फ्लुइड थ्रेड ब्रेकअप: Difference between revisions

From Vigyanwiki
(Created page with "फ्लुइड थ्रेड ब्रेकअप वह प्रक्रिया है जिसके द्वारा द्रव का एक द्रव...")
 
No edit summary
Line 1: Line 1:
फ्लुइड थ्रेड ब्रेकअप वह प्रक्रिया है जिसके द्वारा द्रव का एक द्रव्यमान कई छोटे द्रव द्रव्यमानों में टूट जाता है। इस प्रक्रिया को तरल पदार्थ के बड़े पिंडों के बीच पतले, धागे जैसे क्षेत्रों को बनाने वाले द्रव द्रव्यमान के बढ़ाव की विशेषता है। धागे जैसे क्षेत्र तब तक पतले होते रहते हैं जब तक वे टूट नहीं जाते, जिससे तरल पदार्थ की अलग-अलग बूंदें बन जाती हैं।
फ्लुइड थ्रेड ब्रेकअप वह प्रक्रिया है जिसके द्वारा द्रव का एक द्रव्यमान कई छोटे द्रव द्रव्यमानों में टूट जाता है। इस प्रक्रिया को तरल पदार्थ के बड़े पिंडों के बीच पतले, धागे जैसे क्षेत्रों को बनाने वाले द्रव द्रव्यमान के बढ़ाव की विशेषता है। धागे जैसे क्षेत्र तब तक पतले होते रहते हैं जब तक वे टूट नहीं जाते, जिससे तरल पदार्थ की अलग-अलग बूंदें बन जाती हैं।


थ्रेड ब्रेकअप तब होता है जब वैक्यूम में दो तरल पदार्थ या तरल पदार्थ सतह ऊर्जा के साथ एक मुक्त सतह बनाते हैं। यदि तरल पदार्थ के आयतन को समाहित करने के लिए आवश्यक न्यूनतम से अधिक सतह क्षेत्र मौजूद है, तो सिस्टम में [[सतही ऊर्जा]] की अधिकता है। एक प्रणाली जो न्यूनतम ऊर्जा स्थिति में नहीं है, पुनर्व्यवस्थित करने का प्रयास करेगी ताकि निम्न ऊर्जा स्थिति की ओर बढ़ने के लिए, सतह क्षेत्र को कम करके प्रणाली की सतह ऊर्जा को कम करने के लिए तरल पदार्थ को छोटे द्रव्यमान में विभाजित किया जा सके। थ्रेड ब्रेकअप प्रक्रिया का सटीक परिणाम सतह के तनाव, चिपचिपाहट, [[घनत्व]] और ब्रेकअप से गुजरने वाले थ्रेड के व्यास पर निर्भर करता है।
थ्रेड ब्रेकअप तब होता है जब वैक्यूम में दो तरल पदार्थ या तरल पदार्थ सतह ऊर्जा के साथ एक मुक्त सतह बनाते हैं। यदि तरल पदार्थ के आयतन को समाहित करने के लिए आवश्यक न्यूनतम से अधिक सतह क्षेत्र उपस्तिथ है, तो सिस्टम में [[सतही ऊर्जा]] की अधिकता है। एक प्रणाली जो न्यूनतम ऊर्जा स्थिति में नहीं है, पुनर्व्यवस्थित करने का प्रयास करेगी जिससे कि निम्न ऊर्जा स्थिति की ओर बढ़ने के लिए, सतह क्षेत्र को कम करके प्रणाली की सतह ऊर्जा को कम करने के लिए तरल पदार्थ को छोटे द्रव्यमान में विभाजित किया जा सके। थ्रेड ब्रेकअप प्रक्रिया का त्रुटिहीन परिणाम सतह के तनाव, चिपचिपाहट, [[घनत्व]] और ब्रेकअप से गुजरने वाले थ्रेड के व्यास पर निर्भर करता है।


== इतिहास ==
== इतिहास ==
Line 10: Line 10:
इस प्रकार उन्होंने गुरुत्वाकर्षण के लिए बूंदों के गिरने और पानी के अणुओं के सामंजस्य के लिए थ्रेड ब्रेकअप को चलाने वाले तंत्र को सही ढंग से जिम्मेदार ठहराया।
इस प्रकार उन्होंने गुरुत्वाकर्षण के लिए बूंदों के गिरने और पानी के अणुओं के सामंजस्य के लिए थ्रेड ब्रेकअप को चलाने वाले तंत्र को सही ढंग से जिम्मेदार ठहराया।


फ्लुइड थ्रेड ब्रेकअप का पहला सही विश्लेषण [[थॉमस यंग (वैज्ञानिक)]] द्वारा गुणात्मक रूप से और गणितीय रूप से [[पियरे-साइमन लाप्लास]] द्वारा 1804 और 1805 के बीच निर्धारित किया गया था।<ref>{{cite book|last=de Laplace|first=P.S.|title=बुक एक्स के लिए सेलेस्टे मैकेनिक्स सप्लीमेंट|date=1805|publisher=Courier|location=Paris}}</ref><ref>{{cite journal| last=Young |first=T |journal= Philosophical Transactions of the Royal Society of London|volume=95|pages=65–87|doi=10.1098/rstl.1805.0005|title=तरल पदार्थ के सामंजस्य पर एक निबंध|year=1805 |s2cid=116124581 }}</ref> उन्होंने थ्रेड ब्रेकअप के चालक को सतह तनाव गुणों के लिए सही ढंग से जिम्मेदार ठहराया। इसके अलावा, उन्होंने द्रव धागे में अतिरिक्त दबाव के निर्माण में माध्य वक्रता के महत्व को भी घटाया। अपने विश्लेषण के माध्यम से, उन्होंने दिखाया कि सतही तनाव दो तरह से व्यवहार कर सकता है: एक लोचदार तंत्र जो एक लटकी हुई छोटी बूंद का समर्थन कर सकता है और [[केशिका दबाव]] के कारण एक दबाव तंत्र जो थ्रेड ब्रेकअप को बढ़ावा देता है।
फ्लुइड थ्रेड ब्रेकअप का पहला सही विश्लेषण [[थॉमस यंग (वैज्ञानिक)]] द्वारा गुणात्मक रूप से और गणितीय रूप से [[पियरे-साइमन लाप्लास]] द्वारा 1804 और 1805 के बीच निर्धारित किया गया था।<ref>{{cite book|last=de Laplace|first=P.S.|title=बुक एक्स के लिए सेलेस्टे मैकेनिक्स सप्लीमेंट|date=1805|publisher=Courier|location=Paris}}</ref><ref>{{cite journal| last=Young |first=T |journal= Philosophical Transactions of the Royal Society of London|volume=95|pages=65–87|doi=10.1098/rstl.1805.0005|title=तरल पदार्थ के सामंजस्य पर एक निबंध|year=1805 |s2cid=116124581 }}</ref> उन्होंने थ्रेड ब्रेकअप के चालक को सतह तनाव गुणों के लिए सही ढंग से जिम्मेदार ठहराया। इसके अतिरिक्त, उन्होंने द्रव धागे में अतिरिक्त दबाव के निर्माण में माध्य वक्रता के महत्व को भी घटाया। अपने विश्लेषण के माध्यम से, उन्होंने दिखाया कि सतही तनाव दो तरह से व्यवहार कर सकता है: एक लोचदार तंत्र जो एक लटकी हुई छोटी बूंद का समर्थन कर सकता है और [[केशिका दबाव]] के कारण एक दबाव तंत्र जो थ्रेड ब्रेकअप को बढ़ावा देता है।


1820 के दशक में, इतालवी भौतिक विज्ञानी और हाइड्रोलिक इंजीनियर [[जॉर्ज बिडोन]] ने विभिन्न आकृतियों के छिद्रों से निकलने वाले पानी के जेट के विरूपण का अध्ययन किया।<ref>See:
1820 के दशक में, इतालवी भौतिक विज्ञानी और हाइड्रोलिक इंजीनियर [[जॉर्ज बिडोन]] ने विभिन्न आकृतियों के छिद्रों से निकलने वाले पानी के जेट के विरूपण का अध्ययन किया।<ref>See:
Line 17: Line 17:
उन्होंने कहा कि ब्रेकअप एक सहज प्रक्रिया है, जो बिना किसी बाहरी उत्तेजना के होती है। इस कार्य ने उन्हें यह निर्धारित करने की अनुमति दी कि बूंदों को एक टैंक से बहने वाले जेट से उत्पन्न किया जाता है, जो [[ नोक ]] त्रिज्या के व्युत्क्रमानुपाती और टैंक में दबाव के समानुपाती होता है। इन अवलोकनों ने [[जोसेफ पठार]] के काम को सुगम बनाया जिसने जेट ब्रेकअप और सतह ऊर्जा के बीच संबंध स्थापित किया।<ref>{{cite journal|last=Plateau|first=J. |journal=Annalen der Physik und Chemie | date=1850|series=2nd series | volume=80|issue=8 |pages=566–569|doi=10.1002/andp.18501560808|title=Ueber die Gränze der Stabilität eines flüssigen Cylinders |trans-title=On the limit of stability of a fluid cylinder |bibcode= 1850AnP...156..566P | url=https://babel.hathitrust.org/cgi/pt?id=uc1.b4433618&view=1up&seq=584 |language=German }}</ref> पठार द्रव धागे पर सबसे अस्थिर अशांति तरंगदैर्ध्य निर्धारित करने में सक्षम था, जिसे बाद में जॉन विलियम स्ट्रट, तीसरे बैरन रेले द्वारा जेट गतिशीलता के लिए खाते में संशोधित किया गया था।
उन्होंने कहा कि ब्रेकअप एक सहज प्रक्रिया है, जो बिना किसी बाहरी उत्तेजना के होती है। इस कार्य ने उन्हें यह निर्धारित करने की अनुमति दी कि बूंदों को एक टैंक से बहने वाले जेट से उत्पन्न किया जाता है, जो [[ नोक ]] त्रिज्या के व्युत्क्रमानुपाती और टैंक में दबाव के समानुपाती होता है। इन अवलोकनों ने [[जोसेफ पठार]] के काम को सुगम बनाया जिसने जेट ब्रेकअप और सतह ऊर्जा के बीच संबंध स्थापित किया।<ref>{{cite journal|last=Plateau|first=J. |journal=Annalen der Physik und Chemie | date=1850|series=2nd series | volume=80|issue=8 |pages=566–569|doi=10.1002/andp.18501560808|title=Ueber die Gränze der Stabilität eines flüssigen Cylinders |trans-title=On the limit of stability of a fluid cylinder |bibcode= 1850AnP...156..566P | url=https://babel.hathitrust.org/cgi/pt?id=uc1.b4433618&view=1up&seq=584 |language=German }}</ref> पठार द्रव धागे पर सबसे अस्थिर अशांति तरंगदैर्ध्य निर्धारित करने में सक्षम था, जिसे बाद में जॉन विलियम स्ट्रट, तीसरे बैरन रेले द्वारा जेट गतिशीलता के लिए खाते में संशोधित किया गया था।


