फ्लुइड थ्रेड ब्रेकअप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 135: Line 135:
===शहद की बूंदे===
===शहद की बूंदे===
शहद इतना चिपचिपा होता है कि सतह की त्रुटि जो ब्रेकअप की ओर ले जाती है, इस शहद के धागों से लगभग पूर्ण रूप से भीग जाती है। इसके परिणामस्वरूप अलग-अलग बूंदों के अतिरिक्त शहद के लंबे तंतुओं का उत्पादन होता है।
शहद इतना चिपचिपा होता है कि सतह की त्रुटि जो ब्रेकअप की ओर ले जाती है, इस शहद के धागों से लगभग पूर्ण रूप से भीग जाती है। इसके परिणामस्वरूप अलग-अलग बूंदों के अतिरिक्त शहद के लंबे तंतुओं का उत्पादन होता है।
==संदर्भ==
==संदर्भ==
<references />
<references />
[[Category: द्रव गतिशील अस्थिरता]]


[[Category: Machine Translated Page]]
[[Category:CS1 maint]]
[[Category:Created On 18/04/2023]]
[[Category:Created On 18/04/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with reference errors]]
[[Category:Templates Vigyan Ready]]
[[Category:द्रव गतिशील अस्थिरता]]

Revision as of 12:45, 24 April 2023

द्रव धागा का टूटना वह प्रक्रिया है जिसके द्वारा द्रव का द्रव्यमान कई छोटे द्रव द्रव्यमानों में टूट जाता है। इस प्रक्रिया को तरल पदार्थ के बड़े पिंडों के बीच पतले, धागे जैसे क्षेत्रों को बनाने वाले द्रव द्रव्यमान के बढ़ाव की विशेषता है। धागे के इस प्रकार के क्षेत्र तब तक पतले होते रहते हैं जब तक वे टूट नहीं जाते हैं, इस कारण तरल पदार्थ की अलग-अलग बूंदें बन जाती हैं।

धागे का टूटना तब होता है जब वैक्यूम में दो तरल पदार्थ या तरल पदार्थ सतह ऊर्जा के साथ यह मुक्त सतह बनाती हैं। यदि तरल पदार्थ के आयतन को समाहित करने के लिए आवश्यक न्यूनतम से अधिक सतह क्षेत्र उपस्तिथ है, तो इस प्रणाली में सतही ऊर्जा की अधिकता होती है। किसी प्रणाली को जो न्यूनतम ऊर्जा स्थिति में नहीं होती है, पुनर्व्यवस्थित करने का प्रयास करती हैं जिससे कि निम्न ऊर्जा स्थिति की ओर बढ़ने के लिए, सतह क्षेत्र को कम करके प्रणाली की सतह ऊर्जा को कम करने के लिए तरल पदार्थ को छोटे द्रव्यमान में विभाजित किया जा सकता हैं। इस प्रकार धागे का टूटने की प्रक्रिया का त्रुटिहीन परिणाम सतह के तनाव, चिपचिपाहट, घनत्व और ब्रेकअप से गुजरने वाले थ्रेड के व्यास पर निर्भर करता है।

इतिहास

बूंदों के गठन की परीक्षा का लंबा इतिहास है, जो लियोनार्डो दा विंसी के कार्य के लिए सबसे पहले खोजा जा सकता है जिन्होंने लिखा था:[1]

"कैसे पानी अपने आप में तप और उसके कणों के बीच सामंजस्य है। [...] यह एक बूंद के शेष से अलग होने की प्रक्रिया में देखा जाता है, यह शेष बूंद के वजन के माध्यम से जितना दूर हो सकता है उतना फैला हुआ है जो बढ़ रहा है यह; और इस द्रव्यमान से बूंद के अलग हो जाने के बाद द्रव्यमान भारी चीजों की प्रकृति के विपरीत गति के साथ ऊपर की ओर लौटता है।

इस प्रकार उन्होंने गुरुत्वाकर्षण के लिए बूंदों के गिरने और पानी के अणुओं के सामंजस्य के लिए धागे का टूटना को चलाने वाले तंत्र को सही ढंग से उत्तरदायी ठहराया गया हैं।

