है कि इसमें असतहीय कर्नेल है: V में कुछ गैर-शून्य x स्थित हैं जैसे कि
गणित में, विशेष रूप से रेखीय बीजगणित, सदिश समष्टि V पर एक [[द्विरेखीय रूप]] {{nowrap|''f''&hairsp;(''x'', ''y''&hairsp;)}} द्विरेखीय रूप है जैसे कि V से V<sup>∗</sup> (V&hairsp; की द्वैतसदिशसमष्‍टि) का प्रतिचित्रण {{nowrap|''v'' ↦ (''x'' ↦ ''f''&hairsp;(''x'',&thinsp;''v''&hairsp;))}} द्वारा दी गई तुल्याकारिता नहीं है। एक समतुल्य परिभाषा जब V [[आयाम (वेक्टर स्थान)|परिमित-आयामी (सदिश समष्टि]]) है कि इसमें असतहीय कर्नेल है: V में कुछ गैर-शून्य x स्थित हैं जैसे कि


:<math>\,y \in V</math> सभी के लिए <math>f(x,y)=0\,</math>
:<math>f(x,y)=0\,</math> सभी <math>\,y \in V</math> के लिए।




== अनपभ्रष्ट रूप ==
== अनपभ्रष्ट रूप ==
अनपभ्रष्ट या व्युत्क्रमणीय रूप एक द्विरेखीय रूप है जो पतित नहीं है, जिसका अर्थ है <math>v \mapsto (x \mapsto f(x,v))</math> एक समरूपता है, या समान रूप से परिमित आयामों में, यदि और मात्र यदि सभी  
अनपभ्रष्ट या व्युत्क्रमणीय रूप एक द्विरेखीय रूप है जो पतित नहीं है, जिसका अर्थ है कि <math>v \mapsto (x \mapsto f(x,v))</math> एक समरूपता है, या समान रूप से परिमित आयामों में, यदि और मात्र यदि सभी  
:<math>y \in V</math> के लिए <math>f(x,y)=0</math> का अर्थ है कि <math>x = 0</math>।
:<math>y \in V</math> के लिए <math>f(x,y)=0</math> का अर्थ है कि <math>x = 0</math>।


अविकृत रूपों के सबसे महत्वपूर्ण उदाहरण आंतरिक उत्पाद और [[सहानुभूतिपूर्ण रूप]] हैं। [[सममित द्विरेखीय रूप]] अनपभ्रष्ट रूप आंतरिक उत्पादों के महत्वपूर्ण सामान्यीकरण हैं, जिसमें प्रायः मात्र यह आवश्यक होता है कि प्रतिचित्र <math>V \to V^*</math> एक समरूपता हो, धनात्मकता नहीं। उदाहरण के लिए, अपने स्पर्शरेखा रिक्त समष्टि पर आंतरिक उत्पाद संरचना के साथ बहुविध एक रिमेंनियन बहुविध है, जबकि इसे सममित अनपभ्रष्ट रूप में विराम होने पर एक छद्म रीमैनियन [[कई गुना]] उत्पन्न होते है।
अविकृत रूपों के सबसे महत्वपूर्ण उदाहरण आंतरिक उत्पाद और [[सहानुभूतिपूर्ण रूप]] हैं। [[सममित द्विरेखीय रूप]] अनपभ्रष्ट रूप आंतरिक उत्पादों के महत्वपूर्ण सामान्यीकरण हैं, जिसमें प्रायः मात्र यह आवश्यक होता है कि प्रतिचित्र <math>V \to V^*</math> एक समरूपता हो, न कि धनात्मकता। उदाहरण के लिए, अपने स्पर्शरेखा रिक्त समष्टि पर आंतरिक उत्पाद संरचना के साथ बहुविध एक रिमेंनियन बहुविध है, जबकि इसे सममित अनपभ्रष्ट रूप में विराम होने पर एक छद्म रीमैनियन [[कई गुना]] उत्पन्न होते है।


== निर्धारक का प्रयोग ==
== निर्धारक का प्रयोग ==
Line 29: Line 29:
:<math> f(\phi,\psi) = \int\psi(x)\phi(x) \,dx</math> विशेषण नहीं है: उदाहरण के लिए, डिरैक डेल्टा फलन दोहरी समष्टि में है परन्तु आवश्यक रूप में नहीं है। दूसरी ओर, यह द्विरेखीय रूप सभी
:<math> f(\phi,\psi) = \int\psi(x)\phi(x) \,dx</math> विशेषण नहीं है: उदाहरण के लिए, डिरैक डेल्टा फलन दोहरी समष्टि में है परन्तु आवश्यक रूप में नहीं है। दूसरी ओर, यह द्विरेखीय रूप सभी
:<math>\phi</math> के लिए <math>f(\phi,\psi)=0</math> को संतुष्ट करते है जिसका अर्थ है कि <math>\psi=0\,</math>।
:<math>\phi</math> के लिए <math>f(\phi,\psi)=0</math> को संतुष्ट करते है जिसका अर्थ है कि <math>\psi=0\,</math>।
ऐसे स्थिति में जहां ƒ अंतःक्षेपक को संतुष्ट करते है (परन्तु आवश्यक रूप से विशेषण नहीं), ƒ को अल्प अनपभ्रष्ट कहा जाता है।
ऐसी स्थिति में जहां ƒ अंतःक्षेपक को संतुष्ट करती है (परन्तु आवश्यक रूप से विशेषण नहीं), ƒ को अल्प अनपभ्रष्ट कहा जाता है।


== शब्दावली ==
== शब्दावली ==

Revision as of 11:38, 28 April 2023

गणित में, विशेष रूप से रेखीय बीजगणित, सदिश समष्टि V पर एक द्विरेखीय रूप f (x, y ) द्विरेखीय रूप है जैसे कि V से V (V  की द्वैतसदिशसमष्‍टि) का प्रतिचित्रण v ↦ (xf (x, v )) द्वारा दी गई तुल्याकारिता नहीं है। एक समतुल्य परिभाषा जब V परिमित-आयामी (सदिश समष्टि) है कि इसमें असतहीय कर्नेल है: V में कुछ गैर-शून्य x स्थित हैं जैसे कि

सभी के लिए।


अनपभ्रष्ट रूप

अनपभ्रष्ट या व्युत्क्रमणीय रूप एक द्विरेखीय रूप है जो पतित नहीं है, जिसका अर्थ है कि एक समरूपता है, या समान रूप से परिमित आयामों में, यदि और मात्र यदि सभी

के लिए का अर्थ है कि

अविकृत रूपों के सबसे महत्वपूर्ण उदाहरण आंतरिक उत्पाद और सहानुभूतिपूर्ण रूप हैं। सममित द्विरेखीय रूप अनपभ्रष्ट रूप आंतरिक उत्पादों के महत्वपूर्ण सामान्यीकरण हैं, जिसमें प्रायः मात्र यह आवश्यक होता है कि प्रतिचित्र एक समरूपता हो, न कि धनात्मकता। उदाहरण के लिए, अपने स्पर्शरेखा रिक्त समष्टि पर आंतरिक उत्पाद संरचना के साथ बहुविध एक रिमेंनियन बहुविध है, जबकि इसे सममित अनपभ्रष्ट रूप में विराम होने पर एक छद्म रीमैनियन कई गुना उत्पन्न होते है।

निर्धारक का प्रयोग

यदि V परिमित-आयामी है, तो V के लिए कुछ आधार (रैखिक बीजगणित) के सापेक्ष, द्विरेखीय रूप पतित होते है यदि और मात्र यदि संबद्ध आव्यूह (गणित) का निर्धारक शून्य है - यदि और मात्र यदि आव्यूह अव्युत्क्रमणीय आव्यूह है, और तदनुसार पतित रूपों को 'अव्युत्क्रमणीय रूप' भी कहा जाता है। इसी प्रकार, एक अनपभ्रष्ट रूप वह है जिसके लिए संबंधित आव्यूह व्‍युत्‍क्रमणीय आव्यूह है। ये कथन चुने हुए आधार से स्वतंत्र हैं।

