पेट्रोव वर्गीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Classification used in differential geometry and general relativity}}
{{Short description|Classification used in differential geometry and general relativity}}
{{general relativity}}
{{general relativity}}
[[अंतर ज्यामिति]] और [[सैद्धांतिक भौतिकी]] में, पेट्रोव वर्गीकरण (पेट्रोव-पिरानी-पेनरोज़ वर्गीकरण के रूप में भी जाना जाता है) प्रत्येक स्पेसटाइम # मूल अवधारणाओं में लोरेंत्ज़ियन मैनिफोल्ड में [[वेइल टेंसर]] के संभावित बीजगणितीय [[समरूपता]] का वर्णन करता है।
[[अंतर ज्यामिति]] और [[सैद्धांतिक भौतिकी]] में, '''पेट्रोव वर्गीकरण''' (पेट्रोव-पिरानी-पेनरोज़ वर्गीकरण के रूप में भी जाना जाता है)। जिसके प्रत्येक स्पेसटाइम मूल अवधारणाओं में लोरेंत्ज़ियन मैनिफोल्ड में [[वेइल टेंसर]] के संभावित बीजगणितीय [[समरूपता]] का वर्णन करता है।


यह आइंस्टीन के क्षेत्र समीकरणों के [[सटीक समाधान]]ों का अध्ययन करने में सबसे अधिक बार लागू किया जाता है, लेकिन सख्ती से बोलना शुद्ध गणित में प्रमेय है जो किसी भी भौतिक व्याख्या से स्वतंत्र [[लोरेंट्ज़ियन कई गुना]] पर लागू होता है। वर्गीकरण 1954 में ए.जेड. पेट्रोव द्वारा और स्वतंत्र रूप से 1957 में [[फेलिक्स पिरानी]] द्वारा पाया गया था।
यह आइंस्टीन के क्षेत्र समीकरणों के [[सटीक समाधान|सटीक हल]] का अध्ययन करने में सबसे अधिकांशतः लागू किया जाता है, किन्तु कठोरता से इसे बोलना शुद्ध गणित में प्रमेय है जो किसी भी भौतिक व्याख्या से स्वतंत्र [[लोरेंट्ज़ियन कई गुना]] पर लागू होता है। वर्गीकरण 1954 में ए.जेड. पेट्रोव द्वारा और स्वतंत्र रूप से 1957 में [[फेलिक्स पिरानी]] द्वारा पाया गया था।


== वर्गीकरण प्रमेय ==
== वर्गीकरण प्रमेय ==
हम चौथे टेंसर#टेंसर रैंक टेंसर के बारे में सोच सकते हैं, जैसे वेइल [[टेन्सर]], जिसका मूल्यांकन किसी घटना में किया जाता है, जो उस घटना पर [[ bivector |bivector]] ्स के स्थान पर कार्य करता है, जैसे सदिश स्थान पर रेखीय ऑपरेटर कार्य करता है:
हम चौथे टेंसर इस टेंसर रैंक टेंसर के बारे में सोच सकते हैं, जैसे वेइल [[टेन्सर]], जिसका मूल्यांकन किसी घटना में किया जाता है, जो उस घटना पर [[ bivector |बाईवैक्टर]] के स्थान पर कार्य करता है, जैसे सदिश स्थान पर रेखीय ऑपरेटर कार्य करता है:


:<math> X^{ab} \rightarrow \frac{1}{2} \, {C^{ab}}_{mn} X^{mn} </math>
:<math> X^{ab} \rightarrow \frac{1}{2} \, {C^{ab}}_{mn} X^{mn} </math>
फिर, [[eigenvalues]] खोजने की समस्या पर विचार करना स्वाभाविक है <math>\lambda</math> और [[eigenvectors]] (जिन्हें अब eigenbivectors कहा जाता है) <math>X^{ab}</math> ऐसा है कि
फिर, [[eigenvalues|आइजन मान]], <math>\lambda</math> और [[eigenvectors|आइजन वैक्टर]] खोजने की समस्या पर विचार करना स्वाभाविक है, जिन्हें अब आइजनबाईवैक्टर <math>X^{ab}</math> कहा जाता है) यह इस प्रकार है  


:<math>\frac{1}{2} \, {C^{ab}}_{mn} \, X^{mn} = \lambda \, X^{ab} </math>
:<math>\frac{1}{2} \, {C^{ab}}_{mn} \, X^{mn} = \lambda \, X^{ab} </math>
(चार-आयामी) लोरेंट्ज़ियन स्पेसटाइम में, प्रत्येक घटना में एंटीसिमेट्रिक बायवेक्टर्स का छह-आयामी स्थान होता है। हालांकि, वेइल टेंसर की समरूपता का अर्थ है कि किसी भी ईजेनबीवेक्टर को चार-आयामी सबसेट से संबंधित होना चाहिए।
(चार-आयामी) लोरेंट्ज़ियन स्पेसटाइम में, प्रत्येक घटना में एंटीसिमेट्रिक बायवेक्टर्स का छह-आयामी स्थान होता है। चूंकि, वेइल टेंसर की समरूपता का अर्थ है कि किसी भी ईजेनबीवेक्टर को चार-आयामी सबसेट से संबंधित होना चाहिए। इस प्रकार, वेइल टेन्सर (किसी दिए गए कार्यक्रम में) में वास्तव में अधिकतम चार रैखिक रूप से स्वतंत्र ईजेनबीवेक्टर हो सकते हैं।
इस प्रकार, वेइल टेन्सर (किसी दिए गए कार्यक्रम में) में वास्तव में अधिकतम चार रैखिक रूप से स्वतंत्र ईजेनबीवेक्टर हो सकते हैं।


वेइल टेन्सर के ईजेनबिवेक्टर विभिन्न [[बहुलता (गणित)]] के साथ हो सकते हैं और ईजेनबिवेक्टरों के बीच किसी भी बहुलता से दिए गए ईवेंट में वीइल टेन्सर के प्रकार के बीजगणितीय समरूपता का संकेत मिलता है। विभिन्न प्रकार के वेइल टेंसर (किसी दिए गए ईवेंट में) को विशेषता बहुपद विशेषता समीकरण को हल करके निर्धारित किया जा सकता है, इस मामले में क्वार्टिक समीकरण। उपरोक्त सभी समान रूप से साधारण रैखिक ऑपरेटर के ईजेनवेक्टर के सिद्धांत के समान होता है।


ये आइजनबाईवैक्टरs मूल स्पेसटाइम में कुछ अशक्त वैक्टर से जुड़े होते हैं, जिन्हें 'प्रिंसिपल नल डायरेक्शन' (किसी दिए गए ईवेंट में) कहा जाता है।


वेइल टेन्सर के ईजेनबिवेक्टर विभिन्न [[बहुलता (गणित)]] के साथ हो सकते हैं और ईजेनबिवेक्टरों के बीच किसी भी बहुलता से दिए गए ईवेंट में वीइल टेन्सर के प्रकार के बीजगणितीय समरूपता का संकेत मिलता है। विभिन्न प्रकार के वेइल टेंसर (किसी दिए गए ईवेंट में) को विशेषता बहुपद#विशेषता समीकरण को हल करके निर्धारित किया जा सकता है, इस मामले में क्वार्टिक समीकरण। उपरोक्त सभी समान रूप से साधारण रैखिक ऑपरेटर के ईजेनवेक्टर के सिद्धांत के समान होता है।
इस कारण प्रासंगिक [[बहुरेखीय बीजगणित]] कुछ सीमा तक सम्मिलित है (नीचे उद्धरण देखें), किन्तु परिणामी वर्गीकरण प्रमेय बताता है कि बीजगणितीय समरूपता के ठीक छह संभावित प्रकार हैं। इन्हें 'पेट्रोव प्रकार' के रूप में जाना जाता है:
 
