युग्म स्पर्शरेखा बंडल: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 129: | Line 129: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 25/04/2023]] | [[Category:Created On 25/04/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:38, 1 May 2023
गणित में, विशेष रूप से अंतर टोपोलॉजी, डबल स्पर्शरेखा बंडल या दूसरा स्पर्शरेखा बंडल (TTM,πTTM,TM) के कुल अंतरिक्ष TM के स्पर्शरेखा बंडल (TM,πTM,M)TM को संदर्भित करता है। [1] इस लेख में, हम प्रक्षेपण मानचित्रों को उनके डोमेन द्वारा निरूपित करते हैं, उदाहरण के लिए, πTTM : TTM → TM होते है, इसके अतिरिक्त कुछ लेखक इन नक्शों को उनकी श्रेणियों के अनुसार अनुक्रमित करते हैं, इसलिए उनके लिए उस मानचित्र को πTM लिखा जाएगा।
दूसरा स्पर्शरेखा बंडल कनेक्शन (सदिश बंडल) एवं दूसरे क्रम के साधारण अंतर समीकरणों के अध्ययन में उत्पन्न होता है, अर्थात, स्प्रे (अर्ध) चिकनी मैनिफोल्ड्स पर स्प्रे संरचनाएं, एवं इसे दूसरे क्रम के जेट बंडल के साथ भ्रमित नहीं होना है।
माध्यमिक सदिश बंडल संरचना एवं विहित फ्लिप
चूँकि (TM,πTM,M) स्वयं में सदिश बंडल होता है, इसके स्पर्शरेखा बंडल में द्वितीयक सदिश बंडल संरचना (TTM,(πTM)*,TM), है, जहाँ (πTM)*:TTM→TM पुश है। विहित प्रक्षेपण के आगे πTM:TM→M. निम्नलिखित में हम निरूपित करते हैं।
एवं संबंधित समन्वय प्रणाली प्रारम्भ करें।
X∈TTM पर द्वितीयक सदिश बंडल संरचना का फाइबर रूप लेता है
डबल स्पर्शरेखा बंडल डबल सदिश बंडल है।
कैनोनिकल फ्लिप[2] सहज इनवोल्यूशन j:TTM→TTM है जो इन सदिश अंतरिक्ष संरचनाओं का इस अर्थ में आदान-प्रदान करता है, कि यह (TTM,πTTM,TM) एवं (TTM,(πTM)*,TM). के मध्य सदिश बंडल समरूपता है। TM पर संबद्ध निर्देशांकों में इसे इस रूप में पढ़ा जाता है।
कैनोनिकल फ्लिप में संपत्ति है कि किसी भी f: 'R2' → M के लिए
- जहां s एवं t 'R2' के मानक आधार के निर्देशांक हैं । ध्यान दें कि दोनों आंशिक डेरिवेटिव R2 से TTM. तक के फलन हैं।
वास्तव में, इस संपत्ति का उपयोग कैनोनिकल फ्लिप की आंतरिक परिभाषा देने के लिए किया जा सकता है।[3] वास्तव में जलमग्न p: J20 (R2,M) → TTM द्वारा दिया गया हैं।
जहां p को शून्य पर दो-जेट के स्थान में परिभाषित किया जा सकता है क्योंकि f पर निर्भर करता है जिससे शून्य पर दो का आदेश दिया जा सके। हम आवेदन पर विचार करते हैं।
जहां α(s,t)= (t,s) तब J प्रक्षेपण p के साथ संगत है एवं भागफल TTM पर विहित फ्लिप को प्रेरित करता है।
== स्पर्शरेखा बंडल == पर कैननिकल टेंसर फ़ील्ड
किसी भी सदिश बंडल के लिए, स्पर्शरेखा बंडल (TM,πTM,M) के फाइबर TxM स्पर्शरेखा रिक्त स्थान Tξ(TxM) को स्वयं फाइबर TxM से पहचाना जा सकता है। औपचारिक रूप से यह 'ऊर्ध्वाधर लिफ्ट' के माध्यम से प्राप्त किया जाता है, जो प्राकृतिक सदिश अंतरिक्ष समरूपता vlξ:TxM→Vξ(TxM) के रूप में परिभाषित है।
लंबवत लिफ्ट को प्राकृतिक सदिश बंडल आइसोमोर्फिज्म vl:(πTM)*TM→VTM के रूप में भी देखा जा सकता है। (TM,πTM,M) के पुलबैक बंडल से πTM:TM→M लंबवत स्पर्शरेखा बंडल पर
वर्टिकल लिफ़्ट हमें कैननिकल सदिश फ़ील्ड परिभाषित करने देता है।
जो भट्ठा स्पर्शरेखा बंडल TM\0 में चिकना है। विहित सदिश क्षेत्र को लाई-समूह क्रिया के अतिसूक्ष्म जनित्र के रूप में भी परिभाषित किया जा सकता है।
कैनोनिकल सदिश फ़ील्ड के विपरीत, जिसे किसी भी सदिश बंडल के लिए परिभाषित किया जा सकता है। कैनोनिकल एंडोमोर्फिज्म होता है।
