युग्म स्पर्शरेखा बंडल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 39: Line 39:
p([f])=\frac {\partial f} {{\partial t} {\partial s}} (0,0)
p([f])=\frac {\partial f} {{\partial t} {\partial s}} (0,0)
</math>
</math>
जहां p को शून्य पर दो-जेट के स्थान में परिभाषित किया जा सकता है क्योंकि केवल f पर निर्भर करता है ताकि शून्य पर दो का आदेश दिया जा सके। हम आवेदन पर विचार करते हैं:
जहां p को शून्य पर दो-जेट के स्थान में परिभाषित किया जा सकता है क्योंकि f पर निर्भर करता है जिससे शून्य पर दो का आदेश दिया जा सके। हम आवेदन पर विचार करते हैं।
:<math>
:<math>
J: J^2_0(\mathbb{R}^2,M) \to J^2_0(\mathbb{R}^2,M) \quad / \quad J([f])=[f \circ \alpha]
J: J^2_0(\mathbb{R}^2,M) \to J^2_0(\mathbb{R}^2,M) \quad / \quad J([f])=[f \circ \alpha]

Revision as of 11:01, 26 April 2023

गणित में, विशेष रूप से अंतर टोपोलॉजी, डबल स्पर्शरेखा बंडल या दूसरा स्पर्शरेखा बंडल (TTM,πTTM,TM) के कुल स्थान को संदर्भित करता है। स्पर्शरेखा बंडल TM का (TM,πTM,M) अलग करने योग्य कई गुना एम .[1] इस लेख में, हम प्रक्षेपण मानचित्रों को उनके डोमेन द्वारा निरूपित करते हैं, उदाहरण के लिए, πTTM : टीटीएम → टीएम। इसके बजाय कुछ लेखक इन नक्शों को उनकी श्रेणियों के अनुसार अनुक्रमित करते हैं, इसलिए उनके लिए उस मानचित्र को π लिखा जाएगाTM.

दूसरा स्पर्शरेखा बंडल कनेक्शन (सदिश बंडल) एवं दूसरे क्रम के साधारण अंतर समीकरणों के अध्ययन में उत्पन्न होता है, यानी, स्प्रे (गणित) | (अर्ध) चिकनी मैनिफोल्ड्स पर स्प्रे संरचनाएं, एवं इसे जेट बंडल के साथ भ्रमित नहीं होना है।

माध्यमिक सदिश बंडल संरचना एवं विहित फ्लिप

चूँकि (TM,πTM,M) स्वयं में सदिश बंडल होता है, इसके स्पर्शरेखा बंडल में द्वितीयक सदिश बंडल संरचना (TTM,(πTM)*,TM), है, जहाँ (πTM)*:TTMTM पुश है। विहित प्रक्षेपण के आगे πTM:TMM. निम्नलिखित में हम निरूपित करते हैं।

एवं संबंधित समन्वय प्रणाली प्रारम्भ करें।

X∈TTM पर द्वितीयक सदिश बंडल संरचना का फाइबर रूप लेता है

डबल स्पर्शरेखा बंडल डबल सदिश बंडल है।

कैनोनिकल फ्लिप[2] सहज इनवोल्यूशन j:TTM→TTM है जो इन सदिश अंतरिक्ष संरचनाओं का इस अर्थ में आदान-प्रदान करता है, कि यह (TTM,πTTM,TM) एवं (TTM,(πTM)*,TM). के मध्य सदिश बंडल समरूपता है। TM पर संबद्ध निर्देशांकों में इसे इस रूप में पढ़ा जाता है।

कैनोनिकल फ्लिप में संपत्ति है कि किसी भी f: 'R2' → M के लिए

जहां s एवं t 'R2' के मानक आधार के निर्देशांक हैं । ध्यान दें कि दोनों आंशिक डेरिवेटिव R2 से TTM. तक के फलन हैं।

वास्तव में, इस संपत्ति का उपयोग कैनोनिकल फ्लिप की आंतरिक परिभाषा देने के लिए किया जा सकता है।[3] वास्तव में जलमग्न p: J20 (R2,M) → TTM द्वारा दिया गया हैं।

जहां p को शून्य पर दो-जेट के स्थान में परिभाषित किया जा सकता है क्योंकि f पर निर्भर करता है जिससे शून्य पर दो का आदेश दिया जा सके। हम आवेदन पर विचार करते हैं।

जहां α (एस, टी) = (टी, एस)। तब J प्रक्षेपण p के साथ संगत है एवं भागफल TTM पर विहित फ्लिप को प्रेरित करता है।

== स्पर्शरेखा बंडल == पर कैननिकल टेंसर फ़ील्ड

किसी भी सदिश बंडल के लिए, स्पर्शरेखा रिक्त स्थान Tξ(TxM) तंतुओं का टीxस्पर्शरेखा बंडल का एम (TM,πTM,M) की पहचान फाइबर टी से की जा सकती हैxएम खुद। औपचारिक रूप से यह 'ऊर्ध्वाधर लिफ्ट' के माध्यम से प्राप्त किया जाता है, जो प्राकृतिक सदिश स्पेस आइसोमोर्फिज्म है vlξ:TxMVξ(TxM) के रूप में परिभाषित

लंबवत लिफ्ट को प्राकृतिक सदिश बंडल आइसोमोर्फिज्म के रूप में भी देखा जा सकता है vl:(πTM)*TMVTM के पुलबैक बंडल से (TM,πTM,M) ऊपर πTM:TMM लंबवत स्पर्शरेखा बंडल पर