ये eigenbivectors मूल स्पेसटाइम में कुछ अशक्त वैक्टर से जुड़े होते हैं, जिन्हें 'प्रिंसिपल नल डायरेक्शन' (किसी दिए गए ईवेंट में) कहा जाता है।
प्रासंगिक [[बहुरेखीय बीजगणित]] कुछ हद तक शामिल है (नीचे उद्धरण देखें), लेकिन परिणामी वर्गीकरण प्रमेय बताता है कि बीजगणितीय समरूपता के ठीक छह संभावित प्रकार हैं। इन्हें 'पेट्रोव प्रकार' के रूप में जाना जाता है:


[[Image:Petrov.png|frame|right|वेइल टेन्सर के पेट्रोव प्रकार के संभावित अध: पतन को दर्शाने वाला पेनरोज़ आरेख]]*प्ररूप I: चार सरल प्रमुख अशक्त दिशाएँ,
[[Image:Petrov.png|frame|right|वेइल टेन्सर के पेट्रोव प्रकार के संभावित अध: पतन को दर्शाने वाला पेनरोज़ आरेख]]*प्ररूप I: चार सरल प्रमुख अशक्त दिशाएँ,
Line 27: Line 25:
*टाइप III: ट्रिपल और साधारण प्रिंसिपल शून्य दिशा,
*टाइप III: ट्रिपल और साधारण प्रिंसिपल शून्य दिशा,
*टाइप एन: चौगुनी प्रिंसिपल शून्य दिशा,
*टाइप एन: चौगुनी प्रिंसिपल शून्य दिशा,
* टाइप ओ: वेइल टेंसर गायब हो जाता है।
* टाइप ओ: वेइल टेंसर से विलुप्त हो जाता है।


पेट्रोव प्रकारों के बीच संभावित संक्रमणों को चित्र में दिखाया गया है, जिसे यह कहते हुए भी समझा जा सकता है कि कुछ पेट्रोव प्रकार दूसरों की तुलना में अधिक विशेष हैं। उदाहरण के लिए, प्रकार I, सबसे सामान्य प्रकार, प्रकार II या D में ''पतित'' हो सकता है, जबकि प्रकार II प्रकार III, N, या D में पतित हो सकता है।
पेट्रोव प्रकारों के बीच संभावित संक्रमणों को चित्र में दिखाया गया है, जिसे यह कहते हुए भी समझा जा सकता है कि कुछ पेट्रोव प्रकार दूसरों की तुलना में अधिक विशेष हैं। उदाहरण के लिए सबसे सामान्य प्रकार II या D में ''पतित'' हो सकता है, जबकि प्रकार II प्रकार III, N, या D में पतित हो सकता है।


किसी दिए गए स्पेसटाइम में अलग-अलग घटनाओं में अलग-अलग पेट्रोव प्रकार हो सकते हैं। वेइल टेंसर जिसमें टाइप I (किसी घटना पर) होता है, बीजगणितीय रूप से सामान्य कहलाता है; अन्यथा, इसे बीजीय रूप से विशेष (उस घटना पर) कहा जाता है। सामान्य सापेक्षता में, टाइप ओ स्पेसटाइम अनुरूप रूप से फ्लैट होते हैं।
किसी दिए गए स्पेसटाइम में अलग-अलग घटनाओं में अलग-अलग पेट्रोव प्रकार हो सकते हैं। वेइल टेंसर जिसमें टाइप I (किसी घटना पर) होता है, बीजगणितीय रूप से सामान्य कहलाता है; अन्यथा, इसे बीजीय रूप से विशेष (उस घटना पर) कहा जाता है। सामान्य सापेक्षता में, टाइप ओ स्पेसटाइम अनुरूप रूप से फ्लैट होते हैं।
Line 35: Line 33:
== न्यूमैन-पेनरोज़ औपचारिकता ==
== न्यूमैन-पेनरोज़ औपचारिकता ==


वर्गीकरण के लिए व्यवहार में अक्सर न्यूमैन-पेनरोज़ औपचारिकता का उपयोग किया जाता है। अशक्त वैक्टरों के [[चतुष्कोणीय औपचारिकता]] से निर्मित बायवेक्टरों के निम्नलिखित सेट पर विचार करें (ध्यान दें कि कुछ नोटेशन में, l और n परस्पर जुड़े हुए हैं):
वर्गीकरण के लिए व्यवहार में अधिकांशतः न्यूमैन-पेनरोज़ औपचारिकता का उपयोग किया जाता है। अशक्त वैक्टरों के [[चतुष्कोणीय औपचारिकता]] से निर्मित बायवेक्टरों के निम्नलिखित समूहों पर विचार करिये- (ध्यान दें कि कुछ नोटेशन में, l और n परस्पर जुड़े हुए हैं):


:<math>U_{ab}=-2l_{[a}\bar{m}_{b]}</math>
:<math>U_{ab}=-2l_{[a}\bar{m}_{b]}</math>
Line 47: Line 45:
&\, \, \, +\Psi_3(V_{ab}W_{cd}+W_{ab}V_{cd}) \\
&\, \, \, +\Psi_3(V_{ab}W_{cd}+W_{ab}V_{cd}) \\
&\, \, \, +\Psi_4V_{ab}V_{cd}+c.c.\end{align}</math>
&\, \, \, +\Psi_4V_{ab}V_{cd}+c.c.\end{align}</math>
जहां <math>\{\Psi_j\}</math> [[वेइल अदिश]] हैं और सी.सी. जटिल संयुग्म है।<ref name=WCS>{{Cite arXiv|arxiv=2108.07167|author1=Wytler Cordeiro dos Santos|title=सामान्य सापेक्षता में न्यूमैन-पेनरोज़ औपचारिकता में द्विभाजक - विद्युत चुंबकत्व से वेइल वक्रता टेंसर तक|year=2021}}</ref> आगे के लिए निर्माण और अपघटन में अंदर देखें।<ref name=WCS/>छह अलग-अलग पेट्रोव प्रकारों को अलग किया जाता है, जिसके द्वारा वेइल स्केलर गायब हो जाते हैं। शर्तें हैं
जहां <math>\{\Psi_j\}</math> [[वेइल अदिश]] हैं और सी.सी. जटिल संयुग्म है।<ref name=WCS>{{Cite arXiv|arxiv=2108.07167|author1=Wytler Cordeiro dos Santos|title=सामान्य सापेक्षता में न्यूमैन-पेनरोज़ औपचारिकता में द्विभाजक - विद्युत चुंबकत्व से वेइल वक्रता टेंसर तक|year=2021}}</ref> आगे के लिए निर्माण और अपघटन में अंदर देखें।<ref name=WCS/> इस प्रकार छह अलग-अलग पेट्रोव प्रकारों को अलग किया जाता है, जिसके द्वारा वेइल स्केलर गायब हो जाते हैं। इसके कुछ नियम इस प्रकार हैं-


*टाइप I: <math>\Psi_0=0</math>,
*टाइप I: <math>\Psi_0=0</math>,
Line 57: Line 55:


== बेल मानदंड ==
== बेल मानदंड ==
लोरेंट्ज़ियन मैनिफोल्ड पर [[मीट्रिक (सामान्य सापेक्षता)]] दिया गया <math>M</math>, वेइल टेंसर <math>C</math> इसके लिए मीट्रिक की गणना की जा सकती है। यदि वेइल टेन्सर कुछ पर बीजीय रूप से विशेष है <math>p \in M</math>, लूइस द्वारा खोजी गई शर्तों का उपयोगी सेट है (या लुइस) बेल और रॉबर्ट डेवर,<ref>[https://arxiv.org/find/gr-qc/1/au:+Ortaggio_M/0/1/0/all/0/1 Marcello Ortaggio (2009), ''Bel-Debever criteria for the classification of the Weyl tensors in higher dimensions.'']</ref> सटीक रूप से पेट्रोव प्रकार का निर्धारण करने के लिए <math>p</math>. Weyl टेंसर घटकों को नकारना <math>p</math> द्वारा <math>C_{abcd}</math> (गैर-शून्य माना जाता है, यानी, टाइप ओ का नहीं), बेल मानदंड के रूप में कहा जा सकता है:
लोरेंट्ज़ियन मैनिफोल्ड पर [[मीट्रिक (सामान्य सापेक्षता)]] <math>M</math> दिया गया, इसी प्रकार वेइल टेंसर <math>C</math> इसके लिए मीट्रिक की गणना की जा सकती है। यदि वेइल टेन्सर कुछ पर बीजीय रूप से विशेष है <math>p \in M</math>, लूइस द्वारा खोजी गई शर्तों का उपयोगी सेट है (या लुइस) बेल और रॉबर्ट डेवर,<ref>[https://arxiv.org/find/gr-qc/1/au:+Ortaggio_M/0/1/0/all/0/1 Marcello Ortaggio (2009), ''Bel-Debever criteria for the classification of the Weyl tensors in higher dimensions.'']</ref> सटीक रूप से पेट्रोव प्रकार का निर्धारण करने के लिए <math>p</math>. Weyl टेंसर घटकों को नकारना <math>p</math> द्वारा <math>C_{abcd}</math> (गैर-शून्य माना जाता है, अर्ताथ, टाइप ओ का नहीं), बेल मानदंड के रूप में कहा जा सकता है:


* <math>C_{abcd}</math> टाइप एन है अगर और केवल अगर कोई वेक्टर मौजूद है <math>k(p)</math> संतुष्टि देने वाला
* <math>C_{abcd}</math> टाइप एन है अगर और केवल अगर कोई वेक्टर सम्मिलित है <math>k(p)</math> संतुष्टि देने वाला


:<math>C_{abcd} \, k^d =0</math>
:<math>C_{abcd} \, k^d =0</math>
कहाँ <math>k</math> आवश्यक रूप से अशक्त और अद्वितीय (स्केलिंग तक) है।
जहाँ <math>k</math> आवश्यक रूप से अशक्त और अद्वितीय (स्केलिंग तक) है।


* अगर <math>C_{abcd}</math> टाइप एन नहीं है, तो <math>C_{abcd}</math> प्रकार III का है यदि और केवल यदि कोई सदिश मौजूद है <math>k(p)</math> संतुष्टि देने वाला
* अगर <math>C_{abcd}</math> टाइप एन नहीं है, तो <math>C_{abcd}</math> प्रकार III का है यदि और केवल यदि कोई सदिश सम्मिलित है <math>k(p)</math> संतुष्टि देने वाला


:<math>C_{abcd}\, k^bk^d=0= {^*C}_{abcd}\, k^bk^d</math>
:<math>C_{abcd}\, k^bk^d=0= {^*C}_{abcd}\, k^bk^d</math>
कहाँ <math>k</math> आवश्यक रूप से अशक्त और अद्वितीय (स्केलिंग तक) है।
जहाँ <math>k</math> आवश्यक रूप से अशक्त और अद्वितीय (स्केलिंग तक) है।


* <math>C_{abcd}</math> प्रकार II का है यदि और केवल यदि कोई सदिश मौजूद है <math>k</math> संतुष्टि देने वाला
* <math>C_{abcd}</math> प्रकार II का है यदि और केवल यदि कोई सदिश सम्मिलित है <math>k</math> संतुष्टि देने वाला


:<math>C_{abcd}\, k^bk^d=\alpha k_ak_c</math> और <math>{}^*C_{abcd}\, k^bk^d=\beta k_ak_c</math> (<math>\alpha \beta \neq 0</math>)
:<math>C_{abcd}\, k^bk^d=\alpha k_ak_c</math> और <math>{}^*C_{abcd}\, k^bk^d=\beta k_ak_c</math> (<math>\alpha \beta \neq 0</math>)


कहाँ <math>k</math> आवश्यक रूप से अशक्त और अद्वितीय (स्केलिंग तक) है।
जहाँ <math>k</math> आवश्यक रूप से अशक्त और अद्वितीय (स्केलिंग तक) है।


* <math>C_{abcd}</math> टाइप डी का है अगर और केवल अगर ''दो रैखिक रूप से स्वतंत्र वैक्टर'' मौजूद हैं <math>k</math>, <math>k'</math> शर्तों को पूरा करना
* <math>C_{abcd}</math> टाइप डी का है अगर और केवल अगर ''दो रैखिक रूप से स्वतंत्र वैक्टर'' सम्मिलित हैं <math>k</math>, <math>k'</math> शर्तों को पूरा करना


:<math>C_{abcd}\, k^bk^d=\alpha k_ak_c</math>, <math>{}^*C_{abcd}\, k^bk^d=\beta k_ak_c</math> (<math>\alpha \beta \neq 0</math>)
:<math>C_{abcd}\, k^bk^d=\alpha k_ak_c</math>, <math>{}^*C_{abcd}\, k^bk^d=\beta k_ak_c</math> (<math>\alpha \beta \neq 0</math>)
Line 83: Line 81:
:<math>C_{abcd}\, k'^bk'^d=\gamma k'_ak'_c</math>, <math>{}^*C_{abcd}\, k'^bk'^d=\delta k'_ak'_c</math> (<math>\gamma \delta \neq 0</math>).
:<math>C_{abcd}\, k'^bk'^d=\gamma k'_ak'_c</math>, <math>{}^*C_{abcd}\, k'^bk'^d=\delta k'_ak'_c</math> (<math>\gamma \delta \neq 0</math>).


कहाँ <math>{{}^*C}_{abcd}</math> पर वीइल टेंसर का दोहरा है <math>p</math>.
जहाँ <math>{{}^*C}_{abcd}</math> पर वीइल टेंसर का दोहरा है <math>p</math>.


वास्तव में, ऊपर दिए गए प्रत्येक मानदंड के लिए, वेइल टेन्सर के उस प्रकार के होने के लिए समतुल्य शर्तें हैं। इन समतुल्य स्थितियों को वेइल टेन्सर और कुछ बाइवेक्टर्स के दोहरे और स्व-दोहरे के संदर्भ में कहा गया है और हॉल (2004) में साथ एकत्र किया गया है।
वास्तव में, ऊपर दिए गए प्रत्येक मानदंड के लिए, वेइल टेन्सर के उस प्रकार के होने के लिए समतुल्य शर्तें हैं। इन समतुल्य स्थितियों को वेइल टेन्सर और कुछ बाइवेक्टर्स के दोहरे और स्व-दोहरे के संदर्भ में कहा गया है और हॉल (2004) में साथ एकत्र किया गया है।
Line 90: Line 88:


== भौतिक व्याख्या ==
== भौतिक व्याख्या ==
[[सामान्य सापेक्षता]] के अनुसार, विभिन्न बीजगणितीय विशेष पेट्रोव प्रकारों की कुछ दिलचस्प भौतिक व्याख्याएं हैं, वर्गीकरण को कभी-कभी गुरुत्वाकर्षण क्षेत्रों का वर्गीकरण कहा जाता है।
[[सामान्य सापेक्षता]] के अनुसार, विभिन्न बीजगणितीय विशेष पेट्रोव प्रकारों की कुछ रोचक भौतिक व्याख्याएं हैं, वर्गीकरण को कभी-कभी गुरुत्वाकर्षण क्षेत्रों का वर्गीकरण कहा जाता है।