चूंकि सतही गड़बड़ी बड़ी हो जाती है, गैर-रैखिक सिद्धांत को लागू किया जाना चाहिए। [[हेनरिक गुस्ताव मैग्नस]] और [[फिलिप लेनार्ड]] द्वारा प्रयोगात्मक रूप से बड़ी गड़बड़ी वाले जेट के व्यवहार की जांच की गई।<ref>{{cite journal| last=Magnus |first=G. |journal= Annalen der Physik und Chemie |date=1859|series=2nd series |volume=106|issue=1 |pages=1–32 |doi=10.1002/andp.18591820102|title=Hydraulische Untersuchungen; zweiter Theil |trans-title=Hydraulic investigations; second part |bibcode= 1859AnP...182....1M|url=https://zenodo.org/record/1423662 |language=German }}</ref><ref>{{cite journal|last=Lenard|first=Philipp |journal=Annalen der Physik und Chemie | date=1887 |series=3rd series |volume=30 |issue=2 |pages=209–243 |doi=10.1002/andp.18872660202|title=गिरती बूंदों के कंपन के बारे में|trans-title=On the oscillations of falling drops |bibcode=1887AnP...266..209L |url=https://babel.hathitrust.org/cgi/pt?id=wu.89048352645&view=1up&seq=231 |language=German }}</ref> उनके प्रयोगों ने उच्च गति फोटोग्राफी की शुरूआत के माध्यम से बड़ी मुख्य बूंद के अलावा उत्पन्न होने वाली उपग्रह बूंदों, बूंदों को चिह्नित करने में मदद की। थ्रेड ब्रेकअप के प्रायोगिक विश्लेषण के लिए हाई स्पीड फोटोग्राफी अब मानक तरीका है।
चूंकि सतही गड़बड़ी बड़ी हो जाती है, गैर-रैखिक सिद्धांत को लागू किया जाना चाहिए। [[हेनरिक गुस्ताव मैग्नस]] और [[फिलिप लेनार्ड]] द्वारा प्रयोगात्मक रूप से बड़ी गड़बड़ी वाले जेट के व्यवहार की जांच की गई।<ref>{{cite journal| last=Magnus |first=G. |journal= Annalen der Physik und Chemie |date=1859|series=2nd series |volume=106|issue=1 |pages=1–32 |doi=10.1002/andp.18591820102|title=Hydraulische Untersuchungen; zweiter Theil |trans-title=Hydraulic investigations; second part |bibcode= 1859AnP...182....1M|url=https://zenodo.org/record/1423662 |language=German }}</ref><ref>{{cite journal|last=Lenard|first=Philipp |journal=Annalen der Physik und Chemie | date=1887 |series=3rd series |volume=30 |issue=2 |pages=209–243 |doi=10.1002/andp.18872660202|title=गिरती बूंदों के कंपन के बारे में|trans-title=On the oscillations of falling drops |bibcode=1887AnP...266..209L |url=https://babel.hathitrust.org/cgi/pt?id=wu.89048352645&view=1up&seq=231 |language=German }}</ref> उनके प्रयोगों ने उच्च गति फोटोग्राफी की शुरूआत के माध्यम से बड़ी मुख्य बूंद के अतिरिक्त उत्पन्न होने वाली उपग्रह बूंदों, बूंदों को चिह्नित करने में मदद की। थ्रेड ब्रेकअप के प्रायोगिक विश्लेषण के लिए हाई स्पीड फोटोग्राफी अब मानक विधि है।


अधिक कम्प्यूटेशनल शक्ति के आगमन के साथ, संख्यात्मक सिमुलेशन प्रयोगात्मक प्रयासों को तरल टूटने को समझने के मुख्य साधन के रूप में बदलना शुरू कर दिया है। हालाँकि, इसके जटिल व्यवहार के कारण कई तरल पदार्थों की मुक्त सतह को सटीक रूप से ट्रैक करने में कठिनाई बनी हुई है। कम और उच्च चिपचिपाहट के तरल पदार्थों के साथ सबसे अधिक सफलता मिली है जहां [[सीमा तत्व विधि]] को दोनों मामलों के लिए ग्रीन के कार्य के रूप में नियोजित किया जा सकता है। डम्मरमुथ और यू ने इस विधि द्वारा इरोटेशनल, इनविसिड प्रवाह की विशेषता बताई जैसा कि शुल्केस ने किया था।<ref>{{cite journal|last=Dommermuth|first=DG|author2=Yue DKP|journal=Journal of Fluid Mechanics|date=1987|volume=178|pages=195–219|doi=10.1017/s0022112087001186|title=एक मुक्त सतह के साथ अरेखीय अक्षीय प्रवाह के संख्यात्मक सिमुलेशन|bibcode = 1987JFM...178..195D }}</ref><ref>{{cite journal|last=Schulkes|first=RMS|journal=Journal of Fluid Mechanics|date=1994|volume=261|pages=223–252|doi=10.1017/s0022112094000327|title=केशिका फव्वारे का विकास|bibcode = 1994JFM...261..223S }}</ref> यंगरेन और एक्रिवोस ने उच्च चिपचिपाहट वाले तरल में बुलबुले के व्यवहार पर विचार किया।<ref>{{cite journal|last=Youngren|first=GK|author2=Acrivos A|journal=Journal of Fluid Mechanics| date=1975 |volume=69 |issue=2|pages=377–403 |doi= 10.1017/s0022112075001486|title=Stokes flow past a particle of arbitrary shape: a numerical method of solution|bibcode = 1975JFM....69..377Y }}</ref> स्टोन और लील ने व्यक्तिगत बूंदों की गतिशीलता पर विचार करने के लिए इस प्रारंभिक कार्य का विस्तार किया।<ref>{{cite journal| last=Stone|first=HA|author2=Leal LG|journal=Journal of Fluid Mechanics |date=1989 |volume=198 |pages=399 |doi= 10.1017/s0022112089000194|title=अन्यथा शांत तरल पदार्थ में प्रारंभिक रूप से विस्तारित गिरावट का आराम और टूटना|bibcode = 1989JFM...198..399S |url=https://authors.library.caltech.edu/31527/1/STOjfm89.pdf}}</ref> मिडिलिंग विस्कोसिटी के तरल पदार्थों के लिए, नेवियर-स्टोक्स समीकरणों का उपयोग करके पूर्ण सिमुलेशन की आवश्यकता होती है, जिसमें मुक्त सतह जैसे स्तर-सेट और द्रव की मात्रा का निर्धारण किया जाता है। संपूर्ण नेवियर-स्टोक्स सिमुलेशन के साथ सबसे पहला काम Fromm द्वारा किया गया था जो [[इंकजेट तकनीक]] पर केंद्रित था।<ref>{{cite journal|last=Fromm|first=JE|journal=IBM Journal of Research and Development|volume=28|issue=3|pages=322–333|doi = 10.1147/rd.283.0322|title=ड्रॉप-ऑन-डिमांड जेट्स के द्रव गतिकी की संख्यात्मक गणना|year=1984}}</ref> इस तरह के अनुकरण अनुसंधान का एक सक्रिय क्षेत्र बना हुआ है।
अधिक कम्प्यूटेशनल शक्ति के आगमन के साथ, संख्यात्मक सिमुलेशन प्रयोगात्मक प्रयासों को तरल टूटने को समझने के मुख्य साधन के रूप में बदलना प्रारंभ कर दिया है। चूँकि, इसके जटिल व्यवहार के कारण कई तरल पदार्थों की मुक्त सतह को त्रुटिहीन रूप से ट्रैक करने में कठिनाई बनी हुई है। कम और उच्च चिपचिपाहट के तरल पदार्थों के साथ सबसे अधिक सफलता मिली है जहां [[सीमा तत्व विधि]] को दोनों स्थितियों के लिए ग्रीन के कार्य के रूप में नियोजित किया जा सकता है। डम्मरमुथ और यू ने इस विधि द्वारा इरोटेशनल, इनविसिड प्रवाह की विशेषता बताई जैसा कि शुल्केस ने किया था।<ref>{{cite journal|last=Dommermuth|first=DG|author2=Yue DKP|journal=Journal of Fluid Mechanics|date=1987|volume=178|pages=195–219|doi=10.1017/s0022112087001186|title=एक मुक्त सतह के साथ अरेखीय अक्षीय प्रवाह के संख्यात्मक सिमुलेशन|bibcode = 1987JFM...178..195D }}</ref><ref>{{cite journal|last=Schulkes|first=RMS|journal=Journal of Fluid Mechanics|date=1994|volume=261|pages=223–252|doi=10.1017/s0022112094000327|title=केशिका फव्वारे का विकास|bibcode = 1994JFM...261..223S }}</ref> यंगरेन और एक्रिवोस ने उच्च चिपचिपाहट वाले तरल में बुलबुले के व्यवहार पर विचार किया।<ref>{{cite journal|last=Youngren|first=GK|author2=Acrivos A|journal=Journal of Fluid Mechanics| date=1975 |volume=69 |issue=2|pages=377–403 |doi= 10.1017/s0022112075001486|title=Stokes flow past a particle of arbitrary shape: a numerical method of solution|bibcode = 1975JFM....69..377Y }}</ref> स्टोन और लील ने व्यक्तिगत बूंदों की गतिशीलता पर विचार करने के लिए इस प्रारंभिक कार्य का विस्तार किया।<ref>{{cite journal| last=Stone|first=HA|author2=Leal LG|journal=Journal of Fluid Mechanics |date=1989 |volume=198 |pages=399 |doi= 10.1017/s0022112089000194|title=अन्यथा शांत तरल पदार्थ में प्रारंभिक रूप से विस्तारित गिरावट का आराम और टूटना|bibcode = 1989JFM...198..399S |url=https://authors.library.caltech.edu/31527/1/STOjfm89.pdf}}</ref> मिडिलिंग विस्कोसिटी के तरल पदार्थों के लिए, नेवियर-स्टोक्स समीकरणों का उपयोग करके पूर्ण सिमुलेशन की आवश्यकता होती है, जिसमें मुक्त सतह जैसे स्तर-सेट और द्रव की मात्रा का निर्धारण किया जाता है। संपूर्ण नेवियर-स्टोक्स सिमुलेशन के साथ सबसे पहला काम Fromm द्वारा किया गया था जो [[इंकजेट तकनीक]] पर केंद्रित था।<ref>{{cite journal|last=Fromm|first=JE|journal=IBM Journal of Research and Development|volume=28|issue=3|pages=322–333|doi = 10.1147/rd.283.0322|title=ड्रॉप-ऑन-डिमांड जेट्स के द्रव गतिकी की संख्यात्मक गणना|year=1984}}</ref> इस तरह के अनुकरण अनुसंधान का एक सक्रिय क्षेत्र बना हुआ है।


