ग्रोमोव सीमा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:F2 Cayley Graph.png|thumb|दो जनरेटर के साथ एक [[मुक्त समूह]] का [[केली ग्राफ]]। यह एक [[अतिशयोक्तिपूर्ण समूह]] है जिसकी ग्रोमोव सीमा एक [[कैंटर सेट]] है। अतिशयोक्तिपूर्ण समूह और उनकी सीमाएं [[ज्यामितीय समूह सिद्धांत]] में महत्वपूर्ण विषय हैं, जैसा कि केली ग्राफ हैं।]]
[[File:F2 Cayley Graph.png|thumb|दो जनरेटर के साथ एक [[मुक्त समूह]] का [[केली ग्राफ]]। यह एक [[अतिशयोक्तिपूर्ण समूह|अतिपरवलिक समूह]] है जिसकी ग्रोमोव सीमा एक [[कैंटर सेट]] है। अतिपरवलिक समूह और उनकी सीमाएं [[ज्यामितीय समूह सिद्धांत]] में महत्वपूर्ण विषय है, जैसा कि केली ग्राफ है।]]


[[File:Hyperbolic domains 642.png|thumb|150px|(6,4,2) त्रिकोणीय हाइपरबोलिक टाइलिंग। इस टाइलिंग से संबंधित [[त्रिभुज समूह]] की ग्रोमोव सीमा के रूप में एक चक्र है।]]गणित में, δ-[[अतिशयोक्तिपूर्ण स्थान]] (विशेष रूप से एक अतिशयोक्तिपूर्ण समूह) की ग्रोमोव सीमा हाइपरबॉलिक स्थान के सीमा क्षेत्र को सामान्यीकृत करने वाली एक अमूर्त अवधारणा है। संकल्पनात्मक रूप से, ग्रोमोव सीमा अनंत पर सभी बिन्दुओं का समुच्चय है। उदाहरण के लिए, [[वास्तविक रेखा]] की ग्रोमोव सीमा सकारात्मक और नकारात्मक अनंतता के अनुरूप दो बिंदु हैं।
[[File:Hyperbolic domains 642.png|thumb|150px|(6,4,2) त्रिकोणीय अतिपरवलिक टाइलिंग। इस टाइलिंग से संबंधित [[त्रिभुज समूह]] की ग्रोमोव सीमा के रूप में एक चक्र है।]]गणित में, δ-[[अतिशयोक्तिपूर्ण स्थान|अतिपरवलिक स्थान]] (विशेष रूप से एक अतिपरवलिक समूह) की '''ग्रोमोव सीमा''' अतिपरवलिक स्थान के सीमा क्षेत्र को सामान्यीकृत करने वाली एक अमूर्त अवधारणा है। संकल्पनात्मक रूप से, ग्रोमोव सीमा अनंत पर सभी बिन्दुओं का समुच्चय है। उदाहरण के लिए, [[वास्तविक रेखा]] की ग्रोमोव सीमा सकारात्मक और नकारात्मक अनंतता के अनुरूप दो बिंदु है।


== परिभाषा ==
== परिभाषा ==


एक जियोडेसिक और उचित δ-हाइपरबोलिक स्थान की ग्रोमोव सीमा की कई समान परिभाषाएँ हैं। जियोडेसिक किरणों के सबसे आम उपयोग समकक्ष वर्गों में से एक।<ref>{{harvnb|Kapovich|Benakli|2002}}</ref>
एक जियोडेसिक और उचित δ-अतिपरवलिक स्थान की ग्रोमोव सीमा की कई समान परिभाषाएँ है। जियोडेसिक किरणों के सबसे उपयोग समकक्ष वर्गों में से एक है।<ref>{{harvnb|Kapovich|Benakli|2002}}</ref>


कोई बिंदु उठाओ <math>O</math> एक अतिशयोक्तिपूर्ण मीट्रिक स्थान का <math>X</math> उत्पत्ति होना। एक जियोडेसिक किरण एक [[आइसोमेट्री|सममितीय]] द्वारा दिया गया मार्ग है <math>\gamma:[0,\infty)\rightarrow X</math> ऐसा है कि प्रत्येक खंड <math>\gamma([0,t])</math> से सबसे कम लंबाई का पथ है <math>O</math> को <math>\gamma(t)</math>.
कोई बिंदु उठाओ <math>O</math> एक अतिपरवलिक मीट्रिक स्थान का <math>X</math> उत्पत्ति होता है। एक जियोडेसिक किरण एक [[आइसोमेट्री|सममितीय]] द्वारा दिया गया मार्ग है <math>\gamma:[0,\infty)\rightarrow X</math> ऐसा है कि प्रत्येक खंड <math>\gamma([0,t])</math> से सबसे कम लंबाई का पथ है <math>O</math> को <math>\gamma(t)</math>.