टाइप डी क्षेत्र अलग-अलग विशाल वस्तुओं के गुरुत्वाकर्षण क्षेत्र से जुड़े होते हैं, जैसे कि तारे। अधिक सटीक रूप से, प्रकार डी फ़ील्ड गुरुत्वाकर्षण वस्तु के बाहरी क्षेत्र के रूप में होते हैं जो पूरी तरह से इसके द्रव्यमान और कोणीय गति से विशेषता होती है। (एक अधिक सामान्य वस्तु में गैर-शून्य उच्च बहुध्रुव क्षण हो सकते हैं।) दो दोहरे प्रमुख अशक्त दिशाएँ उस वस्तु के पास रेडियल इनगोइंग और आउटगोइंग नल सर्वांगसमता को परिभाषित करती हैं जो क्षेत्र का स्रोत है।
टाइप डी क्षेत्र अलग-अलग विशाल वस्तुओं के गुरुत्वाकर्षण क्षेत्र से जुड़े होते हैं, जैसे कि तारे इत्यादि। इससे अधिक सटीक रूप से, प्रकार डी फ़ील्ड गुरुत्वाकर्षण वस्तु के बाहरी क्षेत्र के रूप में होते हैं जो पूरी तरह से इसके द्रव्यमान और कोणीय गति से विशेषता होती है। (एक अधिक सामान्य वस्तु में गैर-शून्य उच्च बहुध्रुव क्षण हो सकते हैं।) दो दोहरे प्रमुख अशक्त दिशाएँ उस वस्तु के पास रेडियल इनगोइंग और आउटगोइंग नल सर्वांगसमता को परिभाषित करती हैं जो क्षेत्र का स्रोत है।


टाइप डी क्षेत्र में [[इलेक्ट्रोग्रेविटिक टेंसर]] (या 'टाइडल टेन्सर') गुरुत्वाकर्षण क्षेत्रों के बहुत करीब से अनुरूप है, जो न्यूटोनियन ग्रेविटी में [[कूलम्ब]] प्रकार के [[गुरुत्वाकर्षण क्षमता]] द्वारा वर्णित हैं। इस तरह के ज्वारीय क्षेत्र को दिशा में 'तनाव' और ऑर्थोगोनल दिशाओं में 'संपीड़न' की विशेषता है; eigenvalues ​​​​का पैटर्न (-2,1,1) है। उदाहरण के लिए, पृथ्वी की कक्षा में अंतरिक्ष यान पृथ्वी के केंद्र से त्रिज्या के साथ छोटे से तनाव का अनुभव करता है, और ऑर्थोगोनल दिशाओं में छोटा सा संपीड़न करता है। [[न्यूटोनियन गुरुत्वाकर्षण]] की तरह ही, यह ज्वारीय क्षेत्र आमतौर पर जैसे क्षय होता है <math>O(r^{-3})</math>, कहाँ <math>r</math> वस्तु से दूरी है।
टाइप डी क्षेत्र में [[इलेक्ट्रोग्रेविटिक टेंसर]] (या 'टाइडल टेन्सर') गुरुत्वाकर्षण क्षेत्रों के बहुत समीप होने से अनुरूप है, जो न्यूटोनियन ग्रेविटी में [[कूलम्ब]] प्रकार के [[गुरुत्वाकर्षण क्षमता]] द्वारा वर्णित हैं। इस प्रकार के ज्वारीय क्षेत्र को दिशा में 'तनाव' और ऑर्थोगोनल दिशाओं में 'संपीड़न' की विशेषता है; आइजन मान ​​​​का पैटर्न (-2,1,1) है। उदाहरण के लिए, पृथ्वी की कक्षा में अंतरिक्ष यान पृथ्वी के केंद्र से त्रिज्या के साथ छोटे से तनाव का अनुभव करता है, और ऑर्थोगोनल दिशाओं में छोटा सा संपीड़न करता है। इस प्रकार [[न्यूटोनियन गुरुत्वाकर्षण]] की तरह ही, यह ज्वारीय क्षेत्र <math>O(r^{-3})</math> सामान्यतः जैसे क्षय होता है, जहाँ <math>r</math> वस्तु से दूरी है।


यदि वस्तु रोटेशन के किसी [[अक्ष]] के बारे में घूम रही है, तो ज्वारीय प्रभावों के अलावा, विभिन्न गुरुत्व चुंबकत्व प्रभाव भी होंगे, जैसे पर्यवेक्षक द्वारा किए गए [[जाइरोस्कोप]] पर [[स्पिन-स्पिन बल]][[ केर मीट्रिक |केर मीट्रिक]] में, जो प्रकार डी वैक्यूम समाधान का सबसे अच्छा ज्ञात उदाहरण है, क्षेत्र का यह हिस्सा जैसे क्षय होता है <math>O(r^{-4})</math>.
यदि वस्तु के घूर्णन के किसी [[अक्ष]] के बारे में घूम रही है, तो ज्वारीय प्रभावों के अतिरिक्त, विभिन्न गुरुत्व चुंबकत्व प्रभाव भी होंगे, जैसे पर्यवेक्षक द्वारा किए गए [[जाइरोस्कोप]] पर [[स्पिन-स्पिन बल]] को प्रकट करता हैं। इस प्रकार [[ केर मीट्रिक |केर मीट्रिक]] में, जो प्रकार डी वैक्यूम हल का सबसे अच्छा ज्ञात उदाहरण है, क्षेत्र का यह हिस्सा <math>O(r^{-4})</math> जैसे क्षय होता है।


टाइप III क्षेत्र प्रकार के अनुदैर्ध्य तरंग गुरुत्वाकर्षण विकिरण से जुड़े हैं। ऐसे क्षेत्रों में ज्वारीय बलों का अपरूपण (द्रव) प्रभाव होता है। इस संभावना को अक्सर उपेक्षित किया जाता है, आंशिक रूप से क्योंकि गुरुत्वाकर्षण विकिरण जो कमजोर-क्षेत्र सन्निकटन में उत्पन्न होता है | <math>O(r^{-2})</math>, जो टाइप एन रेडिएशन से तेज है।
टाइप III क्षेत्र प्रकार के अनुदैर्ध्य तरंग गुरुत्वाकर्षण विकिरण से जुड़े हैं। ऐसे क्षेत्रों में ज्वारीय बलों का अपरूपण (द्रव) प्रभाव होता है। इस संभावना को अधिकांशतः उपेक्षित किया जाता है, आंशिक रूप से क्योंकि गुरुत्वाकर्षण विकिरण जो कमजोर-क्षेत्र सन्निकटन में उत्पन्न होता है | <math>O(r^{-2})</math>, जो टाइप एन रेडिएशन से तेज है।


टाइप एन क्षेत्र [[ट्रांसवर्सलिटी (गणित)]] गुरुत्वाकर्षण विकिरण से जुड़े हैं, जो कि एलआईजीओ के साथ खगोलविदों का पता चला है।
टाइप एन क्षेत्र [[ट्रांसवर्सलिटी (गणित)]] गुरुत्वाकर्षण विकिरण से जुड़े हैं, जो कि एलआईजीओ के साथ खगोलविदों का पता चला है। इस प्रकार चौगुनी प्रमुख अशक्त दिशा इस विकिरण के प्रसार की दिशा का वर्णन करने वाली तरंग सदिश से मेल खाती है। यह सामान्यतः <math>O(r^{-1})</math> जैसे क्षय होता है, इसलिए लंबी दूरी का [[विकिरण क्षेत्र]] प्रकार N है।
चौगुनी प्रमुख अशक्त दिशा इस विकिरण के प्रसार की दिशा का वर्णन करने वाली तरंग सदिश से मेल खाती है। यह आमतौर पर जैसे क्षय होता है <math>O(r^{-1})</math>, इसलिए लंबी दूरी का [[विकिरण क्षेत्र]] प्रकार N है।