वर्टिकल लिफ़्ट हमें कैननिकल सदिश फ़ील्ड परिभाषित करने देता है

जो भट्ठा स्पर्शरेखा बंडल TM\0 में चिकना है। विहित सदिश क्षेत्र को लाई-समूह क्रिया के अतिसूक्ष्म जनित्र के रूप में भी परिभाषित किया जा सकता है

कैनोनिकल सदिश फ़ील्ड के विपरीत, जिसे किसी भी सदिश बंडल के लिए परिभाषित किया जा सकता है, कैनोनिकल एंडोमोर्फिज्म

स्पर्शरेखा बंडल के लिए विशेष है। कैनोनिकल एंडोमोर्फिज्म जे संतुष्ट करता है

एवं इसे निम्नलिखित कारणों से स्पर्शरेखा संरचना के रूप में भी जाना जाता है। यदि (E,p,M) कोई सदिश बंडल है विहित सदिश क्षेत्र V एवं (1,1)-टेंसर क्षेत्र J के साथ जो ऊपर सूचीबद्ध गुणों को संतुष्ट करता है, VTM के स्थान पर VE के साथ, फिर सदिश बंडल (E,p,M) स्पर्शरेखा बंडल के लिए आइसोमॉर्फिक है (TM,πTM,M) बेस मैनिफोल्ड का, एवं J इस समरूपता में TM की स्पर्शरेखा संरचना से मेल खाता है।

इस तरह का मजबूत परिणाम भी होता है [4] जो बताता है कि यदि N 2n-आयामी कई गुना है एवं यदि N पर (1,1) -टेंसर फ़ील्ड J मौजूद है जो संतुष्ट करता है

तो एन कुछ एन-आयामी कई गुना एम के टेंगेंट बंडल के कुल स्थान के खुले सेट के लिए अलग-अलग है, एवं जे इस भिन्नता में टीएम की स्पर्शरेखा संरचना से मेल खाता है।

टीएम पर किसी भी संबद्ध समन्वय प्रणाली में विहित सदिश क्षेत्र एवं विहित एंडोमोर्फिज्म में समन्वय प्रतिनिधित्व होता है


(अर्ध) स्प्रे संरचनाएं

स्मूथ मैनिफोल्ड एम पर स्प्रे (गणित) परिभाषा के अनुसार टीएम \0 पर स्मूथ सदिश फील्ड एच है जैसे कि जेएच = वी। समतुल्य परिभाषा यह है कि j(H)=H, जहाँ j:TTM→TTM विहित फ्लिप है। सेमीस्प्रे एच स्प्रे (गणित) है, अगर इसके अतिरिक्त, [वी, एच] = एच।

स्प्रे एवं सेमीस्प्रे संरचनाएं एम पर दूसरे क्रम के साधारण अंतर समीकरणों के अपरिवर्तनीय संस्करण हैं। स्प्रे एवं सेमीस्प्रे संरचनाओं के बीच का अंतर यह है कि स्प्रे के समाधान वक्र सकारात्मक पैरामीट्रिजेशन (ज्यामिति) में अपरिवर्तनीय हैं।Template:Jargon-inline एम पर बिंदु सेट के रूप में, जबकि सेमीस्प्रे के समाधान वक्र आमतौर पर नहीं होते हैं।

नॉनलाइनियर कोवरिएंट डेरिवेटिव्स ऑन स्मूथ मैनिफोल्ड्स

कैनोनिकल फ्लिप निम्नानुसार गैर-रैखिक सहसंयोजक डेरिवेटिव को चिकनी कई गुना पर परिभाषित करना संभव बनाता है। होने देना

स्लिट टेंगेंट बंडल टीएम \ 0 पर एह्रेसमैन कनेक्शन बनें एवं मैपिंग पर विचार करें

कहां क्यों*:TM→TTM पुश-फॉरवर्ड है, j:TTM→TTM कैनोनिकल फ्लिप है एवं κ:T(TM/0)→TM/0 कनेक्टर मैप है। मैपिंग डीX इस अर्थ में एम पर चिकनी सदिश क्षेत्रों के मॉड्यूल Γ (टीएम) में व्युत्पत्ति है

  • .
  • .

कोई मैपिंग डीX इन गुणों के साथ (गैर-रैखिक) सहसंयोजक व्युत्पन्न कहा जाता है [5] एम पर नॉनलाइनियर शब्द इस तथ्य को संदर्भित करता है कि इस प्रकार का सहसंयोजक व्युत्पन्न डीX पर अंतर की दिशा X∈TM/0 के संबंध में आवश्यक रूप से रैखिक नहीं है।

स्थानीय अभ्यावेदन को देखते हुए कोई भी पुष्टि कर सकता है, कि एह्रेस्मान कनेक्शन (टीएम/0, πTM/0,M) एवं M पर अरेखीय सहसंयोजक डेरिवेटिव -से- पत्राचार में हैं। इसके अतिरिक्त, यदि डीX ्स में रैखिक है, तो माध्यमिक सदिश बंडल संरचना में एह्रेसमैन कनेक्शन रैखिक है, एवं डीX इसके रैखिक सहसंयोजक व्युत्पन्न के साथ मेल खाता है।

यह भी देखें

संदर्भ

  1. J.M.Lee, Introduction to Smooth Manifolds, Springer-Verlag, 2003.
  2. P.Michor. Topics in Differential Geometry, American Mathematical Society, 2008.
  3. Robert J. Fisher and H. Turner Laquer, Second Order Tangent Vectors in Riemannian Geometry, J. Korean Math. Soc. 36 (1999), No. 5, pp. 959-1008
  4. D.S.Goel, Almost Tangent Structures, Kodai Math.Sem.Rep. 26 (1975), 187-193.
  5. I.Bucataru, R.Miron, Finsler-Lagrange Geometry, Editura Academiei Române, 2007.