== थ्रेड ब्रेकअप का भौतिक तंत्र ==
== थ्रेड ब्रेकअप का भौतिक तंत्र ==
[[File:CombinedFluidThreadBreakupCylinders.svg|thumbnail|एक तरल पदार्थ के धागे या जेट के बड़े द्रव्यमान से छोटे द्रव्यमान तक टूटने की प्रक्रिया।]]तरल धागे या जेट में टूटने की प्रक्रिया द्रव की मुक्त सतह पर छोटे गड़बड़ी के विकास से शुरू होती है। इसे द्रव धागा टूटने के रैखिक सिद्धांत के रूप में जाना जाता है। ये गड़बड़ी हमेशा मौजूद होती है और मुक्त सतह पर कतरनी तनाव में द्रव कंटेनर या गैर-एकरूपता के कंपन सहित कई स्रोतों से उत्पन्न हो सकती है। सामान्य तौर पर, ये गड़बड़ी एक मनमाना रूप ले लेती है और इस प्रकार सख्ती से विचार करना मुश्किल होता है। इसलिए धागे की सतह पर विभिन्न एकल तरंग दैर्ध्य के गड़बड़ी में मनमाने ढंग से गड़बड़ी को विघटित करने के लिए गड़बड़ी का [[फूरियर रूपांतरण]] करना सहायक होता है। ऐसा करने में, यह किसी को यह निर्धारित करने की अनुमति देता है कि गड़बड़ी की कौन सी तरंग दैर्ध्य बढ़ेगी और जो समय के साथ क्षय हो जाएगी।<ref name="auto">{{cite journal|last=Plateau|first=J|journal=Annalen der Physik|date=1850|volume=80|issue=8|pages=566–569|doi=10.1002/andp.18501560808|title=Ueber die Gränze der Stabilität eines flüssigen Cylinders|bibcode=1850AnP...156..566P|url=https://zenodo.org/record/1423622}}</ref>
[[File:CombinedFluidThreadBreakupCylinders.svg|thumbnail|एक तरल पदार्थ के धागे या जेट के बड़े द्रव्यमान से छोटे द्रव्यमान तक टूटने की प्रक्रिया।]]तरल धागे या जेट में टूटने की प्रक्रिया द्रव की मुक्त सतह पर छोटे गड़बड़ी के विकास से प्रारंभ होती है। इसे द्रव धागा टूटने के रैखिक सिद्धांत के रूप में जाना जाता है। ये गड़बड़ी हमेशा उपस्तिथ होती है और मुक्त सतह पर कतरनी तनाव में द्रव कंटेनर या गैर-एकरूपता के कंपन सहित कई स्रोतों से उत्पन्न हो सकती है। सामान्यतः, ये गड़बड़ी एक मनमाना रूप ले लेती है और इस प्रकार सख्ती से विचार करना कठिनाई होता है। इसलिए धागे की सतह पर विभिन्न एकल तरंग दैर्ध्य के गड़बड़ी में मनमाने ढंग से गड़बड़ी को विघटित करने के लिए गड़बड़ी का [[फूरियर रूपांतरण]] करना सहायक होता है। ऐसा करने में, यह किसी को यह निर्धारित करने की अनुमति देता है कि गड़बड़ी की कौन सी तरंग दैर्ध्य बढ़ेगी और जो समय के साथ क्षय हो जाएगी।<ref name="auto">{{cite journal|last=Plateau|first=J|journal=Annalen der Physik|date=1850|volume=80|issue=8|pages=566–569|doi=10.1002/andp.18501560808|title=Ueber die Gränze der Stabilität eines flüssigen Cylinders|bibcode=1850AnP...156..566P|url=https://zenodo.org/record/1423622}}</ref>
तरंगदैर्घ्य की वृद्धि और क्षय दबाव में परिवर्तन की जांच करके निर्धारित किया जा सकता है, तरल पदार्थ के आंतरिक भाग पर एक गड़बड़ी तरंगदैर्ध्य लगाया जाता है। धागे के आंतरिक दबाव में परिवर्तन केशिका दबाव से प्रेरित होता है क्योंकि धागे की मुक्त सतह विकृत होती है। केशिका दबाव सतह पर दिए गए स्थान पर इंटरफ़ेस के औसत वक्रता का एक कार्य है, जिसका अर्थ है कि दबाव वक्रता की दो त्रिज्याओं पर निर्भर है जो सतह का आकार देते हैं। ब्रेकअप के दौर से गुजर रहे द्रव धागे के पतले क्षेत्र के भीतर, वक्रता का पहला त्रिज्या गाढ़े क्षेत्र में वक्रता की त्रिज्या से छोटा होता है, जिससे एक दबाव प्रवणता होती है जो तरल को पतले से गाढ़े क्षेत्रों में ले जाती है। हालांकि, गोलमाल प्रक्रिया के लिए वक्रता की दूसरी त्रिज्या महत्वपूर्ण बनी हुई है। कुछ गड़बड़ी तरंग दैर्ध्य के लिए, वक्रता के दूसरे त्रिज्या का प्रभाव वक्रता के पहले त्रिज्या के दबाव के प्रभाव को दूर कर सकता है, पतले क्षेत्रों की तुलना में मोटे क्षेत्रों में एक बड़ा दबाव उत्पन्न करता है। यह द्रव को पतले क्षेत्रों की ओर वापस धकेल देगा और धागे को उसके मूल, अबाधित आकार में लौटा देगा। हालांकि, अन्य परेशानी तरंग दैर्ध्य के लिए, वक्रता के दूसरे त्रिज्या द्वारा प्रेरित केशिका दबाव वक्रता के पहले त्रिज्या को मजबूत करेगा। यह पतले से गाढ़े क्षेत्रों में द्रव को चलाएगा और थ्रेड ब्रेकअप को और बढ़ावा देगा।
तरंगदैर्घ्य की वृद्धि और क्षय दबाव में परिवर्तन की जांच करके निर्धारित किया जा सकता है, तरल पदार्थ के आंतरिक भाग पर एक गड़बड़ी तरंगदैर्ध्य लगाया जाता है। धागे के आंतरिक दबाव में परिवर्तन केशिका दबाव से प्रेरित होता है क्योंकि धागे की मुक्त सतह विकृत होती है। केशिका दबाव सतह पर दिए गए स्थान पर इंटरफ़ेस के औसत वक्रता का एक कार्य है, जिसका अर्थ है कि दबाव वक्रता की दो त्रिज्याओं पर निर्भर है जो सतह का आकार देते हैं। ब्रेकअप के दौर से गुजर रहे द्रव धागे के पतले क्षेत्र के भीतर, वक्रता का पहला त्रिज्या गाढ़े क्षेत्र में वक्रता की त्रिज्या से छोटा होता है, जिससे एक दबाव प्रवणता होती है जो तरल को पतले से गाढ़े क्षेत्रों में ले जाती है। चूंकि, गोलमाल प्रक्रिया के लिए वक्रता की दूसरी त्रिज्या महत्वपूर्ण बनी हुई है। कुछ गड़बड़ी तरंग दैर्ध्य के लिए, वक्रता के दूसरे त्रिज्या का प्रभाव वक्रता के पहले त्रिज्या के दबाव के प्रभाव को दूर कर सकता है, पतले क्षेत्रों की तुलना में मोटे क्षेत्रों में एक बड़ा दबाव उत्पन्न करता है। यह द्रव को पतले क्षेत्रों की ओर वापस धकेल देगा और धागे को उसके मूल, अबाधित आकार में लौटा देगा। चूंकि, अन्य परेशानी तरंग दैर्ध्य के लिए, वक्रता के दूसरे त्रिज्या द्वारा प्रेरित केशिका दबाव वक्रता के पहले त्रिज्या को मजबूत करेगा। यह पतले से गाढ़े क्षेत्रों में द्रव को चलाएगा और थ्रेड ब्रेकअप को और बढ़ावा देगा।


[[File:RadiiOfCurvatureFluidThreadBreakup.svg|framed|बाएं|विखंडन प्रक्रिया से गुजर रहे धागे में वक्रता की त्रिज्या। नीला वक्रता की पहली त्रिज्या का प्रतिनिधित्व करता है और पतले और गाढ़े स्थानों पर वक्रता की दूसरी त्रिज्या को लाल करता है।]]गड़बड़ी की तरंग दैर्ध्य इसलिए यह निर्धारित करने में महत्वपूर्ण पैरामीटर है कि द्रव के छोटे द्रव्यमान में दिए गए तरल पदार्थ का धागा टूट जाएगा या नहीं। क्षोभ तरंगदैर्घ्य की कठोर गणितीय परीक्षा से एक संबंध प्रदर्शित हो सकता है कि कौन से तरंगदैर्घ्य किसी दिए गए धागे के लिए स्थिर हैं और साथ ही कौन से क्षोभ तरंगदैर्घ्य सबसे तेजी से बढ़ेंगे। तरल पदार्थ के धागे के टूटने से उत्पन्न द्रव द्रव्यमान का आकार गड़बड़ी के तरंग दैर्ध्य द्वारा अनुमानित किया जा सकता है जो सबसे तेजी से बढ़ता है।
[[File:RadiiOfCurvatureFluidThreadBreakup.svg|framed|बाएं|विखंडन प्रक्रिया से गुजर रहे धागे में वक्रता की त्रिज्या। नीला वक्रता की पहली त्रिज्या का प्रतिनिधित्व करता है और पतले और गाढ़े स्थानों पर वक्रता की दूसरी त्रिज्या को लाल करता है।]]गड़बड़ी की तरंग दैर्ध्य इसलिए यह निर्धारित करने में महत्वपूर्ण पैरामीटर है कि द्रव के छोटे द्रव्यमान में दिए गए तरल पदार्थ का धागा टूट जाएगा या नहीं। क्षोभ तरंगदैर्घ्य की कठोर गणितीय परीक्षा से एक संबंध प्रदर्शित हो सकता है कि कौन से तरंगदैर्घ्य किसी दिए गए धागे के लिए स्थिर हैं और साथ ही कौन से क्षोभ तरंगदैर्घ्य सबसे तेजी से बढ़ेंगे। तरल पदार्थ के धागे के टूटने से उत्पन्न द्रव द्रव्यमान का आकार गड़बड़ी के तरंग दैर्ध्य द्वारा अनुमानित किया जा सकता है जो सबसे तेजी से बढ़ता है।
Line 34: Line 34:


=== महत्वपूर्ण पैरामीटर ===
=== महत्वपूर्ण पैरामीटर ===
कैसे एक द्रव धागा या जेट ब्रेकअप से गुजरता है, यह कई मापदंडों द्वारा नियंत्रित होता है, जिनमें रेनॉल्ड्स नंबर, [[वेबर नंबर]], [[ओहनेसोरगे नंबर]] और डिस्टर्बेंस [[yahoo]] शामिल हैं। जबकि ये संख्या द्रव यांत्रिकी में आम हैं, स्केल के रूप में चुने गए पैरामीटर थ्रेड ब्रेकअप के लिए उपयुक्त होना चाहिए। सबसे अधिक बार चुना जाने वाला लम्बाई का पैमाना द्रव धागे की त्रिज्या है, जबकि वेग को बल्क द्रव गति के वेग के रूप में लिया जाता है। हालाँकि, ये पैमाने विचाराधीन समस्या की विशेषताओं के आधार पर बदल सकते हैं।
कैसे एक द्रव धागा या जेट ब्रेकअप से गुजरता है, यह कई मापदंडों द्वारा नियंत्रित होता है, जिनमें रेनॉल्ड्स नंबर, [[वेबर नंबर]], [[ओहनेसोरगे नंबर]] और डिस्टर्बेंस [[yahoo]] सम्मिलित हैं। जबकि ये संख्या द्रव यांत्रिकी में आम हैं, स्केल के रूप में चुने गए पैरामीटर थ्रेड ब्रेकअप के लिए उपयुक्त होना चाहिए। सबसे अधिक बार चुना जाने वाला लम्बाई का पैमाना द्रव धागे की त्रिज्या है, जबकि वेग को बल्क द्रव गति के वेग के रूप में लिया जाता है। चूँकि, ये पैमाने विचाराधीन समस्या की विशेषताओं के आधार पर बदल सकते हैं।


[[रेनॉल्ड्स संख्या]] धागे के भीतर जड़ता और चिपचिपा प्रभाव के बीच का अनुपात है। बड़ी रेनॉल्ड्स संख्या के लिए, धागे की गति का प्रभाव चिपचिपा अपव्यय से कहीं अधिक होता है। चिपचिपाहट का केवल धागे पर न्यूनतम प्रभाव पड़ता है। छोटे रेनॉल्ड्स नंबरों के लिए, चिपचिपा अपव्यय बड़ा होता है और किसी भी गड़बड़ी को धागे से तेजी से भिगोया जाता है।
[[रेनॉल्ड्स संख्या]] धागे के भीतर जड़ता और चिपचिपा प्रभाव के बीच का अनुपात है। बड़ी रेनॉल्ड्स संख्या के लिए, धागे की गति का प्रभाव चिपचिपा अपव्यय से कहीं अधिक होता है। चिपचिपाहट का केवल धागे पर न्यूनतम प्रभाव पड़ता है। छोटे रेनॉल्ड्स नंबरों के लिए, चिपचिपा अपव्यय बड़ा होता है और किसी भी गड़बड़ी को धागे से तेजी से भिगोया जाता है।
Line 40: Line 40:
वेबर संख्या धागे के भीतर जड़ता और सतह तनाव प्रभाव के बीच का अनुपात है। जब वेबर संख्या बड़ी होती है, तो धागे की जड़ता बड़ी होती है जो सतह के तनाव की झुकाव वाली सतहों को समतल करने की प्रवृत्ति का विरोध करती है। छोटे वेबर नंबरों के लिए, सतह की गड़बड़ी के कारण केशिका दबाव में परिवर्तन बड़ा होता है और सतह तनाव थ्रेड व्यवहार पर हावी होता है।
वेबर संख्या धागे के भीतर जड़ता और सतह तनाव प्रभाव के बीच का अनुपात है। जब वेबर संख्या बड़ी होती है, तो धागे की जड़ता बड़ी होती है जो सतह के तनाव की झुकाव वाली सतहों को समतल करने की प्रवृत्ति का विरोध करती है। छोटे वेबर नंबरों के लिए, सतह की गड़बड़ी के कारण केशिका दबाव में परिवर्तन बड़ा होता है और सतह तनाव थ्रेड व्यवहार पर हावी होता है।


ओहनेसॉर्ज संख्या धागे के भीतर चिपचिपाहट और सतह तनाव प्रभाव के बीच का अनुपात है। जैसा कि यह जड़ता के प्रभाव और वेग पैमाने की आवश्यकता को समाप्त करता है, रेनॉल्ड्स और वेबर संख्या के बजाय व्यक्तिगत रूप से ओहनेसॉर्ज संख्या के संदर्भ में स्केलिंग संबंधों को व्यक्त करना अधिक सुविधाजनक होता है।
ओहनेसॉर्ज संख्या धागे के भीतर चिपचिपाहट और सतह तनाव प्रभाव के बीच का अनुपात है। जैसा कि यह जड़ता के प्रभाव और वेग पैमाने की आवश्यकता को समाप्त करता है, रेनॉल्ड्स और वेबर संख्या के अतिरिक्त व्यक्तिगत रूप से ओहनेसॉर्ज संख्या के संदर्भ में स्केलिंग संबंधों को व्यक्त करना अधिक सुविधाजनक होता है।


गड़बड़ी तरंगदैर्ध्य जेट की सतह पर गड़बड़ी की विशेषता लंबाई है, यह मानते हुए कि किसी भी मनमाने ढंग से गड़बड़ी को फूरियर के माध्यम से इसके संवैधानिक घटकों में परिवर्तित किया जा सकता है। गड़बड़ी की तरंग दैर्ध्य यह निर्धारित करने में महत्वपूर्ण है कि क्या कोई विशेष अशांति समय पर बढ़ेगी या क्षय हो जाएगी।
गड़बड़ी तरंगदैर्ध्य जेट की सतह पर गड़बड़ी की विशेषता लंबाई है, यह मानते हुए कि किसी भी मनमाने ढंग से गड़बड़ी को फूरियर के माध्यम से इसके संवैधानिक घटकों में परिवर्तित किया जा सकता है। गड़बड़ी की तरंग दैर्ध्य यह निर्धारित करने में महत्वपूर्ण है कि क्या कोई विशेष अशांति समय पर बढ़ेगी या क्षय हो जाएगी।
Line 47: Line 47:


=== इनविसिड तरल पदार्थों की रैखिक स्थिरता ===
=== इनविसिड तरल पदार्थों की रैखिक स्थिरता ===
कम चिपचिपाहट वाले तरल पदार्थों की रैखिक स्थिरता पहली बार 1873 में पठार द्वारा प्राप्त की गई थी।<ref name="auto"/>हालांकि, उनके समाधान को पठार-रेले अस्थिरता के रूप में जाना जाता है। रेले-पठार अस्थिरता जॉन विलियम स्ट्रट, तीसरे बैरन रेले द्वारा सिद्धांत के विस्तार के कारण चिपचिपाहट के साथ तरल पदार्थ शामिल करने के लिए। रेले-पठार अस्थिरता को अक्सर हाइड्रोडायनामिक स्थिरता के साथ-साथ गड़बड़ी विश्लेषण के लिए एक परिचयात्मक मामले के रूप में उपयोग किया जाता है।
कम चिपचिपाहट वाले तरल पदार्थों की रैखिक स्थिरता पहली बार 1873 में पठार द्वारा प्राप्त की गई थी।<ref name="auto"/>चूंकि, उनके समाधान को पठार-रेले अस्थिरता के रूप में जाना जाता है। रेले-पठार अस्थिरता जॉन विलियम स्ट्रट, तीसरे बैरन रेले द्वारा सिद्धांत के विस्तार के कारण चिपचिपाहट के साथ तरल पदार्थ सम्मिलित करने के लिए। रेले-पठार अस्थिरता को अधिकांशतः हाइड्रोडायनामिक स्थिरता के साथ-साथ गड़बड़ी विश्लेषण के लिए एक परिचयात्मक स्थितियोंके रूप में उपयोग किया जाता है।


पठार ने द्रव के एक धागे की स्थिरता पर विचार किया जब केवल जड़त्वीय और सतही तनाव प्रभाव मौजूद थे। मुक्त सतह पर अपने संवैधानिक हार्मोनिक्स/तरंगदैर्ध्य में मनमाना अशांति को विघटित करके, वह गड़बड़ी के मामले में जेट की स्थिरता के लिए एक शर्त प्राप्त करने में सक्षम था:
पठार ने द्रव के एक धागे की स्थिरता पर विचार किया जब केवल जड़त्वीय और सतही तनाव प्रभाव उपस्तिथ थे। मुक्त सतह पर अपने संवैधानिक हार्मोनिक्स/तरंगदैर्ध्य में मनमाना अशांति को विघटित करके, वह गड़बड़ी के स्थितियोंमें जेट की स्थिरता के लिए एक शर्त प्राप्त करने में सक्षम था:


:<math>\omega^2 = \frac{\sigma k}{\rho a^2} \frac{I_1(ka)}{I_0(ka)} \left ( 1 - k^2 a^2 \right ),</math>
:<math>\omega^2 = \frac{\sigma k}{\rho a^2} \frac{I_1(ka)}{I_0(ka)} \left ( 1 - k^2 a^2 \right ),</math>
जहां ω क्षोभ की वृद्धि दर है, σ तरल पदार्थ का सतही तनाव है, k क्षोभ की तरंग संख्या है, ρ द्रव घनत्व है, a अविक्षुब्ध द्रव की प्रारंभिक त्रिज्या है, और I का संशोधित बेसल फलन है पहली तरह। तरंग संख्या के एक समारोह के रूप में विकास दर की गणना करके, कोई यह निर्धारित कर सकता है कि सबसे तेजी से बढ़ने वाली अशांति तरंगदैर्ध्य पर होती है:
जहां ω क्षोभ की वृद्धि दर है, σ तरल पदार्थ का सतही तनाव है, k क्षोभ की तरंग संख्या है, ρ द्रव घनत्व है, a अविक्षुब्ध द्रव की प्रारंभिक त्रिज्या है, और I का संशोधित बेसल फलन है पहली तरह। तरंग संख्या के एक फलन के रूप में विकास दर की गणना करके, कोई यह निर्धारित कर सकता है कि सबसे तेजी से बढ़ने वाली अशांति तरंगदैर्ध्य पर होती है:


:<math> \lambda_\text{max} \approx 9.02a.</math>
:<math> \lambda_\text{max} \approx 9.02a.</math>
Line 63: Line 63:
रेनॉल्ड्स और बाद में टोमोटिका ने चिपचिपे धागों की रैखिक स्थिरता पर विचार करने के लिए पठार के काम को बढ़ाया। रेले ने चिपचिपाहट के एक चिपचिपे धागे की स्थिरता के लिए हल किया <math> \mu_A </math> बाहरी द्रव की उपस्थिति के बिना।<ref>{{cite journal|last=Rayleigh|first=Lord|journal=Philosophical Magazine|date=1892|volume=34|issue=207|pages=145–154| doi= 10.1080/14786449208620301|title=XVI. केशिका बल के तहत चिपचिपे तरल के एक सिलेंडर की अस्थिरता पर|url=https://zenodo.org/record/1431201}}</ref>
रेनॉल्ड्स और बाद में टोमोटिका ने चिपचिपे धागों की रैखिक स्थिरता पर विचार करने के लिए पठार के काम को बढ़ाया। रेले ने चिपचिपाहट के एक चिपचिपे धागे की स्थिरता के लिए हल किया <math> \mu_A </math> बाहरी द्रव की उपस्थिति के बिना।<ref>{{cite journal|last=Rayleigh|first=Lord|journal=Philosophical Magazine|date=1892|volume=34|issue=207|pages=145–154| doi= 10.1080/14786449208620301|title=XVI. केशिका बल के तहत चिपचिपे तरल के एक सिलेंडर की अस्थिरता पर|url=https://zenodo.org/record/1431201}}</ref>
टॉमोकिटा ने अपनी चिपचिपाहट के साथ बाहरी तरल पदार्थ की उपस्थिति में द्रव धागे की स्थिरता के लिए हल किया <math> \mu_B </math>.<ref>{{cite journal|last=Tomotika|first=S|journal=Proceedings of the Royal Society of London A|date=1935|volume=150|issue=870|pages=322–337|doi = 10.1098/rspa.1935.0104|title=एक अन्य चिपचिपा तरल पदार्थ से घिरे एक चिपचिपा तरल के बेलनाकार धागे की अस्थिरता पर|bibcode = 1935RSPSA.150..322T |doi-access=free}}</ref>
टॉमोकिटा ने अपनी चिपचिपाहट के साथ बाहरी तरल पदार्थ की उपस्थिति में द्रव धागे की स्थिरता के लिए हल किया <math> \mu_B </math>.<ref>{{cite journal|last=Tomotika|first=S|journal=Proceedings of the Royal Society of London A|date=1935|volume=150|issue=870|pages=322–337|doi = 10.1098/rspa.1935.0104|title=एक अन्य चिपचिपा तरल पदार्थ से घिरे एक चिपचिपा तरल के बेलनाकार धागे की अस्थिरता पर|bibcode = 1935RSPSA.150..322T |doi-access=free}}</ref>
उन्होंने तीन मामलों पर विचार किया जहां द्रव धागे की चिपचिपाहट बाहरी वातावरण की तुलना में बहुत अधिक थी, बाहरी वातावरण की चिपचिपाहट द्रव धागे की तुलना में बहुत अधिक थी, और सामान्य मामला जहां तरल पदार्थ मनमानी चिपचिपाहट के होते हैं।
उन्होंने तीन स्थितियों पर विचार किया जहां द्रव धागे की चिपचिपाहट बाहरी वातावरण की तुलना में बहुत अधिक थी, बाहरी वातावरण की चिपचिपाहट द्रव धागे की तुलना में बहुत अधिक थी, और सामान्य मामला जहां तरल पदार्थ मनमानी चिपचिपाहट के होते हैं।


==== द्रव धागा अत्यधिक चिपचिपा ====
==== द्रव धागा अत्यधिक चिपचिपा ====
सीमित मामले के लिए जहां द्रव धागा बाहरी वातावरण की तुलना में बहुत अधिक चिपचिपा होता है, बाहरी वातावरण की चिपचिपाहट पूरी तरह से विकास दर से गिर जाती है। विकास दर इस प्रकार केवल धागे की प्रारंभिक त्रिज्या, गड़बड़ी तरंग दैर्ध्य, धागे की सतह के तनाव और धागे की चिपचिपाहट का एक कार्य बन जाती है।
सीमित स्थितियोंके लिए जहां द्रव धागा बाहरी वातावरण की तुलना में बहुत अधिक चिपचिपा होता है, बाहरी वातावरण की चिपचिपाहट पूरी तरह से विकास दर से गिर जाती है। विकास दर इस प्रकार केवल धागे की प्रारंभिक त्रिज्या, गड़बड़ी तरंग दैर्ध्य, धागे की सतह के तनाव और धागे की चिपचिपाहट का एक कार्य बन जाती है।


:<math>\omega = \frac{\sigma \left ( k^2 a^2-1 \right )}{2a \mu_A} \frac{1}{k^2 a^2 + 1 - k^2 a^2 I_0^2(ka) / I_1^2(ka)}</math>
:<math>\omega = \frac{\sigma \left ( k^2 a^2-1 \right )}{2a \mu_A} \frac{1}{k^2 a^2 + 1 - k^2 a^2 I_0^2(ka) / I_1^2(ka)}</math>
Line 74: Line 74:


==== बाहरी द्रव अत्यधिक चिपचिपा ====
==== बाहरी द्रव अत्यधिक चिपचिपा ====
सीमित मामले के लिए जहां द्रव धागे का बाहरी वातावरण धागे की तुलना में बहुत अधिक चिपचिपा होता है, द्रव धागे की चिपचिपाहट पूरी तरह से गड़बड़ी विकास दर से गिरती है। इस प्रकार विकास दर केवल धागे की प्रारंभिक त्रिज्या, गड़बड़ी की तरंग दैर्ध्य, धागे की सतह के तनाव, बाहरी वातावरण की चिपचिपाहट और दूसरी तरह के दूसरे क्रम के बेसेल कार्यों का एक कार्य बन जाती है।
सीमित स्थितियोंके लिए जहां द्रव धागे का बाहरी वातावरण धागे की तुलना में बहुत अधिक चिपचिपा होता है, द्रव धागे की चिपचिपाहट पूरी तरह से गड़बड़ी विकास दर से गिरती है। इस प्रकार विकास दर केवल धागे की प्रारंभिक त्रिज्या, गड़बड़ी की तरंग दैर्ध्य, धागे की सतह के तनाव, बाहरी वातावरण की चिपचिपाहट और दूसरी तरह के दूसरे क्रम के बेसेल कार्यों का एक कार्य बन जाती है।


:<math> \omega = \frac{\sigma \left (1 - k^2 a^2 \right )}{2a \mu_B} \frac{1}{k^2 a^2 + 1 - k^2 a^2 K_0^2(ka) / K_1^2(ka)}</math>
:<math> \omega = \frac{\sigma \left (1 - k^2 a^2 \right )}{2a \mu_B} \frac{1}{k^2 a^2 + 1 - k^2 a^2 K_0^2(ka) / K_1^2(ka)}</math>
Line 120: Line 120:
परिणामी समाधान थ्रेड और बाहरी पर्यावरण चिपचिपाहट के साथ-साथ परेशानी तरंगदैर्ध्य दोनों का एक कार्य बना हुआ है। चिपचिपाहट और गड़बड़ी का सबसे अस्थिर संयोजन तब होता है जब <math> \mu_A/\mu_B \approx 0.28 </math> साथ <math> \lambda \approx 10.66a </math>.
परिणामी समाधान थ्रेड और बाहरी पर्यावरण चिपचिपाहट के साथ-साथ परेशानी तरंगदैर्ध्य दोनों का एक कार्य बना हुआ है। चिपचिपाहट और गड़बड़ी का सबसे अस्थिर संयोजन तब होता है जब <math> \mu_A/\mu_B \approx 0.28 </math> साथ <math> \lambda \approx 10.66a </math>.


अधिकांश अनुप्रयोगों के लिए, सामान्य मामले का उपयोग अनावश्यक है क्योंकि विचाराधीन दो तरल पदार्थों में काफी भिन्न चिपचिपाहट होती है जो सीमित मामलों में से एक के उपयोग की अनुमति देती है। हालांकि, कुछ उदाहरणों जैसे तेल या तेल और पानी के मिश्रण को सामान्य मामले के उपयोग की आवश्यकता हो सकती है।
अधिकांश अनुप्रयोगों के लिए, सामान्य स्थितियोंका उपयोग अनावश्यक है क्योंकि विचाराधीन दो तरल पदार्थों में अधिक  भिन्न चिपचिपाहट होती है जो सीमित स्थितियों में से एक के उपयोग की अनुमति देती है। चूंकि, कुछ उदाहरणों जैसे तेल या तेल और पानी के मिश्रण को सामान्य स्थितियोंके उपयोग की आवश्यकता हो सकती है।


== सैटेलाइट ड्रॉप फॉर्मेशन ==
== सैटेलाइट ड्रॉप फॉर्मेशन ==
[[File:Water drop animation enhanced small.gif|thumbnail|पानी एक नल से बहता है, एक बड़ी बूंद और कई उपग्रह बूंदों का उत्पादन करता है।]]उपग्रह बूँदें, जिन्हें माध्यमिक बूंदों के रूप में भी जाना जाता है, बड़ी मुख्य बूंदों के अलावा थ्रेड ब्रेकअप प्रक्रिया के दौरान उत्पन्न होने वाली बूँदें हैं। बूंदों का परिणाम तब होता है जब फिलामेंट जिसके द्वारा बड़े द्रव द्रव्यमान से लटकी हुई मुख्य बूंद स्वयं द्रव द्रव्यमान से टूट जाती है। फिलामेंट में निहित द्रव मुख्य बूंद के अलग होने से उस पर लगाए गए रीकोइल गड़बड़ी के कारण एकल द्रव्यमान या ब्रेकअप के रूप में रह सकता है। जबकि द्रव गुणों के आधार पर उपग्रह बूंदों के उत्पादन की भविष्यवाणी की जा सकती है, उनके सटीक स्थान और मात्रा की भविष्यवाणी नहीं की जा सकती है।<ref>{{cite web|last=Singh|first=Gaurav|title=सैटेलाइट ड्रॉप फॉर्मेशन| url=http://myopticaltrek.wordpress.com/water_photograhy/satellite-drops/|accessdate=18 November 2013}}</ref><ref>{{cite journal| last=Henderson|first=D|author2=Pritchard W |author3=Smolka Linda |title=चिपचिपे तरल पदार्थ की एक लटकन बूंद के चुटकी बंद होने पर| journal=Physics of Fluids|date=1997|volume=9|issue=11|doi=10.1063/1.869435|pages=3188|bibcode = 1997PhFl....9.3188H }}</ref>
[[File:Water drop animation enhanced small.gif|thumbnail|पानी एक नल से बहता है, एक बड़ी बूंद और कई उपग्रह बूंदों का उत्पादन करता है।]]उपग्रह बूँदें, जिन्हें माध्यमिक बूंदों के रूप में भी जाना जाता है, बड़ी मुख्य बूंदों के अतिरिक्त थ्रेड ब्रेकअप प्रक्रिया के समय उत्पन्न होने वाली बूँदें हैं। बूंदों का परिणाम तब होता है जब फिलामेंट जिसके द्वारा बड़े द्रव द्रव्यमान से लटकी हुई मुख्य बूंद स्वयं द्रव द्रव्यमान से टूट जाती है। फिलामेंट में निहित द्रव मुख्य बूंद के अलग होने से उस पर लगाए गए रीकोइल गड़बड़ी के कारण एकल द्रव्यमान या ब्रेकअप के रूप में रह सकता है। जबकि द्रव गुणों के आधार पर उपग्रह बूंदों के उत्पादन की भविष्यवाणी की जा सकती है, उनके त्रुटिहीन स्थान और मात्रा की भविष्यवाणी नहीं की जा सकती है।<ref>{{cite web|last=Singh|first=Gaurav|title=सैटेलाइट ड्रॉप फॉर्मेशन| url=http://myopticaltrek.wordpress.com/water_photograhy/satellite-drops/|accessdate=18 November 2013}}</ref><ref>{{cite journal| last=Henderson|first=D|author2=Pritchard W |author3=Smolka Linda |title=चिपचिपे तरल पदार्थ की एक लटकन बूंद के चुटकी बंद होने पर| journal=Physics of Fluids|date=1997|volume=9|issue=11|doi=10.1063/1.869435|pages=3188|bibcode = 1997PhFl....9.3188H }}</ref>
सामान्य तौर पर, माध्यमिक बूंदें एक अवांछित घटना होती हैं, विशेष रूप से उन अनुप्रयोगों में जहां बूंदों का सटीक जमाव महत्वपूर्ण होता है। थ्रेड ब्रेकअप के अंतिम चरणों के पास उपग्रह बूंदों का उत्पादन समस्या की गैर-रैखिक गतिशीलता द्वारा नियंत्रित होता है।
सामान्यतः, माध्यमिक बूंदें एक अवांछित घटना होती हैं, विशेष रूप से उन अनुप्रयोगों में जहां बूंदों का त्रुटिहीन जमाव महत्वपूर्ण होता है। थ्रेड ब्रेकअप के अंतिम चरणों के पास उपग्रह बूंदों का उत्पादन समस्या की गैर-रैखिक गतिशीलता द्वारा नियंत्रित होता है।


== उदाहरण ==
== उदाहरण ==
[[File:Filtering of honey.jpg|thumbnail|left|शहद की चिपचिपाहट इतनी बड़ी होती है कि सतह की सभी गड़बड़ियों को नम कर देती है जिससे धागे बूंदों में टूट जाते हैं।]]द्रव के धागों के टूटने के अनेक उदाहरण दैनिक जीवन में मौजूद हैं। यह सबसे आम तरल पदार्थ यांत्रिकी घटनाओं में से एक है जो एक अनुभव करता है और इस तरह अधिकांश प्रक्रिया को थोड़ा विचार देते हैं।
[[File:Filtering of honey.jpg|thumbnail|left|शहद की चिपचिपाहट इतनी बड़ी होती है कि सतह की सभी गड़बड़ियों को नम कर देती है जिससे धागे बूंदों में टूट जाते हैं।]]द्रव के धागों के टूटने के अनेक उदाहरण दैनिक जीवन में उपस्तिथ हैं। यह सबसे आम तरल पदार्थ यांत्रिकी घटनाओं में से एक है जो एक अनुभव करता है और इस तरह अधिकांश प्रक्रिया को थोड़ा विचार देते हैं।


=== एक नल से प्रवाह ===
=== एक नल से प्रवाह ===


पानी टपकना तो आए दिन की बात है। जैसे ही नल से पानी निकलता है, नल से जुड़ा रेशा नीचे की ओर झुकना शुरू हो जाता है, अंततः इस बिंदु तक कि मुख्य बूंद सतह से अलग हो जाती है।<ref name="लिक्विड जेट ब्रेकअप">{{Cite web|date=2012-12-12|title=लिक्विड जेट ब्रेकअप|url=https://myopticaltrek.wordpress.com/water-dripping-from-faucet/|access-date=2021-09-29|website=The Optical Trek|language=en}}</ref> ब्रेकअप को रोकने के लिए फिलामेंट पर्याप्त तेजी से नल से पीछे नहीं हट सकता है और इस तरह कई छोटे उपग्रह बूंदों में बिखर जाता है।<ref name="Liquid Jet Breakup"/>
पानी टपकना तो आए दिन की बात है। जैसे ही नल से पानी निकलता है, नल से जुड़ा रेशा नीचे की ओर झुकना प्रारंभ हो जाता है, अंततः इस बिंदु तक कि मुख्य बूंद सतह से अलग हो जाती है।<ref name="लिक्विड जेट ब्रेकअप">{{Cite web|date=2012-12-12|title=लिक्विड जेट ब्रेकअप|url=https://myopticaltrek.wordpress.com/water-dripping-from-faucet/|access-date=2021-09-29|website=The Optical Trek|language=en}}</ref> ब्रेकअप को रोकने के लिए फिलामेंट पर्याप्त तेजी से नल से पीछे नहीं हट सकता है और इस तरह कई छोटे उपग्रह बूंदों में बिखर जाता है।<ref name="Liquid Jet Breakup"/>




Line 141: Line 141:


===शहद की बूंदे===
===शहद की बूंदे===
शहद इतना चिपचिपा होता है कि सतह की गड़बड़ी जो ब्रेकअप की ओर ले जाती है, शहद के धागों से लगभग पूरी तरह से भीग जाती है। इसके परिणामस्वरूप अलग-अलग बूंदों के बजाय शहद के लंबे तंतुओं का उत्पादन होता है।
शहद इतना चिपचिपा होता है कि सतह की गड़बड़ी जो ब्रेकअप की ओर ले जाती है, शहद के धागों से लगभग पूरी तरह से भीग जाती है। इसके परिणामस्वरूप अलग-अलग बूंदों के अतिरिक्त शहद के लंबे तंतुओं का उत्पादन होता है।
{{clear}}
{{clear}}



Revision as of 13:34, 22 April 2023

फ्लुइड थ्रेड ब्रेकअप वह प्रक्रिया है जिसके द्वारा द्रव का एक द्रव्यमान कई छोटे द्रव द्रव्यमानों में टूट जाता है। इस प्रक्रिया को तरल पदार्थ के बड़े पिंडों के बीच पतले, धागे जैसे क्षेत्रों को बनाने वाले द्रव द्रव्यमान के बढ़ाव की विशेषता है। धागे जैसे क्षेत्र तब तक पतले होते रहते हैं जब तक वे टूट नहीं जाते, जिससे तरल पदार्थ की अलग-अलग बूंदें बन जाती हैं।

थ्रेड ब्रेकअप तब होता है जब वैक्यूम में दो तरल पदार्थ या तरल पदार्थ सतह ऊर्जा के साथ एक मुक्त सतह बनाते हैं। यदि तरल पदार्थ के आयतन को समाहित करने के लिए आवश्यक न्यूनतम से अधिक सतह क्षेत्र उपस्तिथ है, तो सिस्टम में सतही ऊर्जा की अधिकता है। एक प्रणाली जो न्यूनतम ऊर्जा स्थिति में नहीं है, पुनर्व्यवस्थित करने का प्रयास करेगी जिससे कि निम्न ऊर्जा स्थिति की ओर बढ़ने के लिए, सतह क्षेत्र को कम करके प्रणाली की सतह ऊर्जा को कम करने के लिए तरल पदार्थ को छोटे द्रव्यमान में विभाजित किया जा सके। थ्रेड ब्रेकअप प्रक्रिया का त्रुटिहीन परिणाम सतह के तनाव, चिपचिपाहट, घनत्व और ब्रेकअप से गुजरने वाले थ्रेड के व्यास पर निर्भर करता है।

इतिहास

बूंदों के गठन की परीक्षा का एक लंबा इतिहास है, जो लियोनार्डो दा विंसी के काम के लिए सबसे पहले खोजा जा सकता है जिन्होंने लिखा था:[1]

"How water has tenacity in itself and cohesion between its particles. […] This is seen in the process of a drop becoming detached from the remainder, this remainder being stretched out as far as it can through the weight of the drop which is extending it; and after the drop has been severed from this mass the mass returns upwards with a movement contrary to the nature of heavy things."

इस प्रकार उन्होंने गुरुत्वाकर्षण के लिए बूंदों के गिरने और पानी के अणुओं के सामंजस्य के लिए थ्रेड ब्रेकअप को चलाने वाले तंत्र को सही ढंग से जिम्मेदार ठहराया।

फ्लुइड थ्रेड ब्रेकअप का पहला सही विश्लेषण थॉमस यंग (वैज्ञानिक) द्वारा गुणात्मक रूप से और गणितीय रूप से पियरे-साइमन लाप्लास द्वारा 1804 और 1805 के बीच निर्धारित किया गया था।[2][3] उन्होंने थ्रेड ब्रेकअप के चालक को सतह तनाव गुणों के लिए सही ढंग से जिम्मेदार ठहराया। इसके अतिरिक्त, उन्होंने द्रव धागे में अतिरिक्त दबाव के निर्माण में माध्य वक्रता के महत्व को भी घटाया। अपने विश्लेषण के माध्यम से, उन्होंने दिखाया कि सतही तनाव दो तरह से व्यवहार कर सकता है: एक लोचदार तंत्र जो एक लटकी हुई छोटी बूंद का समर्थन कर सकता है और केशिका दबाव के कारण एक दबाव तंत्र जो थ्रेड ब्रेकअप को बढ़ावा देता है।

1820 के दशक में, इतालवी भौतिक विज्ञानी और हाइड्रोलिक इंजीनियर जॉर्ज बिडोन ने विभिन्न आकृतियों के छिद्रों से निकलने वाले पानी के जेट के विरूपण का अध्ययन किया।[4] फ़ेलिक्स सैवर्ट ने 1833 में प्रायोगिक कार्य के साथ, थ्रेड ब्रेकअप को मापने के लिए स्ट्रोबोस्कोपिक तकनीक का उपयोग किया।[5] उन्होंने कहा कि ब्रेकअप एक सहज प्रक्रिया है, जो बिना किसी बाहरी उत्तेजना के होती है। इस कार्य ने उन्हें यह निर्धारित करने की अनुमति दी कि बूंदों को एक टैंक से बहने वाले जेट से उत्पन्न किया जाता है, जो नोक त्रिज्या के व्युत्क्रमानुपाती और टैंक में दबाव के समानुपाती होता है। इन अवलोकनों ने जोसेफ पठार के काम को सुगम बनाया जिसने जेट ब्रेकअप और सतह ऊर्जा के बीच संबंध स्थापित किया।[6] पठार द्रव धागे पर सबसे अस्थिर अशांति तरंगदैर्ध्य निर्धारित करने में सक्षम था, जिसे बाद में जॉन विलियम स्ट्रट, तीसरे बैरन रेले द्वारा जेट गतिशीलता के लिए खाते में संशोधित किया गया था।

चूंकि सतही गड़बड़ी बड़ी हो जाती है, गैर-रैखिक सिद्धांत को लागू किया जाना चाहिए। हेनरिक गुस्ताव मैग्नस और फिलिप लेनार्ड द्वारा प्रयोगात्मक रूप से बड़ी गड़बड़ी वाले जेट के व्यवहार की जांच की गई।[7][8] उनके प्रयोगों ने उच्च गति फोटोग्राफी की शुरूआत के माध्यम से बड़ी मुख्य बूंद के अतिरिक्त उत्पन्न होने वाली उपग्रह बूंदों, बूंदों को चिह्नित करने में मदद की। थ्रेड ब्रेकअप के प्रायोगिक विश्लेषण के लिए हाई स्पीड फोटोग्राफी अब मानक विधि है।

अधिक कम्प्यूटेशनल शक्ति के आगमन के साथ, संख्यात्मक सिमुलेशन प्रयोगात्मक प्रयासों को तरल टूटने को समझने के मुख्य साधन के रूप में बदलना प्रारंभ कर दिया है। चूँकि, इसके जटिल व्यवहार के कारण कई तरल पदार्थों की मुक्त सतह को त्रुटिहीन रूप से ट्रैक करने में कठिनाई बनी हुई है। कम और उच्च चिपचिपाहट के तरल पदार्थों के साथ सबसे अधिक सफलता मिली है जहां सीमा तत्व विधि को दोनों स्थितियों के लिए ग्रीन के कार्य के रूप में नियोजित किया जा सकता है। डम्मरमुथ और यू ने इस विधि द्वारा इरोटेशनल, इनविसिड प्रवाह की विशेषता बताई जैसा कि शुल्केस ने किया था।[9][10] यंगरेन और एक्रिवोस ने उच्च चिपचिपाहट वाले तरल में बुलबुले के व्यवहार पर विचार किया।[11] स्टोन और लील ने व्यक्तिगत बूंदों की गतिशीलता पर विचार करने के लिए इस प्रारंभिक कार्य का विस्तार किया।[12] मिडिलिंग विस्कोसिटी के तरल पदार्थों के लिए, नेवियर-स्टोक्स समीकरणों का उपयोग करके पूर्ण सिमुलेशन की आवश्यकता होती है, जिसमें मुक्त सतह जैसे स्तर-सेट और द्रव की मात्रा का निर्धारण किया जाता है। संपूर्ण नेवियर-स्टोक्स सिमुलेशन के साथ सबसे पहला काम Fromm द्वारा किया गया था जो इंकजेट तकनीक पर केंद्रित था।[13] इस तरह के अनुकरण अनुसंधान का एक सक्रिय क्षेत्र बना हुआ है।

थ्रेड ब्रेकअप का भौतिक तंत्र

एक तरल पदार्थ के धागे या जेट के बड़े द्रव्यमान से छोटे द्रव्यमान तक टूटने की प्रक्रिया।

तरल धागे या जेट में टूटने की प्रक्रिया द्रव की मुक्त सतह पर छोटे गड़बड़ी के विकास से प्रारंभ होती है। इसे द्रव धागा टूटने के रैखिक सिद्धांत के रूप में जाना जाता है। ये गड़बड़ी हमेशा उपस्तिथ होती है और मुक्त सतह पर कतरनी तनाव में द्रव कंटेनर या गैर-एकरूपता के कंपन सहित कई स्रोतों से उत्पन्न हो सकती है। सामान्यतः, ये गड़बड़ी एक मनमाना रूप ले लेती है और इस प्रकार सख्ती से विचार करना कठिनाई होता है। इसलिए धागे की सतह पर विभिन्न एकल तरंग दैर्ध्य के गड़बड़ी में मनमाने ढंग से गड़बड़ी को विघटित करने के लिए गड़बड़ी का फूरियर रूपांतरण करना सहायक होता है। ऐसा करने में, यह किसी को यह निर्धारित करने की अनुमति देता है कि गड़बड़ी की कौन सी तरंग दैर्ध्य बढ़ेगी और जो समय के साथ क्षय हो जाएगी।[14]

तरंगदैर्घ्य की वृद्धि और क्षय दबाव में परिवर्तन की जांच करके निर्धारित किया जा सकता है, तरल पदार्थ के आंतरिक भाग पर एक गड़बड़ी तरंगदैर्ध्य लगाया जाता है। धागे के आंतरिक दबाव में परिवर्तन केशिका दबाव से प्रेरित होता है क्योंकि धागे की मुक्त सतह विकृत होती है। केशिका दबाव सतह पर दिए गए स्थान पर इंटरफ़ेस के औसत वक्रता का एक कार्य है, जिसका अर्थ है कि दबाव वक्रता की दो त्रिज्याओं पर निर्भर है जो सतह का आकार देते हैं। ब्रेकअप के दौर से गुजर रहे द्रव धागे के पतले क्षेत्र के भीतर, वक्रता का पहला त्रिज्या गाढ़े क्षेत्र में वक्रता की त्रिज्या से छोटा होता है, जिससे एक दबाव प्रवणता होती है जो तरल को पतले से गाढ़े क्षेत्रों में ले जाती है। चूंकि, गोलमाल प्रक्रिया के लिए वक्रता की दूसरी त्रिज्या महत्वपूर्ण बनी हुई है। कुछ गड़बड़ी तरंग दैर्ध्य के लिए, वक्रता के दूसरे त्रिज्या का प्रभाव वक्रता के पहले त्रिज्या के दबाव के प्रभाव को दूर कर सकता है, पतले क्षेत्रों की तुलना में मोटे क्षेत्रों में एक बड़ा दबाव उत्पन्न करता है। यह द्रव को पतले क्षेत्रों की ओर वापस धकेल देगा और धागे को उसके मूल, अबाधित आकार में लौटा देगा। चूंकि, अन्य परेशानी तरंग दैर्ध्य के लिए, वक्रता के दूसरे त्रिज्या द्वारा प्रेरित केशिका दबाव वक्रता के पहले त्रिज्या को मजबूत करेगा। यह पतले से गाढ़े क्षेत्रों में द्रव को चलाएगा और थ्रेड ब्रेकअप को और बढ़ावा देगा।

विखंडन प्रक्रिया से गुजर रहे धागे में वक्रता की त्रिज्या। नीला वक्रता की पहली त्रिज्या का प्रतिनिधित्व करता है और पतले और गाढ़े स्थानों पर वक्रता की दूसरी त्रिज्या को लाल करता है।

गड़बड़ी की तरंग दैर्ध्य इसलिए यह निर्धारित करने में महत्वपूर्ण पैरामीटर है कि द्रव के छोटे द्रव्यमान में दिए गए तरल पदार्थ का धागा टूट जाएगा या नहीं। क्षोभ तरंगदैर्घ्य की कठोर गणितीय परीक्षा से एक संबंध प्रदर्शित हो सकता है कि कौन से तरंगदैर्घ्य किसी दिए गए धागे के लिए स्थिर हैं और साथ ही कौन से क्षोभ तरंगदैर्घ्य सबसे तेजी से बढ़ेंगे। तरल पदार्थ के धागे के टूटने से उत्पन्न द्रव द्रव्यमान का आकार गड़बड़ी के तरंग दैर्ध्य द्वारा अनुमानित किया जा सकता है जो सबसे तेजी से बढ़ता है।

गैर रेखीय व्यवहार

जबकि रैखिक सिद्धांत मुक्त सतह पर छोटी गड़बड़ी के विकास पर विचार करने में उपयोगी होता है, जब गड़बड़ी एक महत्वपूर्ण आयाम के लिए बढ़ती है, गैर-रैखिक प्रभाव गोलमाल व्यवहार पर हावी होने लगते हैं। धागे का गैर-रैखिक व्यवहार इसके अंतिम गोलमाल को नियंत्रित करता है और अंततः परिणामी द्रव द्रव्यमान के अंतिम आकार और संख्या को निर्धारित करता है।

स्व-समानता के उपयोग के माध्यम से गैर-रैखिकता पर कब्जा कर लिया गया है। स्व-समानता यह मानती है कि तरल धागे का व्यवहार शून्य के करीब पहुंचने पर द्रव धागे के व्यवहार के समान होता है जब इसमें कुछ परिमित त्रिज्या होती है। गैर-रेखीय थ्रेड व्यवहार की विस्तृत समझ के लिए उपयुक्त स्केलिंग व्यवहार उत्पन्न करने के लिए स्पर्शोन्मुख विस्तार के उपयोग की आवश्यकता होती है। विशेष परिस्थितियों में प्रासंगिक बलों के आधार पर द्रव थ्रेड्स के गैर-रैखिक व्यवहार के लिए कई समाधान पाए गए हैं।[15][16][17]


महत्वपूर्ण पैरामीटर

कैसे एक द्रव धागा या जेट ब्रेकअप से गुजरता है, यह कई मापदंडों द्वारा नियंत्रित होता है, जिनमें रेनॉल्ड्स नंबर, वेबर नंबर, ओहनेसोरगे नंबर और डिस्टर्बेंस yahoo सम्मिलित हैं। जबकि ये संख्या द्रव यांत्रिकी में आम हैं, स्केल के रूप में चुने गए पैरामीटर थ्रेड ब्रेकअप के लिए उपयुक्त होना चाहिए। सबसे अधिक बार चुना जाने वाला लम्बाई का पैमाना द्रव धागे की त्रिज्या है, जबकि वेग को बल्क द्रव गति के वेग के रूप में लिया जाता है। चूँकि, ये पैमाने विचाराधीन समस्या की विशेषताओं के आधार पर बदल सकते हैं।

रेनॉल्ड्स संख्या धागे के भीतर जड़ता और चिपचिपा प्रभाव के बीच का अनुपात है। बड़ी रेनॉल्ड्स संख्या के लिए, धागे की गति का प्रभाव चिपचिपा अपव्यय से कहीं अधिक होता है। चिपचिपाहट का केवल धागे पर न्यूनतम प्रभाव पड़ता है। छोटे रेनॉल्ड्स नंबरों के लिए, चिपचिपा अपव्यय बड़ा होता है और किसी भी गड़बड़ी को धागे से तेजी से भिगोया जाता है।

वेबर संख्या धागे के भीतर जड़ता और सतह तनाव प्रभाव के बीच का अनुपात है। जब वेबर संख्या बड़ी होती है, तो धागे की जड़ता बड़ी होती है जो सतह के तनाव की झुकाव वाली सतहों को समतल करने की प्रवृत्ति का विरोध करती है। छोटे वेबर नंबरों के लिए, सतह की गड़बड़ी के कारण केशिका दबाव में परिवर्तन बड़ा होता है और सतह तनाव थ्रेड व्यवहार पर हावी होता है।

ओहनेसॉर्ज संख्या धागे के भीतर चिपचिपाहट और सतह तनाव प्रभाव के बीच का अनुपात है। जैसा कि यह जड़ता के प्रभाव और वेग पैमाने की आवश्यकता को समाप्त करता है, रेनॉल्ड्स और वेबर संख्या के अतिरिक्त व्यक्तिगत रूप से ओहनेसॉर्ज संख्या के संदर्भ में स्केलिंग संबंधों को व्यक्त करना अधिक सुविधाजनक होता है।

गड़बड़ी तरंगदैर्ध्य जेट की सतह पर गड़बड़ी की विशेषता लंबाई है, यह मानते हुए कि किसी भी मनमाने ढंग से गड़बड़ी को फूरियर के माध्यम से इसके संवैधानिक घटकों में परिवर्तित किया जा सकता है। गड़बड़ी की तरंग दैर्ध्य यह निर्धारित करने में महत्वपूर्ण है कि क्या कोई विशेष अशांति समय पर बढ़ेगी या क्षय हो जाएगी।

विशेष मामले

इनविसिड तरल पदार्थों की रैखिक स्थिरता

कम चिपचिपाहट वाले तरल पदार्थों की रैखिक स्थिरता पहली बार 1873 में पठार द्वारा प्राप्त की गई थी।[14]चूंकि, उनके समाधान को पठार-रेले अस्थिरता के रूप में जाना जाता है। रेले-पठार अस्थिरता जॉन विलियम स्ट्रट, तीसरे बैरन रेले द्वारा सिद्धांत के विस्तार के कारण चिपचिपाहट के साथ तरल पदार्थ सम्मिलित करने के लिए। रेले-पठार अस्थिरता को अधिकांशतः हाइड्रोडायनामिक स्थिरता के साथ-साथ गड़बड़ी विश्लेषण के लिए एक परिचयात्मक स्थितियोंके रूप में उपयोग किया जाता है।

पठार ने द्रव के एक धागे की स्थिरता पर विचार किया जब केवल जड़त्वीय और सतही तनाव प्रभाव उपस्तिथ थे। मुक्त सतह पर अपने संवैधानिक हार्मोनिक्स/तरंगदैर्ध्य में मनमाना अशांति को विघटित करके, वह गड़बड़ी के स्थितियोंमें जेट की स्थिरता के लिए एक शर्त प्राप्त करने में सक्षम था:

जहां ω क्षोभ की वृद्धि दर है, σ तरल पदार्थ का सतही तनाव है, k क्षोभ की तरंग संख्या है, ρ द्रव घनत्व है, a अविक्षुब्ध द्रव की प्रारंभिक त्रिज्या है, और I का संशोधित बेसल फलन है पहली तरह। तरंग संख्या के एक फलन के रूप में विकास दर की गणना करके, कोई यह निर्धारित कर सकता है कि सबसे तेजी से बढ़ने वाली अशांति तरंगदैर्ध्य पर होती है:

द्रव धागे की त्रिज्या बढ़ने पर अधिकतम अस्थिरता की तरंग दैर्ध्य बढ़ जाती है। महत्वपूर्ण रूप से, अस्थिर मोड केवल तभी संभव होते हैं जब:


चिपचिपे तरल पदार्थों की रैखिक स्थिरता

रेनॉल्ड्स और बाद में टोमोटिका ने चिपचिपे धागों की रैखिक स्थिरता पर विचार करने के लिए पठार के काम को बढ़ाया। रेले ने चिपचिपाहट के एक चिपचिपे धागे की स्थिरता के लिए हल किया बाहरी द्रव की उपस्थिति के बिना।[18] टॉमोकिटा ने अपनी चिपचिपाहट के साथ बाहरी तरल पदार्थ की उपस्थिति में द्रव धागे की स्थिरता के लिए हल किया .[19] उन्होंने तीन स्थितियों पर विचार किया जहां द्रव धागे की चिपचिपाहट बाहरी वातावरण की तुलना में बहुत अधिक थी, बाहरी वातावरण की चिपचिपाहट द्रव धागे की तुलना में बहुत अधिक थी, और सामान्य मामला जहां तरल पदार्थ मनमानी चिपचिपाहट के होते हैं।

द्रव धागा अत्यधिक चिपचिपा

सीमित स्थितियोंके लिए जहां द्रव धागा बाहरी वातावरण की तुलना में बहुत अधिक चिपचिपा होता है, बाहरी वातावरण की चिपचिपाहट पूरी तरह से विकास दर से गिर जाती है। विकास दर इस प्रकार केवल धागे की प्रारंभिक त्रिज्या, गड़बड़ी तरंग दैर्ध्य, धागे की सतह के तनाव और धागे की चिपचिपाहट का एक कार्य बन जाती है।

इसे प्लॉट करने पर, यह पता चलता है कि सबसे लंबी तरंग दैर्ध्य सबसे अस्थिर होती हैं। महत्वपूर्ण रूप से, कोई यह नोट कर सकता है कि द्रव धागे की चिपचिपाहट इस बात को प्रभावित नहीं करती है कि कौन सी तरंग दैर्ध्य स्थिर होगी। चिपचिपापन केवल यह कम करने के लिए कार्य करता है कि समय के साथ कितनी तेजी से एक दी गई गड़बड़ी बढ़ेगी या क्षय होगी।

यह मामला कब लागू होगा इसके उदाहरण हैं जब लगभग कोई भी तरल वायु वातावरण में थ्रेड/जेट ब्रेकअप से गुजरता है।

बाहरी द्रव अत्यधिक चिपचिपा

सीमित स्थितियोंके लिए जहां द्रव धागे का बाहरी वातावरण धागे की तुलना में बहुत अधिक चिपचिपा होता है, द्रव धागे की चिपचिपाहट पूरी तरह से गड़बड़ी विकास दर से गिरती है। इस प्रकार विकास दर केवल धागे की प्रारंभिक त्रिज्या, गड़बड़ी की तरंग दैर्ध्य, धागे की सतह के तनाव, बाहरी वातावरण की चिपचिपाहट और दूसरी तरह के दूसरे क्रम के बेसेल कार्यों का एक कार्य बन जाती है।

यदि विकास दर को क्षोभ तरंगदैर्घ्य के फलन के रूप में आलेखित किया जाए, तो पाया जाएगा कि सबसे अस्थिर तरंगदैर्घ्य फिर से सबसे लंबी तरंगदैर्घ्य पर होते हैं और बाहरी वातावरण की श्यानता केवल यह कम करने के लिए कार्य करेगी कि क्षोभ कितनी तेजी से बढ़ेगा या समय में क्षय।

यह मामला कब लागू होगा इसके उदाहरण हैं जब गैस के बुलबुले तरल में प्रवेश करते हैं या जब पानी शहद में गिर जाता है।

सामान्य मामला - मनमाना चिपचिपापन अनुपात

दो चिपचिपा तरल पदार्थों के लिए सामान्य मामला सीधे हल करना अधिक कठिन होता है। टोमोटिका ने अपना समाधान इस प्रकार व्यक्त किया:

कहाँ के रूप में परिभाषित किया गया था: