वियोज्य बहुपद: Difference between revisions

From Vigyanwiki
No edit summary
Line 46: Line 46:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 27/04/2023]]
[[Category:Created On 27/04/2023]]
[[Category:Vigyan Ready]]

Revision as of 15:28, 2 May 2023

गणित में, किसी दिए गए क्षेत्र K पर एक बहुपद P(X) 'पृथक्करणीय' रूप में होता है, यदि बहुपद के रुट K के बीजगणितीय समापन में भिन्न रूप में होता है, अर्थात भिन्न -भिन्न रुटो की संख्या बहुपद की कोटि के बराबर होती है।[1]

यह अवधारणा वर्ग-मुक्त बहुपद के निकटता से संबंधित है। यदि K एक पूर्ण क्षेत्र के रूप में है तो दो अवधारणाएँ मेल खाती हैं। सामान्यतः P(X) पृथक्करणीय रूप में होता है और यदि यह K युक्त किसी भी क्षेत्र पर वर्ग मुक्त होता है, जिसमें यह सम्मलित रूप में होता है यदि और केवल P(X) अपने औपचारिक व्युत्पन्न D P(X) के सहअभाज्य बहुपद के रूप में होता है।

पुरानी परिभाषा

एक पुरानी परिभाषा में, P(X) को वियोज्य माना जाता है। यदि K[X] में इसके प्रत्येक अप्रासंगिक बहुपद कारक आधुनिक परिभाषा के रूप में वियोज्य हैं।[2] तो इस परिभाषा में, पृथक्करणीयता क्षेत्र K पर निर्भर करती है; उदाहरण के लिए किसी पूर्ण क्षेत्र पर किसी भी बहुपद को वियोज्य के रूप में माना जाता है। चूंकि, यह परिभाषा गैलोज़ सिद्धांत के लिए सुविधाजनक हो सकती है यह अब उपयोग में नहीं है।

वियोज्य क्षेत्र एक्सटेंशन

वियोज्य बहुपदों का उपयोग वियोज्य एक्सटेंशन को परिभाषित करने के लिए किया जाता है और इस प्रकार एक फ़ील्ड एक्सटेंशन KL एक वियोज्य एक्सटेंशन के रूप में है, यदि और केवल यदि L में प्रत्येक α के लिए जो K के ऊपर बीजगणितीय तत्व के रूप में है, तो α का न्यूनतम बहुपद क्षेत्र सिद्धांत एक वियोज्य बहुपद के रूप में होता है।

अविभाज्य एक्सटेंशन अर्थात, ऐसे एक्सटेंशन जो वियोज्य रूप में नहीं हैं और इस प्रकार मात्र सकारात्मक विशेषता (बीजगणित) रूप में हो सकती हैं।

उपरोक्त मानदंड त्वरित निष्कर्ष की ओर ले जाता है कि यदि P अप्रासंगिक रूप में है और वियोज्य नहीं है, तो DP(X) = 0.इस प्रकार हमारे पास होना चाहिए,

P(X) = Q(Xp)

K पर कुछ बहुपद Q के लिए, जहाँ अभाज्य संख्या p के रूप में एक विशेषता है।

इस संकेत से हम एक उदाहरण बना सकते हैं, जो इस रूप में होता है

P(X) = XpT

K के साथ p तत्वों के साथ परिमित क्षेत्र पर अनिश्चित T में तर्कसंगत फलनों के क्षेत्र के रूप में होता है। यहां कोई गणितीय प्रमाण प्रत्यक्ष रूप से साबित कर सकता है कि P(X) अप्रासंगिक रूप में है और वियोज्य नहीं है। यह वास्तव में एक विशिष्ट उदाहरण के रूप में है और इस प्रकार अविभाज्यता क्यों मायने रखती है; ज्यामितीय शब्दों में P उनकी pth शक्ति के निर्देशांक के लिए समन्वय करता है। और परिमित क्षेत्र पर प्रक्षेप्य रेखा पर मानचित्रण का प्रतिनिधित्व करता है। ऐसे मानचित्रण परिमित क्षेत्रों की बीजगणितीय ज्यामिति के लिए मौलिक रूप में हैं। दूसरे तरीके से कहें तो उस सेटिंग में ऐसे आवरण हैं, जिन्हें गैलोज़ सिद्धांत द्वारा 'देखा' नहीं जा सकता है और इस प्रकार उच्च स्तरीय चर्चा के लिए रेडिकल आकारिकी को देखते है।

यदि L क्षेत्र विस्तार है

K(T 1/p),

दूसरे शब्दों में, P का विभाजन क्षेत्र, फिर L/K का विभाजन क्षेत्र विशुद्ध रूप से अविभाज्य क्षेत्र विस्तार का एक उदाहरण है। यह कोटि p का है, लेकिन आइडेंटिटी के अतिरिक्त K को ठीक करने वाला कोई ऑटोमोर्फिज्म नहीं है, क्योंकि T 1/p, P का अनूठा मूल है। यह प्रत्यक्ष रूप से दिखाता है कि गैलोज़ सिद्धांत को यहाँ टूटना चाहिए। ऐसा कोई क्षेत्र जिसमें ऐसा विस्तार न हुआ हो उत्तम कहलाता है। यह परिमित क्षेत्र अपनी ज्ञात संरचना से एक पोस्टरियोरी का अनुसरण करता है।

कोई यह दिखा सकता है कि इस उदाहरण के लिए K के ऊपर L के क्षेत्रों के टेन्सर उत्पाद में गैर-शून्य तत्व के रूप में होता है। यह अविभाज्यता की एक और अभिव्यक्ति के रूप में होता है अर्थात्, खेतों पर टेंसर उत्पाद संचालन को रिंग (गणित) उत्पन्न करने की आवश्यकता नहीं होती है, जो फ़ील्ड्स का एक उत्पाद है, इसलिए एक क्रमविनिमेय रिंग अर्द्ध साधारण रिंग के रूप में नहीं होती है।

यदि P(x) वियोज्य के रूप में है और इसकी रुट समूह (गणित) क्षेत्र K का एक उपसमूह बनाती हैं, जो P(x) के एक योगात्मक बहुपद के रूप में है।

गाल्वा सिद्धांत में अनुप्रयोग

गैलोज़ सिद्धांत में वियोज्य बहुपद अधिकांशतः रूप में होते हैं।

उदाहरण के लिए, P को पूर्णांक गुणांक के साथ एक अलघुकरणीय बहुपद के रूप में होता है और P एक अभाज्य संख्या है, जो P के प्रमुख गुणांक को विभाजित नहीं करता है। और इस प्रकार Q को P तत्वों के साथ परिमित क्षेत्र पर बहुपद के रूप में होते है, जो P के गुणांक मॉड्यूलर अंकगणितीय P को कम करके प्राप्त किया जाता है। फिर यदि क्यू वियोज्य है, तो Q के अलघुकरणीय कारकों की कोटि P के गैलोइस समूह के कुछ क्रमपरिवर्तन चक्रों की लंबाई है। जो कि प्रत्येक P के लिए एक अवलोकन है और इस प्रकार यह एक परिमित संख्या है

एक अन्य उदाहरण: P जैसा कि ऊपर है, समूह G के लिए एक 'विलायक ' R के एक बहुपद है जिसका गुणांक P के गुणांकों में बहुपद के रूप में हैं, जो P के गैलोज़ समूह पर इस प्रकार अधिक सटीक रूप से कुछ जानकारी प्रदान करता है और यदि R वियोज्य है और एक परिमेय संख्या रुट है तो P का गैलोइस समूह G के रूप में निहित होता है। उदाहरण के लिए यदि D, P का विविक्तकर है तो वैकल्पिक समूह के लिए एक विलायक के रूप में है। यह विलायक निरंतर पृथक्करणीय रूप में होता है और इसे कैरिक्टरिस्टिक कहते हैं, यह 2 के स्वरूप में नहीं है और इस प्रकार यदि P अलघुकरणीय है, लेकिन अधिकांश विलायक निरंतर वियोज्य रूप में नहीं होते हैं।

यह भी देखें

संदर्भ

  1. Pages 240-241 of Lang, Serge (1993), Algebra (Third ed.), Reading, Mass.: Addison-Wesley, ISBN 978-0-201-55540-0, Zbl 0848.13001
  2. N. Jacobson, Basic Algebra I, p. 233