द्रव धागा का टूटना का पहला सही विश्लेषण थॉमस यंग (वैज्ञानिक) द्वारा गुणात्मक रूप से और गणितीय रूप से पियरे-साइमन लाप्लास द्वारा 1804 और 1805 के बीच निर्धारित किया गया था।[2][3] उन्होंने धागे का टूटना के चालक को सतह तनाव गुणों के लिए सही ढंग से उत्तरदायी ठहराया हैं। इसके अतिरिक्त उन्होंने द्रव धागे में अतिरिक्त दबाव के निर्माण में माध्य वक्रता के महत्व को भी घटाया गया था। अपने विश्लेषण के माध्यम से, उन्होंने दिखाया कि सतही तनाव दो तरह से व्यवहार कर सकता है: इस प्रकार के लोचदार तंत्र जो लटकी हुई छोटी बूंद का समर्थन कर सकता है और केशिका दबाव के कारण एक दबाव तंत्र जो धागे का टूटना को बढ़ावा देता है।

1820 के दशक में, इतालवी भौतिक विज्ञानी और हाइड्रोलिक इंजीनियर जॉर्ज बिडोन ने विभिन्न आकृतियों के छिद्रों से निकलने वाले पानी के जेट के विरूपण का अध्ययन किया।[4] फ़ेलिक्स सैवर्ट ने 1833 में प्रायोगिक कार्य के साथ, धागे का टूटना को मापने के लिए स्ट्रोबोस्कोपिक तकनीक का उपयोग किया था।[5]

उन्होंने कहा कि ब्रेकअप एक सहज प्रक्रिया है, जो बिना किसी बाहरी उत्तेजना के होती है। इस कार्य ने उन्हें यह निर्धारित करने की अनुमति दी कि बूंदों को एक टैंक से बहने वाले जेट से उत्पन्न किया जाता है, जो नोक त्रिज्या के व्युत्क्रमानुपाती और टैंक में दबाव के समानुपाती होता है। इन अवलोकनों ने जोसेफ पठार के कार्य को सुगम बनाया जिसने जेट ब्रेकअप और सतह ऊर्जा के बीच संबंध स्थापित किया था।[6] पठार द्रव धागे पर सबसे अस्थिर अशांति तरंगदैर्ध्य निर्धारित करने में सक्षम था, जिसे बाद में जॉन विलियम स्ट्रट, तीसरे बैरन रेले द्वारा जेट गतिशीलता के लिए खाते में संशोधित किया गया था।

चूंकि सतही त्रुटि बड़ी हो जाती है, गैर-रैखिक सिद्धांत को लागू किया जाना चाहिए। हेनरिक गुस्ताव मैग्नस और फिलिप लेनार्ड द्वारा प्रयोगात्मक रूप से बड़ी त्रुटि वाले जेट के व्यवहार की जांच की गई।[7][8] उनके प्रयोगों ने उच्च गति फोटोग्राफी की शुरूआत के माध्यम से बड़ी मुख्य बूंद के अतिरिक्त उत्पन्न होने वाली उपग्रह बूंदों, बूंदों को चिह्नित करने में मदद की। धागे का टूटना के प्रायोगिक विश्लेषण के लिए हाई स्पीड फोटोग्राफी अब मानक विधि है।

