विशेषता समीकरण (कलन): Difference between revisions
(Created page with "{{short description|Algebraic equation on which the solution of a differential equation depends}} गणित में, विशेषता समीकरण (या स...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Algebraic equation on which the solution of a differential equation depends}} | {{short description|Algebraic equation on which the solution of a differential equation depends}} | ||
गणित में, | गणित में, अभिलाक्षणिक समीकरण (या सहायक समीकरण<ref name="edwards">{{cite book|last1=Edwards |first1=C. Henry |last2=Penney |first2=David E. |others=David Calvis |title=Differential Equations: Computing and Modeling |publisher=Pearson Education |location=[[Upper Saddle River]], [[New Jersey]] |pages=156–170 |chapter=Chapter 3 |isbn=978-0-13-600438-7}}</ref>) [[एक बहुपद की डिग्री]] {{mvar|n}} का एक [[बीजगणितीय समीकरण]] है, जिस पर दिए गए nवें क्रम के अवकल समीकरण<ref name="smith">{{cite web|url=http://etc.usf.edu/lit2go/contents/2800/2892/2892_txt.html|title=History of Modern Mathematics: Differential Equations|last=Smith|first=David Eugene|publisher=[[University of South Florida]]}}</ref> या [[रैखिक अंतर समीकरण|अंतर समीकरण]] का समाधान निर्भर करता है।<ref>{{cite book|last=Baumol|first=William J.|title=आर्थिक गतिशीलता|url=https://archive.org/details/economicdynamics0000baum_c7i2|url-access=registration|edition=3rd|date=1970|page=[https://archive.org/details/economicdynamics0000baum_c7i2/page/172 172]}}</ref><ref>{{cite book|last=Chiang|first=Alpha|title=गणितीय अर्थशास्त्र के मौलिक तरीके|url=https://archive.org/details/fundamentalmetho0000chia_h4v2|url-access=registration|edition=3rd|date=1984|pages=[https://archive.org/details/fundamentalmetho0000chia_h4v2/page/578 578], 600|isbn=9780070107809 }}</ref> अभिलाक्षणिक समीकरण तभी बन सकता है जब अवकल या अंतर समीकरण रेखीय और सजातीय हो और स्थिर गुणांक रखता हो,<ref name="edwards" /> ऐसा अवकल समीकरण, जिसमें y [[निर्भर चर]] है, और {{math|''a''<sub>''n''</sub>, ''a''<sub>''n'' − 1</sub>, ..., ''a''<sub>1</sub>, ''a''<sub>0</sub>}} स्थिरांक के रूप में, सुपरस्क्रिप्ट {{math|(''n'')}} nth-अवकलज को दर्शाता है, | ||
:<math>a_{n}y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_{1}y' + a_{0}y = 0,</math> | :<math>a_{n}y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_{1}y' + a_{0}y = 0,</math> | ||
रूप का एक विशिष्ट समीकरण होगा | रूप का एक विशिष्ट समीकरण होगा |
Revision as of 14:11, 30 April 2023
गणित में, अभिलाक्षणिक समीकरण (या सहायक समीकरण[1]) एक बहुपद की डिग्री n का एक बीजगणितीय समीकरण है, जिस पर दिए गए nवें क्रम के अवकल समीकरण[2] या अंतर समीकरण का समाधान निर्भर करता है।[3][4] अभिलाक्षणिक समीकरण तभी बन सकता है जब अवकल या अंतर समीकरण रेखीय और सजातीय हो और स्थिर गुणांक रखता हो,[1] ऐसा अवकल समीकरण, जिसमें y निर्भर चर है, और an, an − 1, ..., a1, a0 स्थिरांक के रूप में, सुपरस्क्रिप्ट (n) nth-अवकलज को दर्शाता है,
रूप का एक विशिष्ट समीकरण होगा
जिनके उपाय r1, r2, ..., rn वे मूल हैं जिनसे सामान्य विलयन बनाया जा सकता है।[1][5][6] अनुरूप रूप से, रूप का एक रेखीय अंतर समीकरण
विशेषता समीकरण है
निरंतर गुणांकों के साथ रैखिक पुनरावृत्ति पर अधिक विस्तार से चर्चा की गई # सजातीय मामले का समाधान।
चारित्रिक जड़ें (विशेषता समीकरण के एक बहुपद की जड़) चर के व्यवहार के बारे में गुणात्मक जानकारी भी प्रदान करती हैं जिसका विकास गतिशील समीकरण द्वारा वर्णित किया गया है। समय पर परिचालित एक विभेदक समीकरण के लिए, चर का विकास Lyapunov स्थिरता है यदि और केवल यदि प्रत्येक जड़ का वास्तविक भाग नकारात्मक है। अंतर समीकरणों के लिए, स्थिरता होती है यदि और केवल यदि प्रत्येक जड़ की सम्मिश्र संख्या#ध्रुवीय सम्मिश्र तल 1 से कम हो। दोनों प्रकार के समीकरणों के लिए, यदि सम्मिश्र संख्या मूलों की कम से कम एक जोड़ी हो तो लगातार उतार-चढ़ाव होते हैं।
निरंतर गुणांक वाले अभिन्न लीनियर साधारण अंतर समीकरण की विधि लियोनहार्ड यूलर द्वारा खोजी गई थी, जिन्होंने पाया कि समाधान एक बीजगणितीय 'विशेषता' समीकरण पर निर्भर थे।[2] यूलर के विशिष्ट समीकरण के गुणों पर बाद में फ्रांसीसी गणितज्ञ ऑगस्टिन-लुई कॉची और गैसपार्ड मोंगे द्वारा अधिक विस्तार से विचार किया गया।[2][6]
व्युत्पत्ति
स्थिर गुणांकों के साथ एक रेखीय सजातीय अवकल समीकरण से प्रारंभ करना an, an − 1, ..., a1, a0,
यह देखा जा सकता है कि अगर y(x) = e rx, प्रत्येक पद का एक स्थिर गुणक होगा e rx. यह इस तथ्य से उत्पन्न होता है कि घातीय कार्य का व्युत्पन्न e rx स्वयं का गुणज है। इसलिए, y′ = re rx, y″ = r2e rx, और y(n) = rne rx सभी गुणक हैं। इससे पता चलता है कि के कुछ मूल्य r के गुणकों की अनुमति देगा e rx को शून्य करने के लिए, इस प्रकार सजातीय अंतर समीकरण को हल करना।[5] समाधान करने के लिए r, कोई स्थानापन्न कर सकता है y = e rx और इसके डेरिवेटिव को अंतर समीकरण में प्राप्त करने के लिए
तब से e rx कभी भी शून्य के बराबर नहीं हो सकता, इसे चारित्रिक समीकरण देते हुए विभाजित किया जा सकता है
मूलों को हल करने पर, r, इस अभिलाक्षणिक समीकरण में, कोई भी अवकल समीकरण का सामान्य हल खोज सकता है।[1][6] उदाहरण के लिए, यदि r के मूल 3, 11 और 40 के बराबर हैं, तो सामान्य समाधान होगा , कहाँ , , और एकीकरण के स्थिर हैं जिन्हें सीमा और/या प्रारंभिक स्थितियों द्वारा निर्धारित करने की आवश्यकता है।
सामान्य समाधान का गठन
इसकी जड़ों के लिए विशेषता समीकरण को हल करना, r1, ..., rn, किसी को अंतर समीकरण के सामान्य समाधान को खोजने की अनुमति देता है। जड़ें वास्तविक संख्या या जटिल संख्या के साथ-साथ अलग या दोहराई जा सकती हैं। यदि एक अभिलाक्षणिक समीकरण के भिन्न वास्तविक मूल वाले भाग हैं, h दोहराई गई जड़ें, या k के सामान्य समाधान के अनुरूप जटिल जड़ें yD(x), yR1(x), ..., yRh(x), और yC1(x), ..., yCk(x), क्रमशः, तो अंतर समीकरण का सामान्य समाधान है
उदाहरण
स्थिर गुणांकों के साथ रेखीय सजातीय अवकल समीकरण
- विशेषता समीकरण है
गुणनखंडन द्वारा विशेषता समीकरण में
कोई देख सकता है कि के लिए समाधान r विशिष्ट एकल जड़ हैं r1 = 3 और डबल जटिल जड़ें r2,3,4,5 = 1 ± i. यह वास्तविक-मूल्यवान सामान्य समाधान के अनुरूप है
स्थिरांक के साथ c1, ..., c5.
अलग असली जड़ें
रैखिक सजातीय अंतर समीकरणों के लिए सुपरपोज़िशन सिद्धांत कहता है कि यदि u1, ..., un हैं n किसी विशेष अंतर समीकरण के लिए रैखिक रूप से स्वतंत्र समाधान, फिर c1u1 + ⋯ + cnun भी सभी मूल्यों के लिए एक समाधान है c1, ..., cn.[1][7] इसलिए, यदि अभिलाक्षणिक समीकरण के भिन्न वास्तविक मूल हैं r1, ..., rn, तो एक सामान्य समाधान फॉर्म का होगा
बार-बार वास्तविक जड़ें
यदि विशेषता समीकरण की जड़ है r1 जो दोहराया जाता है k बार, तो यह स्पष्ट है कि yp(x) = c1e r1x कम से कम एक समाधान है।[1] हालाँकि, इस समाधान में दूसरे से रैखिक रूप से स्वतंत्र समाधानों का अभाव है k − 1 जड़ें। तब से r1 में बहुलता है (गणित) k, अवकल समीकरण को कारक बनाया जा सकता है[1]: यह तथ्य कि yp(x) = c1e r1x एक समाधान है जो किसी को यह मानने की अनुमति देता है कि सामान्य समाधान प्रपत्र का हो सकता है y(x) = u(x)e r1x, कहाँ u(x) निर्धारित किया जाने वाला एक कार्य है। स्थानापन्न ue r1x देता है
कब k = 1. इस तथ्य को लागू करके k बार, यह इस प्रकार है
बाँट कर e r1x, यह देखा जा सकता है
इसलिए, के लिए सामान्य मामला u(x) डिग्री का बहुपद है k − 1, ताकि u(x) = c1 + c2x + c3x2 + ⋯ + ckxk −1.[6] तब से y(x) = ue r1x, के अनुरूप सामान्य समाधान का हिस्सा r1 है
जटिल जड़ें
यदि एक दूसरे क्रम के अंतर समीकरण में फॉर्म की जटिल संयुग्म जड़ों के साथ एक विशेषता समीकरण है r1 = a + bi और r2 = a − bi, तो सामान्य समाधान तदनुसार है y(x) = c1e(a + bi )x + c2e(a − bi )x. यूलर के सूत्र द्वारा, जो बताता है कि eiθ = cos θ + i sin θ, इस समाधान को निम्नानुसार फिर से लिखा जा सकता है:
कहाँ c1 और c2 स्थिरांक हैं जो अवास्तविक हो सकते हैं और जो प्रारंभिक स्थितियों पर निर्भर करते हैं।[6](वास्तव में, चूंकि y(x) यह सचमुच का है, c1 − c2 काल्पनिक संख्या या शून्य होना चाहिए और c1 + c2 वास्तविक होना चाहिए, ताकि अंतिम बराबर चिह्न के बाद दोनों पद वास्तविक हों।)
उदाहरण के लिए, यदि c1 = c2 = 1/2, फिर विशेष समाधान y1(x) = e ax cos bx बन गया है। इसी प्रकार यदि c1 = 1/2i और c2 = −1/2i, तो बनने वाला स्वतंत्र विलयन है y2(x) = e ax sin bx. इस प्रकार रैखिक सजातीय अंतर समीकरणों के सुपरपोज़िशन सिद्धांत द्वारा, जटिल जड़ों वाले दूसरे क्रम के अंतर समीकरण r = a ± bi का परिणाम निम्न सामान्य समाधान होगा:
यह विश्लेषण एक उच्च-क्रम अंतर समीकरण के समाधान के हिस्सों पर भी लागू होता है, जिसकी विशेषता समीकरण में गैर-वास्तविक जटिल संयुग्मी जड़ें शामिल होती हैं।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Edwards, C. Henry; Penney, David E. "Chapter 3". Differential Equations: Computing and Modeling. David Calvis. Upper Saddle River, New Jersey: Pearson Education. pp. 156–170. ISBN 978-0-13-600438-7.
- ↑ 2.0 2.1 2.2 Smith, David Eugene. "History of Modern Mathematics: Differential Equations". University of South Florida.
- ↑ Baumol, William J. (1970). आर्थिक गतिशीलता (3rd ed.). p. 172.
- ↑ Chiang, Alpha (1984). गणितीय अर्थशास्त्र के मौलिक तरीके (3rd ed.). pp. 578, 600. ISBN 9780070107809.
- ↑ 5.0 5.1 Chu, Herman; Shah, Gaurav; Macall, Tom. "स्थिर गुणांक वाले रेखीय सजातीय साधारण विभेदक समीकरण". eFunda. Retrieved 1 March 2011.
- ↑ 6.0 6.1 6.2 6.3 6.4 Cohen, Abraham (1906). विभेदक समीकरणों पर एक प्राथमिक ग्रंथ. D. C. Heath and Company.
- ↑ Dawkins, Paul. "विभेदक समीकरण शब्दावली". Paul's Online Math Notes. Retrieved 2 March 2011.