संबंधित धारणाएं

यदि द्विघात रूप Q के लिए शून्येतर सदिश v ∈ V ऐसा है कि Q (v) = 0 है, तो Q समदैशिक द्विघात रूप है। यदि सभी गैर-शून्य सदिशों के लिए Q का चिह्न समान है, तो यह एक निश्चित द्विघात रूप या ' विषमदैशिक द्विघात रूप' है।

एकमापांकी रूप और द्विएकघाती समघात की ध्यानपूर्वक संबंधित धारणा है; ये क्षेत्रों (गणित) पर सहमत हैं परन्तु सामान्य वलय (गणित) पर नहीं।

उदाहरण

वास्तविक, द्विघात बीजगणित का अध्ययन द्विघात रूपों के प्रकारों के बीच अंतर को दर्शाते है। गुणनफल zz* प्रत्येक सम्मिश्र संख्या, विभक्त-जटिल संख्या और दोहरी संख्या के लिए द्विघात रूप है। z = x + ε y के लिए, दोहरी संख्या का रूप x2 है जो कि एक पतित द्विघात रूप है। विभाजित-जटिल स्थिति समदैशिक रूप है, और जटिल स्थिति एक निश्चित रूप है।

अविकृत रूपों के सबसे महत्वपूर्ण उदाहरण आंतरिक उत्पाद और सहानुभूतिपूर्ण रूप हैं। सममित अनपभ्रष्ट रूप आंतरिक उत्पादों के महत्वपूर्ण सामान्यीकरण हैं, जिसमें प्रायः यह आवश्यक होते है कि प्रतिचित्र एक समरूपता बनें, धनात्मकता नहीं। उदाहरण के लिए, अपने स्पर्शरेखा रिक्त समष्टि पर आंतरिक उत्पाद संरचना के साथ बहुविध एक रिमेंनियन बहुविध है, जबकि इसे सममित अनपभ्रष्ट रूप में विराम होने पर एक छद्म-रीमैनियन बहुविध उत्पन्न होते है।

अनंत आयाम

ध्यान दें कि अनंत-आयामी समष्टि में, हमारे समीप द्विरेखीय रूप ƒ हो सकता है जिसके लिए अंतःक्षेपक है परन्तु विशेषण नहीं है। उदाहरण के लिए, एक बंद परिबद्ध अंतराल (गणित) पर निरंतर फलनों के समष्टि पर, रूप

विशेषण नहीं है: उदाहरण के लिए, डिरैक डेल्टा फलन दोहरी समष्टि में है परन्तु आवश्यक रूप में नहीं है। दूसरी ओर, यह द्विरेखीय रूप सभी
के लिए को संतुष्ट करते है जिसका अर्थ है कि

ऐसी स्थिति में जहां ƒ अंतःक्षेपक को संतुष्ट करती है (परन्तु आवश्यक रूप से विशेषण नहीं), ƒ को अल्प अनपभ्रष्ट कहा जाता है।

शब्दावली

यदि f सभी सदिशों पर समान रूप से लुप्त हो जाते है तो इसे 'पूर्णतः पतित' कहा जाता है। V पर किसी द्विरेखीय रूप f देखते हुए सदिशों

का समुच्चय V का एक पूर्णतया पतित उपसमष्टि बनाते है। प्रतिचित्र एफ अनपभ्रष्ट है यदि और मात्र यदि यह उप-समष्टि सतहीय है।

ज्यामितीय रूप से, द्विघात रूप की एक समदैशिक रेखा प्रक्षेप्य समष्टि में संबद्ध चतुर्भुज सतह के एक बिंदु से मेल खाती है। ऐसी रेखा द्विरेखीय रूप के लिए अतिरिक्त रूप से समदैशिक है यदि और मात्र यदि संबंधित बिंदु एक विलक्षण विविधता है। इसलिए, बीजगणितीय रूप से बंद क्षेत्र पर, हिल्बर्ट का नलस्टेलेंसैट्स गारंटी देते है कि द्विघात रूप में सदैव समदैशिक रेखाएं होती हैं, जबकि द्विरेखीय रूप में वे होती हैं यदि और मात्र यदि सतह अव्युत्क्रमणीय है।

यह भी देखें

उद्धरण