दो जियोडेसिक <math>\gamma_1,\gamma_2</math> स्थिरांक होने पर समकक्ष के रूप में परिभाषित किया जाता है <math>K</math> ऐसा है कि <math>d(\gamma_1(t),\gamma_2(t))\leq K</math> सभी के लिए <math>t</math>. का समतुल्य वर्ग <math>\gamma</math> निरूपित किया जाता है <math>[\gamma]</math>.
दो जियोडेसिक <math>\gamma_1,\gamma_2</math> स्थिरांक होने पर समकक्ष के रूप में परिभाषित किया जाता है <math>K</math> ऐसा है कि <math>d(\gamma_1(t),\gamma_2(t))\leq K</math> सभी के लिए <math>t</math>. का समतुल्य वर्ग <math>\gamma</math> निरूपित किया जाता है <math>[\gamma]</math>.


जियोडेसिक और उचित हाइपरबोलिक मीट्रिक स्थान की ग्रोमोव सीमा <math>X</math> सेट है <math>\partial X=\{[\gamma]|\gamma</math> में एक जियोडेसिक किरण है <math>X\}</math>.
जियोडेसिक और उचित अतिपरवलिक मीट्रिक स्थान की ग्रोमोव सीमा <math>X</math> सेट है <math>\partial X=\{[\gamma]|\gamma</math> में एक जियोडेसिक किरण है <math>X\}</math>.


=== टोपोलॉजी ===
=== टोपोलॉजी ===


तीन बिंदुओं के ग्रोमोव उत्पाद का उपयोग करना उपयोगी होता है। तीन बिंदुओं का ग्रोमोव उत्पाद <math>x,y,z</math> एक मीट्रिक स्थान में होता है <math>(x,y)_z=1/2(d(x,z)+d(y,z)-d(x,y))</math>. एक पेड़ (ग्राफ सिद्धांत) में, यह मापता है कि रास्ते कितने लंबे हैं <math>z</math> को <math>x</math> और <math>y</math> अलग होने से पहले एक साथ रहते है। चूँकि अतिशयोक्तिपूर्ण स्थान पेड़ की तरह होते हैं, ग्रोमोव उत्पाद मापता है कि भू-भौतिकी कितनी लंबी है <math>z</math> को <math>x</math> और <math>y</math> अलग होने से पहले करीब रहते है।
तीन बिंदुओं के ग्रोमोव उत्पाद का उपयोग करना उपयोगी होता है। तीन बिंदुओं का ग्रोमोव उत्पाद <math>x,y,z</math> एक मीट्रिक स्थान में होता है <math>(x,y)_z=1/2(d(x,z)+d(y,z)-d(x,y))</math>. एक पेड़ (ग्राफ सिद्धांत), यह मापता है कि रास्ते कितने लंबे है <math>z</math> को <math>x</math> और <math>y</math> अलग होने से पहले एक साथ रहते है। चूँकि अतिपरवलिक स्थान पेड़ की तरह होते है, ग्रोमोव उत्पाद मापता है कि भू-भौतिकी कितनी लंबी है <math>z</math> को <math>x</math> और <math>y</math> अलग होने से पहले करीब रहते है।


एक बिंदु दिया <math>p</math> ग्रोमोव सीमा में, हम सेट को परिभाषित करते हैं <math>V(p,r)=\{q\in \partial X|</math> जियोडेसिक किरणें हैं <math>\gamma_1,\gamma_2</math> साथ <math>[\gamma_1]=p, [\gamma_2]=q</math> और <math>\lim \inf_{s,t\rightarrow \infty}(\gamma_1(s),\gamma_2(t))_O\geq r\}</math>. ये खुले सेट ग्रोमोव सीमा के टोपोलॉजी के लिए एक [[आधार (टोपोलॉजी)]] बनाते हैं।
एक बिंदु दिया <math>p</math> ग्रोमोव सीमा में, हम सेट को परिभाषित करते है <math>V(p,r)=\{q\in \partial X|</math> जियोडेसिक किरणें है <math>\gamma_1,\gamma_2</math> साथ <math>[\gamma_1]=p, [\gamma_2]=q</math> और <math>\lim \inf_{s,t\rightarrow \infty}(\gamma_1(s),\gamma_2(t))_O\geq r\}</math>. ये खुले सेट ग्रोमोव सीमा के टोपोलॉजी के लिए एक [[आधार (टोपोलॉजी)]] बनाते है।