टाइप II क्षेत्र टाइप डी, III और एन के लिए ऊपर उल्लिखित प्रभावों को जटिल गैर-रैखिक तरीके से जोड़ते हैं।
टाइप II क्षेत्र टाइप डी, III और एन के लिए ऊपर उल्लिखित प्रभावों को जटिल गैर-रैखिक तरीके से जोड़ते हैं।


टाइप ओ क्षेत्र, या अनुरूप रूप से समतल क्षेत्र, उन जगहों से जुड़े होते हैं, जहां वेइल टेंसर पहचान के साथ गायब हो जाता है। इस मामले में, वक्रता को 'शुद्ध [[रिक्की टेंसर]]' कहा जाता है। अनुरूप रूप से समतल क्षेत्र में, कोई भी गुरुत्वाकर्षण प्रभाव पदार्थ की तत्काल उपस्थिति या कुछ गैर-गुरुत्वाकर्षण क्षेत्र (जैसे [[विद्युत चुम्बकीय]] क्षेत्र) की [[शास्त्रीय क्षेत्र सिद्धांत]] [[ऊर्जा]] के कारण होना चाहिए। मायने में, इसका मतलब यह है कि कोई भी दूर की वस्तु हमारे क्षेत्र की घटनाओं पर कोई [[लंबी दूरी का प्रभाव]] नहीं डाल रही है। अधिक सटीक रूप से, यदि दूर के क्षेत्रों में किसी भी समय अलग-अलग गुरुत्वाकर्षण क्षेत्र हैं, तो [[समाचार समारोह]] अभी तक हमारे समतल क्षेत्र में नहीं पहुंचा है।
टाइप ओ क्षेत्र, या अनुरूप रूप से समतल क्षेत्र, उन स्थानों से जुड़े होते हैं, जहां वेइल टेंसर पहचान के साथ गायब हो जाता है। इस मामले में, वक्रता को 'शुद्ध [[रिक्की टेंसर]]' कहा जाता है। अनुरूप रूप से समतल क्षेत्र में, कोई भी गुरुत्वाकर्षण प्रभाव पदार्थ की तत्काल उपस्थिति या कुछ गैर-गुरुत्वाकर्षण क्षेत्र (जैसे [[विद्युत चुम्बकीय]] क्षेत्र) की [[शास्त्रीय क्षेत्र सिद्धांत|मौलिक क्षेत्र सिद्धांत]] [[ऊर्जा]] के कारण होना चाहिए। मायने में, इसका मतलब यह है कि कोई भी दूर की वस्तु हमारे क्षेत्र की घटनाओं पर कोई [[लंबी दूरी का प्रभाव]] नहीं डाल रही है। इसके अधिक सटीक रूप से, यदि दूर के क्षेत्रों में किसी भी समय अलग-अलग गुरुत्वाकर्षण क्षेत्र हैं, तो [[समाचार समारोह]] अभी तक हमारे समतल क्षेत्र में नहीं पहुंचा है।


एक पृथक प्रणाली से उत्सर्जित [[गुरुत्वाकर्षण विकिरण]] आमतौर पर बीजगणितीय रूप से विशेष नहीं होगा।
एक पृथक प्रणाली से उत्सर्जित [[गुरुत्वाकर्षण विकिरण]] सामान्यतः बीजगणितीय रूप से विशेष नहीं होता हैं। इसके [[छीलने की प्रमेय]] उस तरीके का वर्णन करती है, जिसमें व्यक्ति विकिरण के स्रोत से आगे बढ़ता है, विकिरण क्षेत्र के विभिन्न घटक छिल जाते हैं, जब तक कि बड़ी दूरी पर केवल एन प्रकार का विकिरण ध्यान देने योग्य नहीं होता है। यह [[विद्युत चुम्बकीय छीलने का प्रमेय]] के समान है।
[[छीलने की प्रमेय]] उस तरीके का वर्णन करती है, जिसमें व्यक्ति विकिरण के स्रोत से आगे बढ़ता है, विकिरण क्षेत्र के विभिन्न घटक छिल जाते हैं, जब तक कि बड़ी दूरी पर केवल एन प्रकार का विकिरण ध्यान देने योग्य नहीं होता है। यह [[विद्युत चुम्बकीय छीलने का प्रमेय]] के समान है।


== उदाहरण ==
== उदाहरण ==
कुछ (अधिक या कम) परिचित समाधानों में, वेइल टेन्सर में प्रत्येक घटना में ही पेट्रोव प्रकार होता है:
कुछ (अधिक या कम) परिचित हल में, वेइल टेन्सर में प्रत्येक घटना में ही पेट्रोव प्रकार होता है:
*केर मीट्रिक हर जगह टाइप डी है,
*केर मीट्रिक हर स्थान टाइप डी है,
*कुछ रॉबिन्सन/ट्रॉटमैन स्पेसटाइम्स|रॉबिन्सन/ट्रॉटमैन वैक्यूम हर जगह टाइप III हैं,
*कुछ रॉबिन्सन/ट्रॉटमैन स्पेसटाइम्स|रॉबिन्सन/ट्रॉटमैन वैक्यूम हर स्थान टाइप III हैं,
*[[पीपी-वेव स्पेसटाइम]]्स हर जगह टाइप एन हैं,
*[[पीपी-वेव स्पेसटाइम]] हर स्थान टाइप एन हैं,
*Friedmann-Lemaître मेट्रिक हर जगह O प्रकार के होते हैं।
*Friedmann-Lemaître मेट्रिक हर स्थान O प्रकार के होते हैं।


अधिक आम तौर पर, किसी [[गोलाकार रूप से सममित स्पेसटाइम]] प्रकार डी (या ओ) का होना चाहिए। विभिन्न प्रकार के तनाव-ऊर्जा टेंसर वाले सभी बीजगणितीय विशेष स्पेसटाइम ज्ञात हैं, उदाहरण के लिए, सभी प्रकार के डी वैक्यूम समाधान।
अधिक सामान्यतः, किसी [[गोलाकार रूप से सममित स्पेसटाइम]] प्रकार डी (या ओ) का होना चाहिए। विभिन्न प्रकार के तनाव-ऊर्जा टेंसर वाले सभी बीजगणितीय विशेष स्पेसटाइम ज्ञात हैं, उदाहरण के लिए, सभी प्रकार के डी वैक्यूम को हल करके प्राप्त होता हैं।


वेइल टेन्सर की बीजगणितीय समरूपता का उपयोग करते हुए समाधानों के कुछ वर्गों को निरपवाद रूप से चित्रित किया जा सकता है: उदाहरण के लिए, गैर-अनुरूप रूप से फ्लैट नल [[इलेक्ट्रोवैक्यूम समाधान]] या शून्य धूल समाधान समाधान का वर्ग विस्तारित लेकिन गैर-घुमावदार शून्य सर्वांगसमता को स्वीकार करता है, ठीक 'रॉबिन्सन/' का वर्ग है। ट्रॉटमैन स्पेसटाइम्स''। ये आमतौर पर टाइप II हैं, लेकिन टाइप III और टाइप एन उदाहरण शामिल हैं।
वेइल टेन्सर की बीजगणितीय समरूपता का उपयोग करते हुए हल के कुछ वर्गों को निरपवाद रूप से चित्रित किया जा सकता है: उदाहरण के लिए, गैर-अनुरूप रूप से फ्लैट नल [[इलेक्ट्रोवैक्यूम समाधान|इलेक्ट्रोवैक्यूम हल]] या शून्य धूल हल हल का वर्ग विस्तारित किन्तु गैर-घुमावदार शून्य सर्वांगसमता को स्वीकार करता है, ठीक 'रॉबिन्सन/' का वर्ग है। ट्रॉटमैन स्पेसटाइम्स''। ये सामान्यतः टाइप II हैं, किन्तु टाइप III और टाइप एन उदाहरण सम्मिलित हैं।''


== उच्च आयामों के लिए सामान्यीकरण ==
== उच्च आयामों के लिए सामान्यीकरण ==
ए. कोली, आर. मिल्सन, वी. प्रावदा और ए. प्रावडोवा (2004) ने मनमाना स्पेसटाइम आयाम के लिए बीजगणितीय वर्गीकरण का सामान्यीकरण विकसित किया <math>d</math>. उनका दृष्टिकोण अशक्त [[vielbein]] दृष्टिकोण का उपयोग करता है, जो कि फ्रेम आधार है जिसमें दो अशक्त वैक्टर होते हैं <math>l</math> और <math>n</math>, साथ <math>d-2</math> स्पेसलाइक वैक्टर। वेइल टेन्सर के फ़्रेम आधार घटकों को स्थानीय लोरेन्ट्ज़ परिवर्तनों के तहत उनके परिवर्तन गुणों द्वारा वर्गीकृत किया गया है। यदि विशेष वेइल घटक गायब हो जाते हैं, तो <math>l</math> और/या <math>n</math> Weyl-Aligned Null Directions (WANDs) कहा जाता है। चार आयामों में, <math>l</math> छड़ी है अगर और केवल अगर यह ऊपर परिभाषित अर्थ में प्रमुख शून्य दिशा है। यह दृष्टिकोण उपरोक्त परिभाषित विभिन्न बीजगणितीय प्रकारों II,D आदि में से प्रत्येक का प्राकृतिक उच्च-आयामी विस्तार देता है।
ए. कोली, आर. मिल्सन, वी. प्रावदा और ए. प्रावडोवा (2004) ने स्वयं के स्पेसटाइम आयाम के लिए बीजगणितीय वर्गीकरण <math>d</math> का सामान्यीकरण विकसित किया था। उनका दृष्टिकोण अशक्त [[vielbein|वाइल्बीन]] दृष्टिकोण का उपयोग करता है, जो कि फ्रेम आधार है जिसमें दो अशक्त वैक्टर होते हैं <math>l</math> और <math>n</math>, साथ <math>d-2</math> स्पेसलाइक वैक्टर वेइल टेन्सर के फ़्रेम आधार घटकों को स्थानीय लोरेन्ट्ज़ परिवर्तनों के तहत उनके परिवर्तन गुणों द्वारा वर्गीकृत किया गया है। यदि विशेष वेइल घटक गायब हो जाते हैं, तो <math>l</math> और/या <math>n</math> वेइल एलाइन्ड नल डायरेक्शंस (WANDs) कहा जाता है। इसके चार आयामों में, <math>l</math> छड़ी है, इस प्रकार यदि यह ऊपर परिभाषित अर्थ में प्रमुख शून्य दिशा है। यह दृष्टिकोण उपरोक्त परिभाषित विभिन्न बीजगणितीय प्रकारों II,D आदि में से प्रत्येक का प्राकृतिक उच्च-आयामी विस्तार देता है।


एक वैकल्पिक, लेकिन असमान, सामान्यीकरण को पहले [[स्पिनर]]्स के आधार पर डे स्मेट (2002) द्वारा परिभाषित किया गया था। हालांकि, डी स्मेट का दृष्टिकोण केवल 5 आयामों तक ही सीमित है।
एक वैकल्पिक, किन्तु असमान, सामान्यीकरण को पहले [[स्पिनर|घूर्णन]] के आधार पर डे स्मेट (2002) द्वारा परिभाषित किया गया था। चूंकि, डी स्मेट का दृष्टिकोण केवल 5 आयामों तक ही सीमित है।


== यह भी देखें ==
== यह भी देखें ==
{{Portal|Mathematics|Physics}}
{{Portal|Mathematics|Physics}}
* [[विद्युत चुम्बकीय क्षेत्रों का वर्गीकरण]]
* [[विद्युत चुम्बकीय क्षेत्रों का वर्गीकरण]]
* [[सामान्य सापेक्षता में सटीक समाधान]]
* [[सामान्य सापेक्षता में सटीक समाधान|सामान्य सापेक्षता में सटीक हल]]
* अलग वर्गीकरण
* अलग वर्गीकरण
* छीलने की प्रमेय
* छीलने की प्रमेय

Revision as of 23:32, 21 April 2023

अंतर ज्यामिति और सैद्धांतिक भौतिकी में, पेट्रोव वर्गीकरण (पेट्रोव-पिरानी-पेनरोज़ वर्गीकरण के रूप में भी जाना जाता है)। जिसके प्रत्येक स्पेसटाइम मूल अवधारणाओं में लोरेंत्ज़ियन मैनिफोल्ड में वेइल टेंसर के संभावित बीजगणितीय समरूपता का वर्णन करता है।

यह आइंस्टीन के क्षेत्र समीकरणों के सटीक हल का अध्ययन करने में सबसे अधिकांशतः लागू किया जाता है, किन्तु कठोरता से इसे बोलना शुद्ध गणित में प्रमेय है जो किसी भी भौतिक व्याख्या से स्वतंत्र लोरेंट्ज़ियन कई गुना पर लागू होता है। वर्गीकरण 1954 में ए.जेड. पेट्रोव द्वारा और स्वतंत्र रूप से 1957 में फेलिक्स पिरानी द्वारा पाया गया था।

वर्गीकरण प्रमेय

हम चौथे टेंसर इस टेंसर रैंक टेंसर के बारे में सोच सकते हैं, जैसे वेइल टेन्सर, जिसका मूल्यांकन किसी घटना में किया जाता है, जो उस घटना पर बाईवैक्टर के स्थान पर कार्य करता है, जैसे सदिश स्थान पर रेखीय ऑपरेटर कार्य करता है:

फिर, आइजन मान, और आइजन वैक्टर खोजने की समस्या पर विचार करना स्वाभाविक है, जिन्हें अब आइजनबाईवैक्टर कहा जाता है) यह इस प्रकार है

(चार-आयामी) लोरेंट्ज़ियन स्पेसटाइम में, प्रत्येक घटना में एंटीसिमेट्रिक बायवेक्टर्स का छह-आयामी स्थान होता है। चूंकि, वेइल टेंसर की समरूपता का अर्थ है कि किसी भी ईजेनबीवेक्टर को चार-आयामी सबसेट से संबंधित होना चाहिए। इस प्रकार, वेइल टेन्सर (किसी दिए गए कार्यक्रम में) में वास्तव में अधिकतम चार रैखिक रूप से स्वतंत्र ईजेनबीवेक्टर हो सकते हैं।

वेइल टेन्सर के ईजेनबिवेक्टर विभिन्न बहुलता (गणित) के साथ हो सकते हैं और ईजेनबिवेक्टरों के बीच किसी भी बहुलता से दिए गए ईवेंट में वीइल टेन्सर के प्रकार के बीजगणितीय समरूपता का संकेत मिलता है। विभिन्न प्रकार के वेइल टेंसर (किसी दिए गए ईवेंट में) को विशेषता बहुपद विशेषता समीकरण को हल करके निर्धारित किया जा सकता है, इस मामले में क्वार्टिक समीकरण। उपरोक्त सभी समान रूप से साधारण रैखिक ऑपरेटर के ईजेनवेक्टर के सिद्धांत के समान होता है।

ये आइजनबाईवैक्टरs मूल स्पेसटाइम में कुछ अशक्त वैक्टर से जुड़े होते हैं, जिन्हें 'प्रिंसिपल नल डायरेक्शन' (किसी दिए गए ईवेंट में) कहा जाता है।

