संयुग्म (वर्गमूल): Difference between revisions
From Vigyanwiki
(विभाजक) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Change of the sign of a square root}} | {{Short description|Change of the sign of a square root}} | ||
{{About|वर्गमूल के चिन्ह को बदलकर संयुग्मन|अन्य उपयोग|संयुग्म (बहुविकल्पी)}} | {{About|वर्गमूल के चिन्ह को बदलकर संयुग्मन|अन्य उपयोग|संयुग्म (बहुविकल्पी)}} | ||
गणित में, किसी रूप की अभिव्यक्ति का संयुग्म <math>a+b\sqrt d</math> है <math>a-b\sqrt d,</math> ने यह प्रदान किया <math>\sqrt d</math> में दिखाई नहीं देता {{mvar|a}} और {{mvar|b}}. में प्रकट नहीं होता है. यह भी बताता है कि दो भाव संयुग्मित हैं। | गणित में, किसी रूप की अभिव्यक्ति का '''संयुग्म''' <math>a+b\sqrt d</math> है <math>a-b\sqrt d,</math> ने यह प्रदान किया <math>\sqrt d</math> में दिखाई नहीं देता {{mvar|a}} और {{mvar|b}}. में प्रकट नहीं होता है. यह भी बताता है कि दो भाव संयुग्मित हैं। | ||
विशेष रूप से, [[द्विघात समीकरण]] के दो समाधान संयुग्मी हैं, के अनुसार <math>\pm</math> [[द्विघात सूत्र]] में <math>x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}</math>. | विशेष रूप से, [[द्विघात समीकरण]] के दो समाधान संयुग्मी हैं, के अनुसार <math>\pm</math> [[द्विघात सूत्र]] में <math>x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}</math>. | ||
Line 25: | Line 25: | ||
== यह भी देखें == | == यह भी देखें == | ||
* संयुग्म तत्व (क्षेत्र सिद्धांत), किसी भी डिग्री के बहुपद की जड़ों का सामान्यीकरण | * संयुग्म तत्व (क्षेत्र सिद्धांत), किसी भी डिग्री के बहुपद की जड़ों का सामान्यीकरण | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 19/04/2023]] | [[Category:Created On 19/04/2023]] |
Revision as of 10:47, 27 April 2023
गणित में, किसी रूप की अभिव्यक्ति का संयुग्म है ने यह प्रदान किया में दिखाई नहीं देता a और b. में प्रकट नहीं होता है. यह भी बताता है कि दो भाव संयुग्मित हैं।
विशेष रूप से, द्विघात समीकरण के दो समाधान संयुग्मी हैं, के अनुसार द्विघात सूत्र में .
जटिल संयुग्मन विशेष मामला है जहां वर्गमूल है
गुण
जैसा
और
संयुग्मी व्यंजकों के योग और गुणनफल में अब वर्गमूल शामिल नहीं है।
इस गुण का उपयोग भाजक से वर्गमूल निकालने, अंश (गणित) को गुणा करने और किसी अंश के विभाजक को भाजक के संयुग्मी से गुणा करने के लिए किया जाता है (देखें तर्कसंगतता (गणित))। सामान्यतः पर, किसी के पास होता है
विशेष रूप से
एक उपप्रमेय संपत्ति यह है कि घटाव:
केवल मूल युक्त पद छोड़ता है।
यह भी देखें
- संयुग्म तत्व (क्षेत्र सिद्धांत), किसी भी डिग्री के बहुपद की जड़ों का सामान्यीकरण