ये खुले सेट केवल जियोडेसिक किरणों के सेट हैं जो एक निश्चित जियोडेसिक किरण का कुछ दूरी तक अनुसरण करते हैं <math>r</math> अलग होने से पहले तक करते है।
ये खुले सेट केवल जियोडेसिक किरणों के सेट है जो एक निश्चित जियोडेसिक किरण का कुछ दूरी तक अनुसरण करते है <math>r</math> के अलग होने से पहले तक करते है।


यह टोपोलॉजी ग्रोमोव सीमा को[[ कॉम्पैक्ट जगह | सघन स्थान]] मेट्रिजेशन प्रमेय स्थान में बनाती है।
यह टोपोलॉजी ग्रोमोव सीमा को[[ कॉम्पैक्ट जगह | सघन स्थान]] को मेट्रिजेशन प्रमेय स्थान बनाती है।


अतिशयोक्तिपूर्ण समूह के [[अंत (टोपोलॉजी)]] की संख्या ग्रोमोव सीमा के घटकों की संख्या है।
अतिपरवलिक समूह के [[अंत (टोपोलॉजी)]] की संख्या ग्रोमोव सीमा के घटकों की संख्या होती है।


== ग्रोमोव सीमा के गुण ==
== ग्रोमोव सीमा के गुण ==
ग्रोमोव सीमा में कई महत्वपूर्ण गुण होते हैं। समूह सिद्धांत में सबसे अधिक उपयोग किए जाने वाले गुणों में से एक निम्नलिखित है: यदि एक समूह <math>G</math> एक δ-हाइपरबॉलिक स्थान पर [[ज्यामितीय समूह क्रिया]] है, फिर <math>G</math> अतिशयोक्तिपूर्ण समूह होता है और <math>G</math> और <math>X</math> होमियोमॉर्फिक ग्रोमोव सीमाएँ होती हैं।<ref>{{harvnb|Gromov|1987}}</ref>
ग्रोमोव सीमा में कई महत्वपूर्ण गुण होते है। समूह सिद्धांत में सबसे अधिक उपयोग किए जाने वाले गुणों में से एक निम्नलिखित है: यदि एक समूह <math>G</math> एक δ-अतिपरवलिक स्थान पर [[ज्यामितीय समूह क्रिया]] है, फिर <math>G</math> अतिपरवलिक समूह होता है और <math>G</math> और <math>X</math> होमियोमॉर्फिक ग्रोमोव सीमाएँ होती है।<ref>{{harvnb|Gromov|1987}}</ref>


सबसे महत्वपूर्ण गुणों में से एक यह है कि यह अर्ध-सममिति अपरिवर्तनीय है; अर्थात्, यदि दो अतिशयोक्तिपूर्ण मीट्रिक रिक्त स्थान अर्ध-सममितीय हैं, तो उनके बीच अर्ध-सममिति उनकी सीमाओं के बीच एक समरूपता प्रदान करती है।<ref>{{harvnb|Coornaert|Delzant|Papadopoulos|1990}}</ref><ref>{{harvnb|Ghys|de la Harpe|1996}}</ref> यह महत्वपूर्ण है क्योंकि रिक्त स्थान के अर्ध-समरूपता की तुलना में कॉम्पैक्ट रिक्त स्थान के होमोमोर्फिज्म को समझना बहुत आसान है।
सबसे महत्वपूर्ण गुणों में से एक यह है कि यह अर्ध-सममिति अपरिवर्तनीय है, अर्थात्, यदि दो अतिपरवलिक मीट्रिक रिक्त स्थान अर्ध-सममितीय है, तो उनके बीच अर्ध-सममिति उनकी सीमाओं के बीच एक समरूपता प्रदान करती है।<ref>{{harvnb|Coornaert|Delzant|Papadopoulos|1990}}</ref><ref>{{harvnb|Ghys|de la Harpe|1996}}</ref> यह महत्वपूर्ण है क्योंकि रिक्त स्थान के अर्ध-समरूपता की तुलना में कॉम्पैक्ट रिक्त स्थान के समरूपता को समझना बहुत आसान होता है।


== उदाहरण ==
== उदाहरण ==
*एक पेड़ की ग्रोमोव सीमा (ग्राफ सिद्धांत) एक [[कैंटर स्पेस|कैंटर स्थान]] है।
*एक पेड़ की ग्रोमोव सीमा (ग्राफ सिद्धांत) एक [[कैंटर स्पेस|कैंटर स्थान]] है।
*हाइपरबोलिक स्थान की ग्रोमोव सीमा|हाइपरबोलिक एन-स्थान एक (एन-1)-आयामी क्षेत्र है।
*अतिपरवलिक स्थान की ग्रोमोव सीमा|अतिपरवलिक एन-स्थान एक (एन-1)-आयामी क्षेत्र है।
*संहत रीमैन सतह के मूलभूत समूह की ग्रोमोव सीमा इकाई [[वृत्त]] है।
*संहत रीमैन सतह के मूलभूत समूह की ग्रोमोव सीमा इकाई [[वृत्त]] है।
*अधिकांश अतिपरवलयिक समूहों की ग्रोमोव सीमा [[मेरा स्पंज|मेन्जर स्पंज]] है।<ref>{{harvnb|Champetier|1995}}</ref>
*अधिकांश अतिपरवलिक समूहों की ग्रोमोव सीमा [[मेरा स्पंज|मेन्जर स्पंज]] है।<ref>{{harvnb|Champetier|1995}}</ref>
== सामान्यीकरण ==
== सामान्यीकरण ==


=== CAT(0) स्थान की दृश्य सीमा ===
=== CAT(0) स्थान की दृश्य सीमा ===
एक पूर्ण स्थान CAT(0) अंतरिक्ष X के लिए, X की दृश्य सीमा, δ-हाइपरबोलिक अंतरिक्ष की ग्रोमोव सीमा की तरह, स्पर्शोन्मुख जियोडेसिक किरणों के समतुल्य वर्ग के होते हैं। हालाँकि, ग्रोमोव उत्पाद का उपयोग उस पर एक टोपोलॉजी को परिभाषित करने के लिए नहीं किया जा सकता है। उदाहरण के लिए, एक सपाट विमान के मामले में, विपरीत दिशाओं में नहीं जाने वाले बिंदु से जारी होने वाली किसी भी दो जियोडेसिक किरणों का उस बिंदु के संबंध में अनंत ग्रोमोव उत्पाद होगा। इसके बजाय दृश्य सीमा 'शंकु टोपोलॉजी' से संपन्न है। X में एक बिंदु o को ठीक करें। किसी भी सीमा बिंदु को o से जारी होने वाली एक अद्वितीय जियोडेसिक किरण द्वारा दर्शाया जा सकता है। एक किरण दी <math>\gamma</math> ओ से जारी, और सकारात्मक संख्या टी > 0 और आर > 0, सीमा बिंदु पर एक निकट के आधार <math>[\gamma]</math> फॉर्म के सेट द्वारा दिया गया है
एक पूर्ण स्थान CAT(0) X के लिए, X की दृश्य सीमा, δ-अतिपरवलिक स्थान की ग्रोमोव सीमा की तरह, स्पर्शोन्मुख जियोडेसिक किरणों के समतुल्य वर्ग के होते है। चूंकि, ग्रोमोव उत्पाद का उपयोग उस पर एक टोपोलॉजी को परिभाषित करने के लिए नहीं किया जा सकता है। उदाहरण के लिए, एक सपाट विमान के स्थिति में, विपरीत दिशाओं में नहीं जाने वाले बिंदु से जारी होने वाली किसी भी दो जियोडेसिक किरणों का उस बिंदु के संबंध में अनंत ग्रोमोव उत्पाद होता है। इसके अतिरिक्त दृश्य सीमा 'शंकु टोपोलॉजी' से संपन्न होता है। X में एक बिंदु o को ठीक करता है। किसी भी सीमा बिंदु को o से जारी होने वाली एक अद्वितीय जियोडेसिक किरण द्वारा दर्शाया जा सकता है। एक किरण दी <math>\gamma</math> ओ से जारी, और सकारात्मक संख्या टी > 0 और आर > 0, सीमा बिंदु पर एक निकट के आधार <math>[\gamma]</math> फॉर्म के सेट द्वारा दिया गया है
: <math>U(\gamma, t, r) = \{[\gamma_1]\in\partial X | \gamma_1(0)=o, d( \gamma_1(t),\gamma(t))< r\}.</math>
: <math>U(\gamma, t, r) = \{[\gamma_1]\in\partial X | \gamma_1(0)=o, d( \gamma_1(t),\gamma(t))< r\}.</math>
ऊपर परिभाषित शंकु टोपोलॉजी ओ की पसंद से स्वतंत्र है।
ऊपर परिभाषित शंकु टोपोलॉजी ओ की पसंद से स्वतंत्र है।


यदि X [[उचित मीट्रिक स्थान]] है, तो शंकु टोपोलॉजी के साथ दृश्य सीमा सघन (टोपोलॉजी) है। जब X CAT(0) और उचित जियोडेसिक δ-हाइपरबोलिक स्थान दोनों होता है, तो शंकु टोपोलॉजी ग्रोमोव सीमा के टोपोलॉजी के साथ मेल खाता है।<ref>{{harvnb|Bridson|Haefliger|1999}}</ref>
यदि X [[उचित मीट्रिक स्थान]] है, तो शंकु टोपोलॉजी के साथ दृश्य सीमा सघन (टोपोलॉजी) है। जब ऐक्स CAT(0) और उचित जियोडेसिक δ-अतिपरवलिक स्थान दोनों होता है, तो शंकु टोपोलॉजी ग्रोमोव सीमा के टोपोलॉजी के साथ मेल खाता है।<ref>{{harvnb|Bridson|Haefliger|1999}}</ref>
== तोप का अनुमान ==
== तोप का अनुमान ==
{{Main|तोप का अनुमान}}
{{Main|तोप का अनुमान}}
तोप का अनुमान अनंत पर 2-क्षेत्र वाले समूहों के वर्गीकरण से संबंधित है:
तोप का अनुमान अनंत पर 2-क्षेत्र वाले समूहों के वर्गीकरण से संबंधित है:


तोप का अनुमान: प्रत्येक मिखाइल ग्रोमोव (गणितज्ञ) अतिशयोक्तिपूर्ण समूह अनंत पर 2-गोले के साथ अतिशयोक्तिपूर्ण अंतरिक्ष पर ज्यामितीय समूह कार्रवाई। अतिशयोक्तिपूर्ण 3-अंतरिक्ष।<ref name="RM">{{harvnb|Cannon|1994}}</ref>
तोप का अनुमान: प्रत्येक ग्रोमोव अतिपरवलिक समूह अनंत पर 2-गोले के साथ अतिपरवलिक 3-स्थान पर ज्यामितीय रूप से कार्य करता है।<ref name="RM">{{harvnb|Cannon|1994}}</ref>
 
तोप का अनुमान: प्रत्येक ग्रोमोव अतिपरवलयिक समूह अनंत पर 2-गोले के साथ अतिपरवलयिक 3-स्थान पर ज्यामितीय रूप से कार्य करता है।<ref name="RM" />


इस अनुमान के अनुरूप को 1-गोले के लिए सत्य और 2 से बड़े सभी आयामों के क्षेत्रों के लिए असत्य के रूप में जाना जाता है।
इस अनुमान के अनुरूप को 1-गोले के लिए सत्य और 2 से बड़े सभी आयामों के क्षेत्रों के लिए असत्य के रूप में जाना जाता है।

Revision as of 04:46, 28 April 2023

दो जनरेटर के साथ एक मुक्त समूह का केली ग्राफ। यह एक अतिपरवलिक समूह है जिसकी ग्रोमोव सीमा एक कैंटर सेट है। अतिपरवलिक समूह और उनकी सीमाएं ज्यामितीय समूह सिद्धांत में महत्वपूर्ण विषय है, जैसा कि केली ग्राफ है।
(6,4,2) त्रिकोणीय अतिपरवलिक टाइलिंग। इस टाइलिंग से संबंधित त्रिभुज समूह की ग्रोमोव सीमा के रूप में एक चक्र है।

गणित में, δ-अतिपरवलिक स्थान (विशेष रूप से एक अतिपरवलिक समूह) की ग्रोमोव सीमा अतिपरवलिक स्थान के सीमा क्षेत्र को सामान्यीकृत करने वाली एक अमूर्त अवधारणा है। संकल्पनात्मक रूप से, ग्रोमोव सीमा अनंत पर सभी बिन्दुओं का समुच्चय है। उदाहरण के लिए, वास्तविक रेखा की ग्रोमोव सीमा सकारात्मक और नकारात्मक अनंतता के अनुरूप दो बिंदु है।

परिभाषा

एक जियोडेसिक और उचित δ-अतिपरवलिक स्थान की ग्रोमोव सीमा की कई समान परिभाषाएँ है। जियोडेसिक किरणों के सबसे उपयोग समकक्ष वर्गों में से एक है।[1]

कोई बिंदु उठाओ एक अतिपरवलिक मीट्रिक स्थान का उत्पत्ति होता है। एक जियोडेसिक किरण एक सममितीय द्वारा दिया गया मार्ग है ऐसा है कि प्रत्येक खंड से सबसे कम लंबाई का पथ है को .

दो जियोडेसिक स्थिरांक होने पर समकक्ष के रूप में परिभाषित किया जाता है ऐसा है कि सभी के लिए . का समतुल्य वर्ग निरूपित किया जाता है .

जियोडेसिक और उचित अतिपरवलिक मीट्रिक स्थान की ग्रोमोव सीमा सेट है में एक जियोडेसिक किरण है .

टोपोलॉजी

तीन बिंदुओं के ग्रोमोव उत्पाद का उपयोग करना उपयोगी होता है। तीन बिंदुओं का ग्रोमोव उत्पाद एक मीट्रिक स्थान में होता है . एक पेड़ (ग्राफ सिद्धांत), यह मापता है कि रास्ते कितने लंबे है को और अलग होने से पहले एक साथ रहते है। चूँकि अतिपरवलिक स्थान पेड़ की तरह होते है, ग्रोमोव उत्पाद मापता है कि भू-भौतिकी कितनी लंबी है को और अलग होने से पहले करीब रहते है।

एक बिंदु दिया ग्रोमोव सीमा में, हम सेट को परिभाषित करते है जियोडेसिक किरणें है साथ और . ये खुले सेट ग्रोमोव सीमा के टोपोलॉजी के लिए एक आधार (टोपोलॉजी) बनाते है।

ये खुले सेट केवल जियोडेसिक किरणों के सेट है जो एक निश्चित जियोडेसिक किरण का कुछ दूरी तक अनुसरण करते है के अलग होने से पहले तक करते है।

यह टोपोलॉजी ग्रोमोव सीमा को सघन स्थान को मेट्रिजेशन प्रमेय स्थान बनाती है।

अतिपरवलिक समूह के अंत (टोपोलॉजी) की संख्या ग्रोमोव सीमा के घटकों की संख्या होती है।

ग्रोमोव सीमा के गुण

ग्रोमोव सीमा में कई महत्वपूर्ण गुण होते है। समूह सिद्धांत में सबसे अधिक उपयोग किए जाने वाले गुणों में से एक निम्नलिखित है: यदि एक समूह एक δ-अतिपरवलिक स्थान पर ज्यामितीय समूह क्रिया है, फिर अतिपरवलिक समूह होता है और और होमियोमॉर्फिक ग्रोमोव सीमाएँ होती है।[2]

सबसे महत्वपूर्ण गुणों में से एक यह है कि यह अर्ध-सममिति अपरिवर्तनीय है, अर्थात्, यदि दो अतिपरवलिक मीट्रिक रिक्त स्थान अर्ध-सममितीय है, तो उनके बीच अर्ध-सममिति उनकी सीमाओं के बीच एक समरूपता प्रदान करती है।[3][4] यह महत्वपूर्ण है क्योंकि रिक्त स्थान के अर्ध-समरूपता की तुलना में कॉम्पैक्ट रिक्त स्थान के समरूपता को समझना बहुत आसान होता है।

उदाहरण

  • एक पेड़ की ग्रोमोव सीमा (ग्राफ सिद्धांत) एक कैंटर स्थान है।
  • अतिपरवलिक स्थान की ग्रोमोव सीमा|अतिपरवलिक एन-स्थान एक (एन-1)-आयामी क्षेत्र है।
  • संहत रीमैन सतह के मूलभूत समूह की ग्रोमोव सीमा इकाई वृत्त है।
  • अधिकांश अतिपरवलिक समूहों की ग्रोमोव सीमा मेन्जर स्पंज है।[5]

सामान्यीकरण

CAT(0) स्थान की दृश्य सीमा

एक पूर्ण स्थान CAT(0) X के लिए, X की दृश्य सीमा, δ-अतिपरवलिक स्थान की ग्रोमोव सीमा की तरह, स्पर्शोन्मुख जियोडेसिक किरणों के समतुल्य वर्ग के होते है। चूंकि, ग्रोमोव उत्पाद का उपयोग उस पर एक टोपोलॉजी को परिभाषित करने के लिए नहीं किया जा सकता है। उदाहरण के लिए, एक सपाट विमान के स्थिति में, विपरीत दिशाओं में नहीं जाने वाले बिंदु से जारी होने वाली किसी भी दो जियोडेसिक किरणों का उस बिंदु के संबंध में अनंत ग्रोमोव उत्पाद होता है। इसके अतिरिक्त दृश्य सीमा 'शंकु टोपोलॉजी' से संपन्न होता है। X में एक बिंदु o को ठीक करता है। किसी भी सीमा बिंदु को o से जारी होने वाली एक अद्वितीय जियोडेसिक किरण द्वारा दर्शाया जा सकता है। एक किरण दी ओ से जारी, और सकारात्मक संख्या टी > 0 और आर > 0, सीमा बिंदु पर एक निकट के आधार फॉर्म के सेट द्वारा दिया गया है

ऊपर परिभाषित शंकु टोपोलॉजी ओ की पसंद से स्वतंत्र है।

यदि X उचित मीट्रिक स्थान है, तो शंकु टोपोलॉजी के साथ दृश्य सीमा सघन (टोपोलॉजी) है। जब ऐक्स CAT(0) और उचित जियोडेसिक δ-अतिपरवलिक स्थान दोनों होता है, तो शंकु टोपोलॉजी ग्रोमोव सीमा के टोपोलॉजी के साथ मेल खाता है।[6]

तोप का अनुमान

तोप का अनुमान अनंत पर 2-क्षेत्र वाले समूहों के वर्गीकरण से संबंधित है:

तोप का अनुमान: प्रत्येक ग्रोमोव अतिपरवलिक समूह अनंत पर 2-गोले के साथ अतिपरवलिक 3-स्थान पर ज्यामितीय रूप से कार्य करता है।[7]

इस अनुमान के अनुरूप को 1-गोले के लिए सत्य और 2 से बड़े सभी आयामों के क्षेत्रों के लिए असत्य के रूप में जाना जाता है।

टिप्पणियाँ

संदर्भ

  • Bridson, Martin R.; Haefliger, André (1999), Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, ISBN 3-540-64324-9, MR 1744486
  • Cannon, James W. (1994), "The combinatorial Riemann mapping theorem", Acta Mathematica, 173 (2): 155–234, doi:10.1007/bf02398434
  • Champetier, C. (1995), "Propriétés statistiques des groupes de presentation finie", Advances in Mathematics, 116: 197–262, doi:10.1006/aima.1995.1067
  • Coornaert, M.; Delzant, T.; Papadopoulos, A. (1990), Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov, Lecture Notes in Mathematics (in français), vol. 1441, Springer-Verlag, ISBN 3-540-52977-2
  • de la Harpe, Pierre; Ghys, Etienne (1990), Sur les groupes hyperboliques d'après Mikhael Gromov (in français), Birkhäuser
  • Gromov, M. (1987), "Hyperbolic groups", in S. Gersten (ed.), Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, pp. 75–263
  • Kapovich, Ilya; Benakli, Nadia (2002), "Boundaries of hyperbolic groups", Combinatorial and geometric group theory, Contemporary Mathematics, vol. 296, pp. 39–93
  • Roe, John (2003), Lectures on Coarse Geometry, University Lecture Series, vol. 31, American Mathematical Society, ISBN 978-0-8218-3332-2