इस कारण प्रासंगिक बहुरेखीय बीजगणित कुछ सीमा तक सम्मिलित है (नीचे उद्धरण देखें), किन्तु परिणामी वर्गीकरण प्रमेय बताता है कि बीजगणितीय समरूपता के ठीक छह संभावित प्रकार हैं। इन्हें 'पेट्रोव प्रकार' के रूप में जाना जाता है:

वेइल टेन्सर के पेट्रोव प्रकार के संभावित अध: पतन को दर्शाने वाला पेनरोज़ आरेख

*प्ररूप I: चार सरल प्रमुख अशक्त दिशाएँ,

  • टाइप II: डबल और दो सिंपल प्रिंसिपल नल डायरेक्शन,
  • टाइप डी: दो डबल प्रिंसिपल शून्य दिशाएं,
  • टाइप III: ट्रिपल और साधारण प्रिंसिपल शून्य दिशा,
  • टाइप एन: चौगुनी प्रिंसिपल शून्य दिशा,
  • टाइप ओ: वेइल टेंसर से विलुप्त हो जाता है।

पेट्रोव प्रकारों के बीच संभावित संक्रमणों को चित्र में दिखाया गया है, जिसे यह कहते हुए भी समझा जा सकता है कि कुछ पेट्रोव प्रकार दूसरों की तुलना में अधिक विशेष हैं। उदाहरण के लिए सबसे सामान्य प्रकार II या D में पतित हो सकता है, जबकि प्रकार II प्रकार III, N, या D में पतित हो सकता है।

किसी दिए गए स्पेसटाइम में अलग-अलग घटनाओं में अलग-अलग पेट्रोव प्रकार हो सकते हैं। वेइल टेंसर जिसमें टाइप I (किसी घटना पर) होता है, बीजगणितीय रूप से सामान्य कहलाता है; अन्यथा, इसे बीजीय रूप से विशेष (उस घटना पर) कहा जाता है। सामान्य सापेक्षता में, टाइप ओ स्पेसटाइम अनुरूप रूप से फ्लैट होते हैं।

न्यूमैन-पेनरोज़ औपचारिकता

वर्गीकरण के लिए व्यवहार में अधिकांशतः न्यूमैन-पेनरोज़ औपचारिकता का उपयोग किया जाता है। अशक्त वैक्टरों के चतुष्कोणीय औपचारिकता से निर्मित बायवेक्टरों के निम्नलिखित समूहों पर विचार करिये- (ध्यान दें कि कुछ नोटेशन में, l और n परस्पर जुड़े हुए हैं):

वेइल टेन्सर को इन बाइवेक्टरों के संयोजन के माध्यम से व्यक्त किया जा सकता है

जहां वेइल अदिश हैं और सी.सी. जटिल संयुग्म है।[1] आगे के लिए निर्माण और अपघटन में अंदर देखें।[1] इस प्रकार छह अलग-अलग पेट्रोव प्रकारों को अलग किया जाता है, जिसके द्वारा वेइल स्केलर गायब हो जाते हैं। इसके कुछ नियम इस प्रकार हैं-

  • टाइप I: ,
  • टाइप II: ,
  • टाइप डी: ,
  • टाइप III: ,
  • टाइप एन: ,
  • ओ टाइप करें  : .

बेल मानदंड

लोरेंट्ज़ियन मैनिफोल्ड पर मीट्रिक (सामान्य सापेक्षता) दिया गया, इसी प्रकार वेइल टेंसर इसके लिए मीट्रिक की गणना की जा सकती है। यदि वेइल टेन्सर कुछ पर बीजीय रूप से विशेष है , लूइस द्वारा खोजी गई शर्तों का उपयोगी सेट है (या लुइस) बेल और रॉबर्ट डेवर,[2] सटीक रूप से पेट्रोव प्रकार का निर्धारण करने के लिए . Weyl टेंसर घटकों को नकारना द्वारा (गैर-शून्य माना जाता है, अर्ताथ, टाइप ओ का नहीं), बेल मानदंड के रूप में कहा जा सकता है:

  • टाइप एन है अगर और केवल अगर कोई वेक्टर सम्मिलित है संतुष्टि देने वाला

जहाँ आवश्यक रूप से अशक्त और अद्वितीय (स्केलिंग तक) है।

  • अगर टाइप एन नहीं है, तो प्रकार III का है यदि और केवल यदि कोई सदिश सम्मिलित है संतुष्टि देने वाला

जहाँ आवश्यक रूप से अशक्त और अद्वितीय (स्केलिंग तक) है।

  • प्रकार II का है यदि और केवल यदि कोई सदिश सम्मिलित है संतुष्टि देने वाला
और ()

जहाँ आवश्यक रूप से अशक्त और अद्वितीय (स्केलिंग तक) है।

  • टाइप डी का है अगर और केवल अगर दो रैखिक रूप से स्वतंत्र वैक्टर सम्मिलित हैं , शर्तों को पूरा करना
, ()

और

, ().

जहाँ पर वीइल टेंसर का दोहरा है .

वास्तव में, ऊपर दिए गए प्रत्येक मानदंड के लिए, वेइल टेन्सर के उस प्रकार के होने के लिए समतुल्य शर्तें हैं। इन समतुल्य स्थितियों को वेइल टेन्सर और कुछ बाइवेक्टर्स के दोहरे और स्व-दोहरे के संदर्भ में कहा गया है और हॉल (2004) में साथ एकत्र किया गया है।

बेल मानदंड सामान्य सापेक्षता में आवेदन पाते हैं जहां पेत्रोव प्रकार के बीजगणितीय रूप से विशेष वेइल टेन्सर का निर्धारण अशक्त वैक्टर की खोज करके पूरा किया जाता है।

भौतिक व्याख्या

सामान्य सापेक्षता के अनुसार, विभिन्न बीजगणितीय विशेष पेट्रोव प्रकारों की कुछ रोचक भौतिक व्याख्याएं हैं, वर्गीकरण को कभी-कभी गुरुत्वाकर्षण क्षेत्रों का वर्गीकरण कहा जाता है।

टाइप डी क्षेत्र अलग-अलग विशाल वस्तुओं के गुरुत्वाकर्षण क्षेत्र से जुड़े होते हैं, जैसे कि तारे इत्यादि। इससे अधिक सटीक रूप से, प्रकार डी फ़ील्ड गुरुत्वाकर्षण वस्तु के बाहरी क्षेत्र के रूप में होते हैं जो पूरी तरह से इसके द्रव्यमान और कोणीय गति से विशेषता होती है। (एक अधिक सामान्य वस्तु में गैर-शून्य उच्च बहुध्रुव क्षण हो सकते हैं।) दो दोहरे प्रमुख अशक्त दिशाएँ उस वस्तु के पास रेडियल इनगोइंग और आउटगोइंग नल सर्वांगसमता को परिभाषित करती हैं जो क्षेत्र का स्रोत है।

टाइप डी क्षेत्र में इलेक्ट्रोग्रेविटिक टेंसर (या 'टाइडल टेन्सर') गुरुत्वाकर्षण क्षेत्रों के बहुत समीप होने से अनुरूप है, जो न्यूटोनियन ग्रेविटी में कूलम्ब प्रकार के गुरुत्वाकर्षण क्षमता द्वारा वर्णित हैं। इस प्रकार के ज्वारीय क्षेत्र को दिशा में 'तनाव' और ऑर्थोगोनल दिशाओं में 'संपीड़न' की विशेषता है; आइजन मान ​​​​का पैटर्न (-2,1,1) है। उदाहरण के लिए, पृथ्वी की कक्षा में अंतरिक्ष यान पृथ्वी के केंद्र से त्रिज्या के साथ छोटे से तनाव का अनुभव करता है, और ऑर्थोगोनल दिशाओं में छोटा सा संपीड़न करता है। इस प्रकार न्यूटोनियन गुरुत्वाकर्षण की तरह ही, यह ज्वारीय क्षेत्र सामान्यतः जैसे क्षय होता है, जहाँ वस्तु से दूरी है।

यदि वस्तु के घूर्णन के किसी अक्ष के बारे में घूम रही है, तो ज्वारीय प्रभावों के अतिरिक्त, विभिन्न गुरुत्व चुंबकत्व प्रभाव भी होंगे, जैसे पर्यवेक्षक द्वारा किए गए जाइरोस्कोप पर स्पिन-स्पिन बल को प्रकट करता हैं। इस प्रकार केर मीट्रिक में, जो प्रकार डी वैक्यूम हल का सबसे अच्छा ज्ञात उदाहरण है, क्षेत्र का यह हिस्सा जैसे क्षय होता है।

टाइप III क्षेत्र प्रकार के अनुदैर्ध्य तरंग गुरुत्वाकर्षण विकिरण से जुड़े हैं। ऐसे क्षेत्रों में ज्वारीय बलों का अपरूपण (द्रव) प्रभाव होता है। इस संभावना को अधिकांशतः उपेक्षित किया जाता है, आंशिक रूप से क्योंकि गुरुत्वाकर्षण विकिरण जो कमजोर-क्षेत्र सन्निकटन में उत्पन्न होता है | , जो टाइप एन रेडिएशन से तेज है।

टाइप एन क्षेत्र ट्रांसवर्सलिटी (गणित) गुरुत्वाकर्षण विकिरण से जुड़े हैं, जो कि एलआईजीओ के साथ खगोलविदों का पता चला है। इस प्रकार चौगुनी प्रमुख अशक्त दिशा इस विकिरण के प्रसार की दिशा का वर्णन करने वाली तरंग सदिश से मेल खाती है। यह सामान्यतः जैसे क्षय होता है, इसलिए लंबी दूरी का विकिरण क्षेत्र प्रकार N है।

टाइप II क्षेत्र टाइप डी, III और एन के लिए ऊपर उल्लिखित प्रभावों को जटिल गैर-रैखिक तरीके से जोड़ते हैं।

टाइप ओ क्षेत्र, या अनुरूप रूप से समतल क्षेत्र, उन स्थानों से जुड़े होते हैं, जहां वेइल टेंसर पहचान के साथ गायब हो जाता है। इस मामले में, वक्रता को 'शुद्ध रिक्की टेंसर' कहा जाता है। अनुरूप रूप से समतल क्षेत्र में, कोई भी गुरुत्वाकर्षण प्रभाव पदार्थ की तत्काल उपस्थिति या कुछ गैर-गुरुत्वाकर्षण क्षेत्र (जैसे विद्युत चुम्बकीय क्षेत्र) की मौलिक क्षेत्र सिद्धांत ऊर्जा के कारण होना चाहिए। मायने में, इसका मतलब यह है कि कोई भी दूर की वस्तु हमारे क्षेत्र की घटनाओं पर कोई लंबी दूरी का प्रभाव नहीं डाल रही है। इसके अधिक सटीक रूप से, यदि दूर के क्षेत्रों में किसी भी समय अलग-अलग गुरुत्वाकर्षण क्षेत्र हैं, तो समाचार समारोह अभी तक हमारे समतल क्षेत्र में नहीं पहुंचा है।

एक पृथक प्रणाली से उत्सर्जित गुरुत्वाकर्षण विकिरण सामान्यतः बीजगणितीय रूप से विशेष नहीं होता हैं। इसके छीलने की प्रमेय उस तरीके का वर्णन करती है, जिसमें व्यक्ति विकिरण के स्रोत से आगे बढ़ता है, विकिरण क्षेत्र के विभिन्न घटक छिल जाते हैं, जब तक कि बड़ी दूरी पर केवल एन प्रकार का विकिरण ध्यान देने योग्य नहीं होता है। यह विद्युत चुम्बकीय छीलने का प्रमेय के समान है।

उदाहरण

कुछ (अधिक या कम) परिचित हल में, वेइल टेन्सर में प्रत्येक घटना में ही पेट्रोव प्रकार होता है:

  • केर मीट्रिक हर स्थान टाइप डी है,
  • कुछ रॉबिन्सन/ट्रॉटमैन स्पेसटाइम्स|रॉबिन्सन/ट्रॉटमैन वैक्यूम हर स्थान टाइप III हैं,
  • पीपी-वेव स्पेसटाइम हर स्थान टाइप एन हैं,
  • Friedmann-Lemaître मेट्रिक हर स्थान O प्रकार के होते हैं।

अधिक सामान्यतः, किसी गोलाकार रूप से सममित स्पेसटाइम प्रकार डी (या ओ) का होना चाहिए। विभिन्न प्रकार के तनाव-ऊर्जा टेंसर वाले सभी बीजगणितीय विशेष स्पेसटाइम ज्ञात हैं, उदाहरण के लिए, सभी प्रकार के डी वैक्यूम को हल करके प्राप्त होता हैं।

वेइल टेन्सर की बीजगणितीय समरूपता का उपयोग करते हुए हल के कुछ वर्गों को निरपवाद रूप से चित्रित किया जा सकता है: उदाहरण के लिए, गैर-अनुरूप रूप से फ्लैट नल इलेक्ट्रोवैक्यूम हल या शून्य धूल हल हल का वर्ग विस्तारित किन्तु गैर-घुमावदार शून्य सर्वांगसमता को स्वीकार करता है, ठीक 'रॉबिन्सन/' का वर्ग है। ट्रॉटमैन स्पेसटाइम्स। ये सामान्यतः टाइप II हैं, किन्तु टाइप III और टाइप एन उदाहरण सम्मिलित हैं।

उच्च आयामों के लिए सामान्यीकरण

ए. कोली, आर. मिल्सन, वी. प्रावदा और ए. प्रावडोवा (2004) ने स्वयं के स्पेसटाइम आयाम के लिए बीजगणितीय वर्गीकरण का सामान्यीकरण विकसित किया था। उनका दृष्टिकोण अशक्त वाइल्बीन दृष्टिकोण का उपयोग करता है, जो कि फ्रेम आधार है जिसमें दो अशक्त वैक्टर होते हैं और , साथ स्पेसलाइक वैक्टर वेइल टेन्सर के फ़्रेम आधार घटकों को स्थानीय लोरेन्ट्ज़ परिवर्तनों के तहत उनके परिवर्तन गुणों द्वारा वर्गीकृत किया गया है। यदि विशेष वेइल घटक गायब हो जाते हैं, तो और/या वेइल एलाइन्ड नल डायरेक्शंस (WANDs) कहा जाता है। इसके चार आयामों में, छड़ी है, इस प्रकार यदि यह ऊपर परिभाषित अर्थ में प्रमुख शून्य दिशा है। यह दृष्टिकोण उपरोक्त परिभाषित विभिन्न बीजगणितीय प्रकारों II,D आदि में से प्रत्येक का प्राकृतिक उच्च-आयामी विस्तार देता है।

एक वैकल्पिक, किन्तु असमान, सामान्यीकरण को पहले घूर्णन के आधार पर डे स्मेट (2002) द्वारा परिभाषित किया गया था। चूंकि, डी स्मेट का दृष्टिकोण केवल 5 आयामों तक ही सीमित है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Wytler Cordeiro dos Santos (2021). "सामान्य सापेक्षता में न्यूमैन-पेनरोज़ औपचारिकता में द्विभाजक - विद्युत चुंबकत्व से वेइल वक्रता टेंसर तक". arXiv:2108.07167.
  2. Marcello Ortaggio (2009), Bel-Debever criteria for the classification of the Weyl tensors in higher dimensions.