स्पर्शरेखा बंडल के लिए विशेष है। कैनोनिकल एंडोमोर्फिज्म J संतुष्ट करता है।
एवं इसे निम्नलिखित कारणों से स्पर्शरेखा संरचना के रूप में भी जाना जाता है। यदि (E,p,M) कोई सदिश बंडल है, विहित सदिश क्षेत्र V एवं (1,1)-टेंसर क्षेत्र J के साथ जो ऊपर सूचीबद्ध गुणों को संतुष्ट करता है, VTM के स्थान पर VE के साथ, सदिश बंडल (E,p,M) स्पर्शरेखा बंडल (TM,πTM,M) के लिए आइसोमॉर्फिक है, एवं J इस समरूपता में TM की स्पर्शरेखा संरचना से मेल खाता है।
इस प्रकार का ठोस परिणाम भी होता है [4] जो बताता है कि यदि N 2n-आयामी कई गुना है एवं यदि N पर (1,1) -टेंसर फ़ील्ड J उपस्थित है, जो संतुष्ट करता है।
तो N कुछ n-आयामी कई गुना M के टेंगेंट बंडल के कुल स्थान के खुले समूह के लिए भिन्न- भिन्न है, एवं जे इस भिन्नता में TM की स्पर्शरेखा संरचना से मेल खाता है।
TM पर किसी भी संबद्ध समन्वय प्रणाली में विहित सदिश क्षेत्र एवं विहित एंडोमोर्फिज्म में समन्वय प्रतिनिधित्व होता है।
(अर्ध) स्प्रे संरचनाएं
स्मूथ मैनिफोल्ड M पर सेमीस्प्रे संरचना परिभाषा के अनुसार TM \0 पर स्मूथ सदिश फील्ड H है जैसे कि JH=V, समतुल्य परिभाषा यह है कि j(H)=H, जहाँ j:TTM→TTM विहित फ्लिप है। सेमीस्प्रे H स्प्रे (गणित) है, यदि इसके अतिरिक्त, [V,H]=H.है।
स्प्रे एवं सेमीस्प्रे संरचनाएं M पर दूसरे क्रम के साधारण अंतर समीकरणों के अपरिवर्तनीय संस्करण हैं। स्प्रे एवं सेमीस्प्रे संरचनाओं के मध्य का अंतर यह है कि स्प्रे के समाधान वक्र सकारात्मक पैरामीट्रिजेशन (ज्यामिति) में M पर बिंदु उपसमुच्चय के रूप में अपरिवर्तनीय होते हैं, जबकि सेमीस्प्रे के समाधान वक्र सामान्यतः नहीं होते हैं।
नॉनलाइनियर कोवरिएंट डेरिवेटिव्स ऑन स्मूथ मैनिफोल्ड्स
कैनोनिकल फ्लिप निम्नानुसार गैर-रैखिक सहसंयोजक डेरिवेटिव को चिकनी कई गुना पर परिभाषित करना संभव बनाता है।
स्लिट टेंगेंट बंडल TM\0 पर एह्रेसमैन कनेक्शन बनें एवं मैपिंग पर विचार करें।
जहां क्यों*:TM→TTM पुश-फॉरवर्ड है, j:TTM→TTM कैनोनिकल फ्लिप है एवं κ:T(TM/0)→TM/0 कनेक्टर मैप है। मैपिंग DX इस अर्थ में M पर चिकनी सदिश क्षेत्रों के मॉड्यूल Γ (TM) में व्युत्पत्ति है।
- .
- .
इन गुणों के साथ किसी भी मैपिंग DX को M पर (गैर-रैखिक) सहसंयोजक व्युत्पन्न कहा जाता है।[5] गैर-रैखिक शब्द इस तथ्य को संदर्भित करता है कि इस प्रकार का सहसंयोजक व्युत्पन्न DX पर आवश्यक रूप से दिशा के संबंध में में रैखिक नहीं है। X∈TM/0 की भेदभाव स्थानीय अभ्यावेदन को देखते हुए कोई भी पुष्टि कर सकता है, कि M पर एह्रेस्मान कनेक्शन (TM/0, πTM/0,M) एवं अरेखीय सहसंयोजक डेरिवेटिव पत्राचार में हैं। इसके अतिरिक्त, यदि DX में रैखिक है, तो माध्यमिक सदिश बंडल संरचना में एह्रेसमैन कनेक्शन रैखिक है, एवं DX इसके रैखिक सहसंयोजक व्युत्पन्न के साथ मेल खाता है।
यह भी देखें
- स्प्रे (गणित)
- माध्यमिक सदिश बंडल संरचना
- फिन्सलर कई गुना
संदर्भ
- ↑ J.M.Lee, Introduction to Smooth Manifolds, Springer-Verlag, 2003.
- ↑ P.Michor. Topics in Differential Geometry, American Mathematical Society, 2008.
- ↑ Robert J. Fisher and H. Turner Laquer, Second Order Tangent Vectors in Riemannian Geometry, J. Korean Math. Soc. 36 (1999), No. 5, pp. 959-1008
- ↑ D.S.Goel, Almost Tangent Structures, Kodai Math.Sem.Rep. 26 (1975), 187-193.
- ↑ I.Bucataru, R.Miron, Finsler-Lagrange Geometry, Editura Academiei Române, 2007.