अधिक कम्प्यूटेशनल शक्ति के आगमन के साथ, संख्यात्मक सिमुलेशन प्रयोगात्मक प्रयासों को तरल टूटने को समझने के मुख्य साधन के रूप में परिवर्तन करना प्रारंभ कर दिया है। चूँकि, इसके जटिल व्यवहार के कारण कई तरल पदार्थों की मुक्त सतह को त्रुटिहीन रूप से ट्रैक करने में कठिनाई बनी हुई है। इस प्रकार कम और उच्च चिपचिपाहट के तरल पदार्थों के साथ सबसे अधिक सफलता मिली है जहां सीमा तत्व विधि को दोनों स्थितियों के लिए ग्रीन के कार्य के रूप में नियोजित किया जा सकता है। डम्मरमुथ और यू ने इस विधि द्वारा इरोटेशनल, इनविसिड प्रवाह की विशेषता बताई जैसा कि शुल्केस ने किया था।[9][10] यंगरेन और एक्रिवोस ने उच्च चिपचिपाहट वाले तरल में बुलबुले के व्यवहार पर विचार किया हैं।[11] स्टोन और लील ने व्यक्तिगत बूंदों की गतिशीलता पर विचार करने के लिए इस प्रारंभिक कार्य का विस्तार किया हैं।[12] मिडिलिंग विस्कोसिटी के तरल पदार्थों के लिए, नेवियर-स्टोक्स समीकरणों का उपयोग करके पूर्ण सिमुलेशन की आवश्यकता होती है, जिसमें मुक्त सतह जैसे स्तर-सेट और द्रव की मात्रा का निर्धारण किया जाता है। संपूर्ण नेवियर-स्टोक्स सिमुलेशन के साथ सबसे पहला कार्य एम के द्वारा किया गया था जो इंकजेट तकनीक पर केंद्रित था।[13] इस प्रकार के अनुकरण अनुसंधान का सक्रिय क्षेत्र बना है।

धागे का टूटना का भौतिक तंत्र

तरल पदार्थ के धागे या जेट के बड़े द्रव्यमान से छोटे द्रव्यमान तक टूटने की प्रक्रिया हैं।

तरल धागे या जेट में टूटने की प्रक्रिया द्रव की मुक्त सतह पर छोटी सी त्रुटि के विकास से प्रारंभ होती है। इसे द्रव धागा टूटने के रैखिक सिद्धांत के रूप में जाना जाता है। ये त्रुटि हमेशा उपस्तिथ होती है और मुक्त सतह पर कतरनी तनाव में द्रव कंटेनर या गैर-एकरूपता के कंपन सहित कई स्रोतों से उत्पन्न हो सकती है। सामान्यतः, ये त्रुटि एक ऐसा रूप ले लेती है और इस प्रकार सख्ती से विचार करना कठिनाई होता है। इसलिए धागे की सतह पर विभिन्न एकल तरंग दैर्ध्य के त्रुटि में मनमाने ढंग से त्रुटि को विघटित करने के लिए त्रुटि का फूरियर रूपांतरण करना सहायक होता है। ऐसा करने में, यह किसी को यह निर्धारित करने की अनुमति देता है कि त्रुटि की कौन सी तरंग दैर्ध्य बढ़ेगी और जो समय के साथ क्षय हो जाएगी।[14]

तरंगदैर्घ्य की वृद्धि और क्षय दबाव में परिवर्तन की जांच करके निर्धारित किया जा सकता है, तरल पदार्थ के आंतरिक भाग पर एक त्रुटि तरंगदैर्ध्य लगाया जाता है। इस धागे के आंतरिक दबाव में परिवर्तन केशिका दबाव से प्रेरित होता है क्योंकि धागे की मुक्त सतह विकृत होती है। इस प्रकार केशिका दबाव सतह पर दिए गए स्थान पर इंटरफ़ेस के औसत वक्रता का कार्य है, जिसका अर्थ है कि दबाव वक्रता की दो त्रिज्याओं पर निर्भर है जो सतह का आकार देते हैं। इस प्रकार ब्रेकअप के दौर से गुजर रहे द्रव धागे के पतले क्षेत्र के भीतर, वक्रता का पहला त्रिज्या गाढ़े क्षेत्र में वक्रता की त्रिज्या से छोटा होता है, जिससे इस दबाव प्रवणता होती है जो तरल को पतले से गाढ़े क्षेत्रों में ले जाती है। चूंकि, गोलमाल प्रक्रिया के लिए वक्रता की दूसरी त्रिज्या महत्वपूर्ण बनी हुई है। कुछ त्रुटि तरंग दैर्ध्य के लिए वक्रता के दूसरे त्रिज्या का प्रभाव वक्रता के पहले त्रिज्या के दबाव के प्रभाव को दूर कर सकता है, पतले क्षेत्रों की तुलना में मोटे क्षेत्रों में एक बड़ा दबाव उत्पन्न करता है। यह द्रव को पतले क्षेत्रों की ओर वापस धकेल देगा और धागे को उसके मूल को अबाधित आकार में लौटा देता हैं। चूंकि अन्य परेशानी तरंग दैर्ध्य के लिए, वक्रता के दूसरे त्रिज्या द्वारा प्रेरित केशिका दबाव वक्रता के पहले त्रिज्या को मजबूत करता हैं। यह पतले से गाढ़े क्षेत्रों में द्रव को चलाएगा और धागे का टूटना को और बढ़ावा देता हैं।

विखंडन प्रक्रिया से गुजर रहे धागे में वक्रता की त्रिज्या। नीला वक्रता की पहली त्रिज्या का प्रतिनिधित्व करता है और पतले और गाढ़े स्थानों पर वक्रता की दूसरी त्रिज्या को लाल करता है।

त्रुटि की तरंग दैर्ध्य इसलिए यह निर्धारित करने में महत्वपूर्ण पैरामीटर है कि द्रव के छोटे द्रव्यमान में दिए गए तरल पदार्थ का धागा टूट जाएगा या नहीं इस बात का ध्यान रखा जाता हैं। इस प्रकार क्षोभ तरंगदैर्घ्य की कठोर गणितीय परीक्षा से एक संबंध प्रदर्शित हो सकता है कि कौन से तरंगदैर्घ्य किसी दिए गए धागे के लिए स्थिर हैं और साथ ही कौन से क्षोभ तरंगदैर्घ्य सबसे तेजी से बढ़ते हैं। तरल पदार्थ के धागे के टूटने से उत्पन्न द्रव द्रव्यमान का आकार त्रुटि के तरंग दैर्ध्य द्वारा अनुमानित किया जा सकता है जो सबसे तेजी से बढ़ता है।

गैर रेखीय व्यवहार

जबकि रैखिक सिद्धांत मुक्त सतह पर छोटी त्रुटि के विकास पर विचार करने में उपयोगी होता है, जब त्रुटि एक महत्वपूर्ण आयाम के लिए बढ़ती है, गैर-रैखिक प्रभाव गोलमाल व्यवहार पर हावी होने लगते हैं। धागे का गैर-रैखिक व्यवहार इसके अंतिम गोलमाल को नियंत्रित करता है और अंततः परिणामी द्रव द्रव्यमान के अंतिम आकार और संख्या को निर्धारित करता है।

स्व-समानता के उपयोग के माध्यम से गैर-रैखिकता पर अधिकार कर लिया गया है। स्व-समानता यह मानती है कि तरल धागे का व्यवहार शून्य के समीप पहुंचने पर द्रव धागे के व्यवहार के समान होता है जब इसमें कुछ परिमित त्रिज्या होती है। गैर-रेखीय थ्रेड व्यवहार की विस्तृत समझ के लिए उपयुक्त स्केलिंग व्यवहार उत्पन्न करने के लिए स्पर्शोन्मुख विस्तार के उपयोग की आवश्यकता होती है। विशेष परिस्थितियों में प्रासंगिक बलों के आधार पर द्रव थ्रेड्स के गैर-रैखिक व्यवहार के लिए कई समाधान पाए गए हैं।[15][16][17]

महत्वपूर्ण पैरामीटर

कैसे एक द्रव धागा या जेट ब्रेकअप से गुजरता है, यह कई मापदंडों द्वारा नियंत्रित होता है, जिनमें रेनॉल्ड्स नंबर, वेबर नंबर, ओहनेसोरगे नंबर और डिस्टर्बेंस याहू सम्मिलित हैं। जबकि ये संख्या द्रव यांत्रिकी में आम हैं, स्केल के रूप में चुने गए पैरामीटर धागे का टूटना के लिए उपयुक्त होना चाहिए। सबसे अधिक बार चुना जाने वाला लम्बाई का पैमाना द्रव धागे की त्रिज्या है, जबकि वेग को बल्क द्रव गति के वेग के रूप में लिया जाता है। चूँकि ये पैमाने विचाराधीन समस्या की विशेषताओं के आधार पर परिवर्तित कर सकते हैं।

रेनॉल्ड्स संख्या धागे के भीतर जड़ता और चिपचिपा प्रभाव के बीच का अनुपात है। इस प्रकार बड़ी रेनॉल्ड्स संख्या के लिए, धागे की गति का प्रभाव चिपचिपा अपव्यय से कहीं अधिक होता है। चिपचिपाहट का केवल धागे पर न्यूनतम प्रभाव पड़ता है। इस प्रकार छोटे रेनॉल्ड्स नंबरों के लिए, चिपचिपा अपव्यय बड़ा होता है और किसी भी त्रुटि को धागे से तेजी से भिगोया जाता है।

वेबर संख्या धागे के भीतर जड़ता और सतह तनाव प्रभाव के बीच का अनुपात है। जब वेबर संख्या बड़ी होती है, तो धागे की जड़ता बड़ी होती है जो सतह के तनाव की झुकाव वाली सतहों को समतल करने की प्रवृत्ति का विरोध करती है। छोटे वेबर नंबरों के लिए, सतह की त्रुटि के कारण केशिका दबाव में परिवर्तन बड़ा होता है और सतह तनाव वाले धागे के व्यवहार पर हावी होता है।

ओहनेसॉर्ज संख्या धागे के भीतर चिपचिपाहट और सतह तनाव प्रभाव के बीच का अनुपात है। जैसा कि यह जड़ता के प्रभाव और वेग पैमाने की आवश्यकता को समाप्त करता है, रेनॉल्ड्स और वेबर संख्या के अतिरिक्त व्यक्तिगत रूप से ओहनेसॉर्ज संख्या के संदर्भ में स्केलिंग संबंधों को व्यक्त करना अधिक सुविधाजनक होता है।

त्रुटि तरंगदैर्ध्य जेट की सतह पर त्रुटि की विशेषता लंबाई है, यह मानते हुए कि किसी भी मनमाने ढंग से त्रुटि को फूरियर के माध्यम से इसके संवैधानिक घटकों में परिवर्तित किया जा सकता है। त्रुटि की तरंग दैर्ध्य यह निर्धारित करने में महत्वपूर्ण है कि क्या कोई विशेष अशांति समय पर बढ़ेगी या क्षय हो जाएगी।

विशेष स्थिति

कम चिपचिपाहट वाले तरल पदार्थों की रैखिक स्थिरता

कम चिपचिपाहट वाले तरल पदार्थों की रैखिक स्थिरता पहली बार 1873 में पठार द्वारा प्राप्त की गई थी।[14] चूंकि इसके समाधान को पठार-रेले अस्थिरता के रूप में जाना जाता है। रेले-पठार अस्थिरता जॉन विलियम स्ट्रट, तीसरे बैरन रेले द्वारा सिद्धांत के विस्तार के कारण चिपचिपाहट के साथ तरल पदार्थ सम्मिलित करने के लिए किया जाता हैं। इस प्रकार रेले पठार अस्थिरता को अधिकांशतः हाइड्रोडायनामिक स्थिरता के साथ-साथ त्रुटि विश्लेषण के लिए परिचयात्मक स्थितियोंके रूप में उपयोग किया जाता है।

पठार ने द्रव के एक धागे की स्थिरता पर विचार किया जब केवल जड़त्वीय और सतही तनाव प्रभाव उपस्तिथ थे। मुक्त सतह पर अपने संवैधानिक हार्मोनिक्स/तरंगदैर्ध्य में मनमाना अशांति को विघटित करके, वह त्रुटि के स्थितियोंमें जेट की स्थिरता के लिए एक शर्त प्राप्त करने में सक्षम था:

जहां ω क्षोभ की वृद्धि दर है, σ तरल पदार्थ का सतही तनाव है, k क्षोभ की तरंग संख्या है, ρ द्रव घनत्व है, a अविक्षुब्ध द्रव की प्रारंभिक त्रिज्या है, और I का संशोधित बेसल फलन है। इस प्रकार तरंग संख्या के एक फलन के रूप में विकास दर की गणना करके, कोई यह निर्धारित कर सकता है कि सबसे तेजी से बढ़ने वाली अशांति तरंगदैर्ध्य पर होती है:

द्रव धागे की त्रिज्या बढ़ने पर अधिकतम अस्थिरता की तरंग दैर्ध्य बढ़ जाती है। महत्वपूर्ण रूप से, अस्थिर मोड केवल तभी संभव होते हैं जब:

चिपचिपे तरल पदार्थों की रैखिक स्थिरता

रेनॉल्ड्स और बाद में टोमोटिका ने चिपचिपे धागों की रैखिक स्थिरता पर विचार करने के लिए पठार के कार्य को बढ़ाया जाता हैं। रेले ने चिपचिपाहट के एक चिपचिपे धागे की स्थिरता के लिए हल किया बाहरी द्रव की उपस्थिति के बिना की जाती हैं।[18] इस प्रकार टॉमोकिटा ने अपनी चिपचिपाहट के साथ बाहरी तरल पदार्थ की उपस्थिति में द्रव धागे की स्थिरता के लिए हल किया जाता हैं। [19] उन्होंने तीन स्थितियों पर विचार किया जहां द्रव धागे की चिपचिपाहट बाहरी वातावरण की तुलना में बहुत अधिक थी, इस प्रकार के बाहरी वातावरण की चिपचिपाहट द्रव धागे की तुलना में बहुत अधिक थी, और सामान्य स्थिति जहां तरल पदार्थ मनमानी चिपचिपाहट के होते हैं।

द्रव धागा अत्यधिक चिपचिपा

सीमित स्थितियोंके लिए जहां द्रव धागा बाहरी वातावरण की तुलना में बहुत अधिक चिपचिपा होता है, इस बाहरी वातावरण की चिपचिपाहट पूर्ण रूप से विकास दर से गिर जाती है। विकास दर इस प्रकार केवल धागे की प्रारंभिक त्रिज्या, त्रुटि तरंग दैर्ध्य, धागे की सतह के तनाव और धागे की चिपचिपाहट का एक कार्य बन जाती है।

इसे प्लॉट करने पर, यह पता चलता है कि सबसे लंबी तरंग दैर्ध्य सबसे अस्थिर होती हैं। महत्वपूर्ण रूप से, कोई यह नोट कर सकता है कि द्रव धागे की चिपचिपाहट इस बात को प्रभावित नहीं करती है कि कौन सी तरंग दैर्ध्य स्थिर होगी। इस प्रकार चिपचिपापन केवल यह कम करने के लिए कार्य करता है कि समय के साथ कितनी तेजी से दी गई त्रुटि बढ़ेगी या क्षय होगी।

यह स्थिति कब लागू होगा इसके उदाहरण हैं जब लगभग कोई भी तरल वायु वातावरण में थ्रेड/जेट ब्रेकअप से गुजरता है।

बाहरी द्रव अत्यधिक चिपचिपा

सीमित स्थितियोंके लिए जहां द्रव धागे का बाहरी वातावरण धागे की तुलना में बहुत अधिक चिपचिपा होता है, द्रव धागे की चिपचिपाहट पूरी तरह से त्रुटि विकास दर से गिरती है। इस प्रकार विकास दर केवल धागे की प्रारंभिक त्रिज्या, त्रुटि की तरंग दैर्ध्य, धागे की सतह के तनाव, बाहरी वातावरण की चिपचिपाहट और दूसरी तरह के दूसरे क्रम के बेसेल कार्यों का एक कार्य बन जाती है।

यदि विकास दर को क्षोभ तरंगदैर्घ्य के फलन के रूप में आलेखित किया जाए, तो पाया जाएगा कि सबसे अस्थिर तरंगदैर्घ्य फिर से सबसे लंबी तरंगदैर्घ्य पर होते हैं और बाहरी वातावरण की श्यानता केवल यह कम करने के लिए कार्य करेगी कि क्षोभ कितनी तेजी से बढ़ेगा या समय में क्षय होता हैं।

यह स्थिति कब लागू होगा इसके उदाहरण हैं जब गैस के बुलबुले तरल में प्रवेश करते हैं या जब पानी शहद में गिर जाता है।

सामान्य स्थिति - मनमाना चिपचिपापन अनुपात

दो चिपचिपा तरल पदार्थों के लिए सामान्य स्थिति सीधे हल करना अधिक कठिन होता है। टोमोटिका ने अपना समाधान इस प्रकार व्यक्त किया:

जहाँ के रूप में परिभाषित किया गया था: