डिस्क क्षेत्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 6: Line 6:
{{legend|#2eb373|('''डी''') [[क्लस्टर (फाइल प्रणाली)|क्लस्टर]]}}]]कंप्यूटर [[ डिस्क भंडारण |'''डिस्क छेत्र''']] में, एक छेत्र चुंबकीय डिस्क या [[ऑप्टिकल डिस्क|प्रकाशिक डिस्क]] के रास्ते का उपखंड होता है। प्रत्येक क्षेत्र [[हार्ड डिस्क ड्राइव]] (एचडीडी) के लिए पारंपरिक रूप से 512 [[बाइट|बाइट्स]] और [[CD-ROM]] और [[DVD-ROM]] के लिए 2048 बाइट्स के उपयोगकर्ता डेटा की एक निश्चित मात्रा को संग्रहीत करता है। नए एचडीडी 4096-बाइट (4 [[KiB]]) छेत्र का उपयोग करते है, जिन्हें [[उन्नत प्रारूप]] (AF) के रूप में जाना जाता है।
{{legend|#2eb373|('''डी''') [[क्लस्टर (फाइल प्रणाली)|क्लस्टर]]}}]]कंप्यूटर [[ डिस्क भंडारण |'''डिस्क छेत्र''']] में, एक छेत्र चुंबकीय डिस्क या [[ऑप्टिकल डिस्क|प्रकाशिक डिस्क]] के रास्ते का उपखंड होता है। प्रत्येक क्षेत्र [[हार्ड डिस्क ड्राइव]] (एचडीडी) के लिए पारंपरिक रूप से 512 [[बाइट|बाइट्स]] और [[CD-ROM]] और [[DVD-ROM]] के लिए 2048 बाइट्स के उपयोगकर्ता डेटा की एक निश्चित मात्रा को संग्रहीत करता है। नए एचडीडी 4096-बाइट (4 [[KiB]]) छेत्र का उपयोग करते है, जिन्हें [[उन्नत प्रारूप]] (AF) के रूप में जाना जाता है।


क्षेत्र एक हार्ड ड्राइव की न्यूनतम भंडारण इकाई है।<ref>{{Cite book|title = कंप्यूटर विज्ञान|url = https://books.google.com/books?id=we4WrfSEb4UC|publisher = Lotus Press|date = 2004-01-01|isbn = 9788189093242|language = en|first = Suzie|last = Hamington|page = 42}}</ref> अधिकांश डिस्क विभाजन योजनाओं को फ़ाइल के वास्तविक आकार की परवाह किए बिना क्षेत्रों की एक अभिन्न संख्या पर कब्जा करने के लिए बनाया गया है। जो फाइलें एक पूरे छेत्र को नहीं भरती है, उनके अंतिम छेत्र शेष शून्य से भरा होता है। व्यवहार में, ऑपरेटिंग प्रणाली सामान्यतः डेटा के ब्लॉक पर काम करता है, जो कई क्षेत्रों में फैल सकता है।<ref>{{Cite book|title = कंप्यूटर साइंस हैंडबुक, दूसरा संस्करण|url = https://books.google.com/books?id=hNLKBQAAQBAJ|publisher = CRC Press|date = 2004-06-28|isbn = 9780203494455|language = en|first = Allen B.|last = Tucker|page = 86}}</ref>
क्षेत्र एक हार्ड ड्राइव की न्यूनतम भंडारण इकाई है।<ref>{{Cite book|title = कंप्यूटर विज्ञान|url = https://books.google.com/books?id=we4WrfSEb4UC|publisher = Lotus Press|date = 2004-01-01|isbn = 9788189093242|language = en|first = Suzie|last = Hamington|page = 42}}</ref> अधिकांश डिस्क विभाजन योजनाओं को फ़ाइल के वास्तविक आकार की परवाह किए बिना क्षेत्रों की एक अभिन्न संख्या पर कब्जा करने के लिए बनाया गया है। जो फाइलें एक पूरे छेत्र को नहीं भरती है, उनके अंतिम छेत्र शेष शून्य से भरा होता है। व्यवहार में, परिचालन प्रणाली सामान्यतः डेटा के ब्लॉक पर काम करता है, जो कई क्षेत्रों में फैल सकता है।<ref>{{Cite book|title = कंप्यूटर साइंस हैंडबुक, दूसरा संस्करण|url = https://books.google.com/books?id=hNLKBQAAQBAJ|publisher = CRC Press|date = 2004-06-28|isbn = 9780203494455|language = en|first = Allen B.|last = Tucker|page = 86}}</ref>


ज्यामितीय रूप से, [[वृत्ताकार क्षेत्र]] शब्द का अर्थ एक केंद्र, दो त्रिज्या और एक संबंधित [[चाप (ज्यामिति)|चाप]] के बीच एक [[डिस्क (गणित)|डिस्क]] का एक हिस्सा है (चित्र 1, बी देखें), जो एक पाई के टुकड़े के आकार का है। इस प्रकार, डिस्क क्षेत्र (चित्र 1, सी) एक ट्रैक और ज्यामितीय क्षेत्र के प्रतिच्छेदन को संदर्भित करता है।
ज्यामितीय रूप से, [[वृत्ताकार क्षेत्र]] शब्द का अर्थ एक केंद्र, दो त्रिज्या और एक संबंधित [[चाप (ज्यामिति)|चाप]] के बीच एक [[डिस्क (गणित)|डिस्क]] का एक हिस्सा है (चित्र 1, बी देखें), जो एक पाई के टुकड़े के आकार का है। इस प्रकार, डिस्क क्षेत्र (चित्र 1, सी) एक ट्रैक और ज्यामितीय क्षेत्र के प्रतिच्छेदन को संदर्भित करता है।
Line 13: Line 13:


== इतिहास ==
== इतिहास ==
पहली डिस्क ड्राइव, आईबीएम चुंबकीय डिस्क ड्राइव का 1957 का इतिहास#IBM 350, में प्रति ट्रैक दस 100 कैरेक्टर छेत्र थे, प्रत्येक वर्ण छह बिट्स का था और इसमें एक समता बिट सम्मलित था। सभी रिकॉर्डिंग सतहों पर प्रति ट्रैक छेत्रों की संख्या समान थी। प्रत्येक क्षेत्र से संबद्ध कोई अभिलिखित पहचानकर्ता क्षेत्र (आईडी) नहीं था।<ref>{{cite book|url=http://bitsavers.org/pdf/ibm/305_ramac/22-6264-1_305_RAMAC_Manual_of_Operation_Apr57.pdf|title=305 RAMAC Random Access Method of Accounting and Control Manual of Operation|year=1957|publisher=[[IBM]]}}</ref>
पहली डिस्क ड्राइव, आईबीएम चुंबकीय डिस्क ड्राइव का 1957 का इतिहास आईबीएम 350, में प्रति दस 100 अक्षर छेत्र थे, प्रत्येक वर्ण छह बिट्स का था और इसमें एक समता बिट सम्मलित था। सभी अभिलेखन सतहों पर प्रति छेत्रों की संख्या समान थी। प्रत्येक क्षेत्र से संबद्ध कोई अभिलिखित पहचानकर्ता क्षेत्र (आईडी) नहीं था।<ref>{{cite book|url=http://bitsavers.org/pdf/ibm/305_ramac/22-6264-1_305_RAMAC_Manual_of_Operation_Apr57.pdf|title=305 RAMAC Random Access Method of Accounting and Control Manual of Operation|year=1957|publisher=[[IBM]]}}</ref>
1961 में IBM चुंबकीय डिस्क_ड्राइव का इतिहास#IBM 1301 ने परिवर्तनीय लंबाई वाले क्षेत्रों को प्रस्तुत किया, जिसे IBM द्वारा रिकॉर्ड कहा गया, और प्रत्येक रिकॉर्ड में एक रिकॉर्ड पता फ़ील्ड को रिकॉर्ड (छेत्र) में डेटा से अलग जोड़ा गया।<ref>{{cite book|url=http://bitsavers.org/pdf/ibm/dasd/1301/A22-6785_1301_1302_Disk_Storage_with_IBM_7090_7094.pdf|title=IBM 1301, Models 1 and 2, Disk Storage and IBM 1302, Models 1 and 2, Disk Storage with IBM 7090, 7094, and 7094 II Data Processing Systems|publisher=IBM|id=A22-6785}}</ref><ref>{{cite book|url=http://bitsavers.org/pdf/ibm/dasd/1301/A22-6788_1301_1302_Disk_Storage_with_IBM_1410_and_7010.pdf|title=IBM 1301, Models 1 and 2, Disk Storage and IBM 1302, Models 1 and 2, Disk Storage with IBM 1410 and 7010 Data Processing Systems|publisher=IBM|id=A22-6788}}</ref> सभी आधुनिक डिस्क ड्राइव में छेत्र पता फील्ड होते है, जिन्हें आईडी फील्ड कहा जाता है, जो छेत्र में डेटा से अलग होते है।


इसके अलावा 1961 में ब्रायंट ने अपनी 4000 श्रृंखलाओं के साथ ज़ोन_बिट_रिकॉर्डिंग की अवधारणा प्रस्तुत की, जिसने ट्रैक के व्यास के कार्य के रूप में प्रति ट्रैक छेत्रों की संख्या को अलग-अलग करने की अनुमति दी - एक आंतरिक ट्रैक की तुलना में बाहरी ट्रैक पर अधिक छेत्र है।<ref>{{cite book|url=http://bitsavers.org/pdf/bryant/BCPB-101-9-63_4000-SeriesTechData_Sep63.pdf|title=Technical Data - Series 4000 Disk File|year=1963|publisher=Bryant Computer Products}}</ref> यह 1990 के दशक में उद्योग अभ्यास बन गया और आज भी मानक है।
1961 में आईबीएम चुंबकीय डिस्क_ड्राइव का इतिहासम आईबीएम 1301 ने परिवर्तनीय लंबाई वाले क्षेत्रों को प्रस्तुत किया, जिसे आईबीएम द्वारा अभिलेख कहा गया, और प्रत्येक अभिलेख में एक अभिलेख पता छेत्र को अभिलेख डेटा से अलग जोड़ा गया।<ref>{{cite book|url=http://bitsavers.org/pdf/ibm/dasd/1301/A22-6785_1301_1302_Disk_Storage_with_IBM_7090_7094.pdf|title=IBM 1301, Models 1 and 2, Disk Storage and IBM 1302, Models 1 and 2, Disk Storage with IBM 7090, 7094, and 7094 II Data Processing Systems|publisher=IBM|id=A22-6785}}</ref><ref>{{cite book|url=http://bitsavers.org/pdf/ibm/dasd/1301/A22-6788_1301_1302_Disk_Storage_with_IBM_1410_and_7010.pdf|title=IBM 1301, Models 1 and 2, Disk Storage and IBM 1302, Models 1 and 2, Disk Storage with IBM 1410 and 7010 Data Processing Systems|publisher=IBM|id=A22-6788}}</ref> सभी आधुनिक डिस्क ड्राइव में पता छेत्र होते है, जिन्हें आईडी छेत्र कहा जाता है, जो छेत्र में डेटा से अलग होते है।


IBM मैग्नेटिक डिस्क ड्राइव का इतिहास#IBM प्रणाली/360 और IBM प्रणाली/360 के साथ 1964 में घोषित अन्य IBM मेनफ्रेम_एचडीडी ने [[चक्रीय अतिरिक्तता जांच]] (CRC) के साथ अपने छेत्रों (रिकॉर्ड्स) के सभी क्षेत्रों में त्रुटियों का पता लगाया, जिसमें पैरिटी प्रति कैरेक्टर डिटेक्शन को प्रतिस्थापित किया गया। पूर्व पीढ़ी। आईबीएम के क्षेत्रों (रिकॉर्ड्स) ने इस समय भौतिक क्षेत्र में एक तीसरा क्षेत्र जोड़ा, जो डेटा की खोज में सहायता के लिए एक प्रमुख क्षेत्र था। इन आईबीएम भौतिक क्षेत्रों, जिन्हें रिकॉर्ड कहा जाता है, के तीन मूल भाग होते है, एक काउंट फ़ील्ड जो एक आईडी फ़ील्ड के रूप में कार्य करता है, एक प्रमुख फ़ील्ड जो अधिकांश डिस्क ड्राइव क्षेत्रों में मौजूद नहीं है और एक डेटा फ़ील्ड, जिसे रिकॉर्ड के लिए अक्सर काउंट_की_डेटा प्रारूप कहा जाता है।
इसके अतिरिक्त 1961 में ब्रायंट ने अपनी 4000 श्रृंखलाओं के साथ ज़ोन_बिट_अभिलेखन की अवधारणा प्रस्तुत की थी, जिसने व्यास के कार्य के रूप में प्रति छेत्रों की संख्या को अलग-अलग करने की अनुमति दी थी - एक आंतरिक रास्ते की तुलना में बाहरी रास्ते पर अधिक छेत्र होते है।<ref>{{cite book|url=http://bitsavers.org/pdf/bryant/BCPB-101-9-63_4000-SeriesTechData_Sep63.pdf|title=Technical Data - Series 4000 Disk File|year=1963|publisher=Bryant Computer Products}}</ref> यह 1990 के दशक में उद्योग अभ्यास बन गया और आज भी मानक है।


IBM_magnetic डिस्क ड्राइव का 1970 का इतिहास#IBM 3330 अधिकांश त्रुटियों का पता लगाकर और कई त्रुटियों के सुधार की अनुमति देकर डेटा अखंडता में सुधार करने के लिए त्रुटि सुधार कोड (ECC) के साथ प्रत्येक क्षेत्र के डेटा फ़ील्ड पर CRC को प्रतिस्थापित करता है।<ref>{{cite book|url=http://bitsavers.org/pdf/ibm/dasd/3330/GA26-1615-3_Reference_Manual_For_IBM_3330_Disk_Storage_Mar74.pdf|title=Reference Manual for IBM 3330 Series Disk Storage|date=March 1974|publisher=IBM|id=GA26-1615-3}}</ref> अंतत: डिस्क क्षेत्रों के सभी क्षेत्रों में ECC थे।
आईबीएम मैग्नेटिक डिस्क ड्राइव का इतिहास आईबीएम प्रणाली/360 और आईबीएम प्रणाली/360 के साथ 1964 में घोषित अन्य आईबीएम मेनफ्रेम_एचडीडी ने [[चक्रीय अतिरिक्तता जांच]] (सीआरसी ) के साथ अपने छेत्रों के सभी त्रुटियों का पता लगता है, जिसमें प्रति पता अक्षर को प्रतिस्थापित किया गया था। आईबीएम के क्षेत्रों ने इस समय भौतिक क्षेत्र में एक तीसरा क्षेत्र जोड़ा, जो डेटा की खोज में सहायता के लिए एक प्रमुख क्षेत्र था। इन आईबीएम भौतिक क्षेत्रों, जिन्हें अभिलेख कहा जाता है, के तीन मूल भाग होते है, एक काउंट छेत्र जो एक आईडी छेत्र के रूप में कार्य करता है, एक प्रमुख छेत्र जो अधिकांश डिस्क ड्राइव क्षेत्रों में मौजूद नहीं है और एक डेटा छेत्र, जिसे अभिलेख के लिए अक्सर काउंट_की_डेटा प्रारूप कहा जाता है।


1980 के दशक से पहले क्षेत्र के आकार का बहुत कम मानकीकरण होता था, डिस्क ड्राइव में प्रति ट्रैक अधिकतम संख्या में बिट्स थे और विभिन्न प्रणाली निर्माताओं ने अपने OSes और अनुप्रयोगों के अनुरूप ट्रैक को विभिन्न छेत्र आकारों में उप-विभाजित किया। 1980 के दशक की शुरुआत में IBM पर्सनल कंप्यूटर की लोकप्रियता और 1980 के दशक के अंत में Parallel_ATA#IDE_and_ATA-1 के आगमन के कारण 512-बाइट क्षेत्र एचडीडी और इसी तरह के भंडारण उपकरणों के लिए एक उद्योग मानक क्षेत्र बन गया।
आईबीएम_magnetic डिस्क ड्राइव का 1970 का इतिहास#आईबीएम 3330 अधिकांश त्रुटियों का पता लगाकर और कई त्रुटियों के सुधार की अनुमति देकर डेटा अखंडता में सुधार करने के लिए त्रुटि सुधार कोड (ईसीसी ) के साथ प्रत्येक क्षेत्र के डेटा छेत्र पर सीआरसी  को प्रतिस्थापित करता है।<ref>{{cite book|url=http://bitsavers.org/pdf/ibm/dasd/3330/GA26-1615-3_Reference_Manual_For_IBM_3330_Disk_Storage_Mar74.pdf|title=Reference Manual for IBM 3330 Series Disk Storage|date=March 1974|publisher=IBM|id=GA26-1615-3}}</ref> अंतत: डिस्क क्षेत्रों के सभी क्षेत्रों में ईसीसी  थे।


1970 के दशक में IBM ने [[फिक्स्ड-ब्लॉक आर्किटेक्चर]] [[डायरेक्ट एक्सेस स्टोरेज डिवाइस]]ेस (FBA DASDs) को अपने काउंट की डेटा DASD की लाइन में जोड़ा। सीकेडी डीएएसडी ने कई चर लंबाई क्षेत्रों का समर्थन किया जबकि आईबीएम एफबीए डीएएसडी ने 512, 1024, 2048, या 4096 बाइट्स के छेत्र आकार का समर्थन किया।
1980 के दशक से पहले क्षेत्र के आकार का बहुत कम मानकीकरण होता था, डिस्क ड्राइव में अधिकतम संख्या में बिट्स थे और विभिन्न प्रणाली निर्माताओं ने अपने ओएस और अनुप्रयोगों के अनुरूप रास्ते को विभिन्न छेत्र आकारों में उप-विभाजित किया था। 1980 के दशक की प्रारंभ में आईबीएम कंप्यूटर की लोकप्रियता और 1980 के दशक के अंत में आगमन के कारण 512-बाइट क्षेत्र एचडीडी और इसी तरह के भंडारण उपकरणों के लिए एक उद्योग मानक क्षेत्र बन गया था।


2000 में उद्योग व्यापार संगठन, इंटरनेशनल डिस्क ड्राइव इक्विपमेंट एंड मैटेरियल्स एसोसिएशन ([[आईडीईएमए]]) ने कार्यान्वयन और मानकों को परिभाषित करने के लिए काम शुरू किया जो डेटा भंडारण क्षमताओं में भविष्य में वृद्धि को समायोजित करने के लिए 512 बाइट्स से अधिक क्षेत्र आकार के प्रारूपों को नियंत्रित करेगा।<ref name="idema-advent">{{cite web
1970 के दशक में आईबीएम ने [[फिक्स्ड-ब्लॉक आर्किटेक्चर]] [[डायरेक्ट एक्सेस स्टोरेज डिवाइस|डायरेक्ट एक्सेस भंडारण उपकरण]](FBA DASDs) को अपने काउंट की डेटा DASD की लाइन में जोड़ा जाता है। सीकेडी डीएएसडी ने कई चर लंबाई क्षेत्रों का समर्थन किया जबकि आईबीएम एफबीए डीएएसडी ने 512, 1024, 2048, या 4096 बाइट्स के छेत्र आकार का समर्थन किया था।
 
2000 में उद्योग व्यापार संगठन, अंतरराष्ट्रीय डिस्क ड्राइव उपकरण एंड मैटेरियल्स एसोसिएशन ([[आईडीईएमए]]) ने कार्यान्वयन और मानकों को परिभाषित करने के लिए काम प्रारंभ किया जो डेटा भंडारण क्षमताओं में भविष्य में वृद्धि को समायोजित करने के लिए 512 बाइट्स से अधिक क्षेत्र आकार के प्रारूपों को नियंत्रित करता है।<ref name="idema-advent">{{cite web
  | url = http://www.idema.org/?page_id=2369
  | url = http://www.idema.org/?page_id=2369
  | title = The Advent of Advanced Format
  | title = The Advent of Advanced Format
Line 52: Line 53:
एक खोया क्लस्टर तब होता है जब निर्देशिका सूची से फ़ाइल हटा दी जाती है, लेकिन फ़ाइल आवंटन तालिका (एफएटी) अभी भी फ़ाइल को आवंटित क्लस्टर दिखाती है।<ref>{{Cite web |url=http://support.microsoft.com/kb/71609 |title=क्रॉस-लिंक्ड फ़ाइलों या खोए हुए समूहों के कारण होने वाली त्रुटियाँ|access-date=2020-08-03 |archive-date=2015-03-06 |archive-url=https://web.archive.org/web/20150306204945/http://support.microsoft.com/kb/71609 |url-status=dead }}</ref>
एक खोया क्लस्टर तब होता है जब निर्देशिका सूची से फ़ाइल हटा दी जाती है, लेकिन फ़ाइल आवंटन तालिका (एफएटी) अभी भी फ़ाइल को आवंटित क्लस्टर दिखाती है।<ref>{{Cite web |url=http://support.microsoft.com/kb/71609 |title=क्रॉस-लिंक्ड फ़ाइलों या खोए हुए समूहों के कारण होने वाली त्रुटियाँ|access-date=2020-08-03 |archive-date=2015-03-06 |archive-url=https://web.archive.org/web/20150306204945/http://support.microsoft.com/kb/71609 |url-status=dead }}</ref>
डॉस 4.0 में शब्द क्लस्टर को आवंटन इकाई में बदल दिया गया था। हालाँकि क्लस्टर शब्द अभी भी व्यापक रूप से उपयोग किया जाता है।<ref>Mueller, Scott (2002). ''Upgrading and repairing PCs'', p. 1354. {{ISBN|0-7897-2745-5}}.</ref>
डॉस 4.0 में शब्द क्लस्टर को आवंटन इकाई में बदल दिया गया था। हालाँकि क्लस्टर शब्द अभी भी व्यापक रूप से उपयोग किया जाता है।<ref>Mueller, Scott (2002). ''Upgrading and repairing PCs'', p. 1354. {{ISBN|0-7897-2745-5}}.</ref>
== ज़ोन बिट रिकॉर्डिंग ==
== ज़ोन बिट अभिलेखन ==
{{main article|ज़ोन बिट रिकॉर्डिंग}}
{{main article|ज़ोन बिट रिकॉर्डिंग}}
यदि एक क्षेत्र को एक त्रिज्या और एक ट्रैक के बीच चौराहे के रूप में परिभाषित किया गया है, जैसा कि शुरुआती हार्ड ड्राइव और अधिकांश फ्लॉपी डिस्क के मामले में था, तो डिस्क के बाहर की ओर के क्षेत्र शारीरिक रूप से धुरी के निकट के क्षेत्रों से अधिक लंबे होते है। क्योंकि प्रत्येक क्षेत्र में अभी भी बाइट्स की समान संख्या होती है, बाहरी क्षेत्रों में आंतरिक की तुलना में [[बिट घनत्व]] कम होता है, जो चुंबकीय सतह का एक अक्षम उपयोग है। समाधान [[ज़ोन बिट रिकॉर्डिंग]] है, जिसमें डिस्क को ज़ोन में विभाजित किया गया है, प्रत्येक में कम संख्या में सन्निहित ट्रैक सम्मलित है। प्रत्येक क्षेत्र को तब क्षेत्रों में विभाजित किया जाता है जैसे कि प्रत्येक क्षेत्र का भौतिक आकार समान होता है। क्योंकि बाहरी क्षेत्रों में आंतरिक क्षेत्रों की तुलना में अधिक परिधि होती है, उन्हें अधिक क्षेत्र आवंटित किए जाते है। इसे ज़ोन बिट रिकॉर्डिंग के रूप में जाना जाता है।<ref>{{citation |url=http://www.nalanda.nitc.ac.in/industry/appnotes/Natsemi/AN-599.pdf |title=DP8459 Zoned Bit Recording |publisher=National Semiconductor |date=January 1989 |author=Kern Wong |access-date=2010-03-10 |url-status=dead |archive-url=https://web.archive.org/web/20110615173351/http://www.nalanda.nitc.ac.in/industry/appnotes/Natsemi/AN-599.pdf |archive-date=2011-06-15 }}</ref>
यदि एक क्षेत्र को एक त्रिज्या और एक ट्रैक के बीच चौराहे के रूप में परिभाषित किया गया है, जैसा कि प्रारंभी हार्ड ड्राइव और अधिकांश फ्लॉपी डिस्क के मामले में था, तो डिस्क के बाहर की ओर के क्षेत्र शारीरिक रूप से धुरी के निकट के क्षेत्रों से अधिक लंबे होते है। क्योंकि प्रत्येक क्षेत्र में अभी भी बाइट्स की समान संख्या होती है, बाहरी क्षेत्रों में आंतरिक की तुलना में [[बिट घनत्व]] कम होता है, जो चुंबकीय सतह का एक अक्षम उपयोग है। समाधान [[ज़ोन बिट रिकॉर्डिंग|ज़ोन बिट अभिलेखन]] है, जिसमें डिस्क को ज़ोन में विभाजित किया गया है, प्रत्येक में कम संख्या में सन्निहित ट्रैक सम्मलित है। प्रत्येक क्षेत्र को तब क्षेत्रों में विभाजित किया जाता है जैसे कि प्रत्येक क्षेत्र का भौतिक आकार समान होता है। क्योंकि बाहरी क्षेत्रों में आंतरिक क्षेत्रों की तुलना में अधिक परिधि होती है, उन्हें अधिक क्षेत्र आवंटित किए जाते है। इसे ज़ोन बिट अभिलेखन के रूप में जाना जाता है।<ref>{{citation |url=http://www.nalanda.nitc.ac.in/industry/appnotes/Natsemi/AN-599.pdf |title=DP8459 Zoned Bit Recording |publisher=National Semiconductor |date=January 1989 |author=Kern Wong |access-date=2010-03-10 |url-status=dead |archive-url=https://web.archive.org/web/20110615173351/http://www.nalanda.nitc.ac.in/industry/appnotes/Natsemi/AN-599.pdf |archive-date=2011-06-15 }}</ref>
ज़ोन बिट रिकॉर्डिंग का एक परिणाम यह है कि सन्निहित पठन और लेखन आंतरिक ट्रैक्स की तुलना में बाहरी ट्रैक्स (निचले ब्लॉक पतों के अनुरूप) पर विशेष रूप से तेज़ होते है, क्योंकि प्रत्येक घुमाव के साथ अधिक बिट सिर के नीचे से गुजरते है, यह अंतर 25% या अधिक हो सकता है।
ज़ोन बिट अभिलेखन का एक परिणाम यह है कि सन्निहित पठन और लेखन आंतरिक ट्रैक्स की तुलना में बाहरी ट्रैक्स (निचले ब्लॉक पतों के अनुरूप) पर विशेष रूप से तेज़ होते है, क्योंकि प्रत्येक घुमाव के साथ अधिक बिट सिर के नीचे से गुजरते है, यह अंतर 25% या अधिक हो सकता है।


== उन्नत प्रारूप ==
== उन्नत प्रारूप ==
{{main article|उन्नत प्रारूप}}
{{main article|उन्नत प्रारूप}}
1998 में पारंपरिक 512-बाइट छेत्र आकार को क्षमता बढ़ाने के लिए एक बाधा के रूप में पहचाना गया था, जो उस समय मूर के नियम से अधिक की दर से बढ़ रहा था। 4096-बाइट क्षेत्रों का उपयोग करके उन्नत प्रारूप के कार्यान्वयन के माध्यम से डेटा फ़ील्ड की लंबाई बढ़ाने से यह बाधा दूर हो गई, इसने ECC की शक्ति में वृद्धि करते हुए डेटा सतह क्षेत्र की दक्षता में पाँच से तेरह प्रतिशत की वृद्धि की, जिससे बदले में उच्च क्षमता की अनुमति मिली। प्रारूप को 2005 में एक उद्योग संघ द्वारा मानकीकृत किया गया था और 2011 तक सभी हार्ड ड्राइव निर्माताओं के सभी नए उत्पादों में सम्मलित किया गया था।
1998 में पारंपरिक 512-बाइट छेत्र आकार को क्षमता बढ़ाने के लिए एक बाधा के रूप में पहचाना गया था, जो उस समय मूर के नियम से अधिक की दर से बढ़ रहा था। 4096-बाइट क्षेत्रों का उपयोग करके उन्नत प्रारूप के कार्यान्वयन के माध्यम से डेटा छेत्र की लंबाई बढ़ाने से यह बाधा दूर हो गई, इसने ईसीसी  की शक्ति में वृद्धि करते हुए डेटा सतह क्षेत्र की दक्षता में पाँच से तेरह प्रतिशत की वृद्धि की, जिससे बदले में उच्च क्षमता की अनुमति मिली। प्रारूप को 2005 में एक उद्योग संघ द्वारा मानकीकृत किया गया था और 2011 तक सभी हार्ड ड्राइव निर्माताओं के सभी नए उत्पादों में सम्मलित किया गया था।
== यह भी देखें ==
== यह भी देखें ==
{{Div col|colwidth=22em}}
{{Div col|colwidth=22em}}

Revision as of 04:00, 3 May 2023

चित्र 1: डिस्क संरचनाएँ:
  () रास्ता
  (सी) डिस्क क्षेत्र

कंप्यूटर डिस्क छेत्र में, एक छेत्र चुंबकीय डिस्क या प्रकाशिक डिस्क के रास्ते का उपखंड होता है। प्रत्येक क्षेत्र हार्ड डिस्क ड्राइव (एचडीडी) के लिए पारंपरिक रूप से 512 बाइट्स और CD-ROM और DVD-ROM के लिए 2048 बाइट्स के उपयोगकर्ता डेटा की एक निश्चित मात्रा को संग्रहीत करता है। नए एचडीडी 4096-बाइट (4 KiB) छेत्र का उपयोग करते है, जिन्हें उन्नत प्रारूप (AF) के रूप में जाना जाता है।

क्षेत्र एक हार्ड ड्राइव की न्यूनतम भंडारण इकाई है।[1] अधिकांश डिस्क विभाजन योजनाओं को फ़ाइल के वास्तविक आकार की परवाह किए बिना क्षेत्रों की एक अभिन्न संख्या पर कब्जा करने के लिए बनाया गया है। जो फाइलें एक पूरे छेत्र को नहीं भरती है, उनके अंतिम छेत्र शेष शून्य से भरा होता है। व्यवहार में, परिचालन प्रणाली सामान्यतः डेटा के ब्लॉक पर काम करता है, जो कई क्षेत्रों में फैल सकता है।[2]

ज्यामितीय रूप से, वृत्ताकार क्षेत्र शब्द का अर्थ एक केंद्र, दो त्रिज्या और एक संबंधित चाप के बीच एक डिस्क का एक हिस्सा है (चित्र 1, बी देखें), जो एक पाई के टुकड़े के आकार का है। इस प्रकार, डिस्क क्षेत्र (चित्र 1, सी) एक ट्रैक और ज्यामितीय क्षेत्र के प्रतिच्छेदन को संदर्भित करता है।

आधुनिक डिस्क ड्राइव में, प्रत्येक भौतिक क्षेत्र दो मूल भागों, शीर्ष क्षेत्र (सामान्यतः "आईडी" कहा जाता है) और डेटा क्षेत्र से बना होता है। शीर्ष छेत्र में ड्राइव और नियंत्रक द्वारा उपयोग की जाने वाली जानकारी होती है, इस जानकारी में सिंक बाइट्स, पता पहचान, दोष फ़्लैग और त्रुटि का पता लगाने और सुधार की जानकारी सम्मलित होती है। शीर्ष में एक वैकल्पिक पता भी सम्मलित हो सकता है जिसका उपयोग डेटा क्षेत्र के अविश्वसनीय होने पर किया जाता है। पता पहचान का उपयोग यह सुनिश्चित करने के लिए किया जाता है कि ड्राइव के मैकेनिक्स ने रीड/राइट प्रमुख को सही स्थान पर रखा गया है। डेटा क्षेत्र में सिंक बाइट्स, उपयोगकर्ता डेटा और एक त्रुटि-सुधार कोड (ईसीसी) होता है जिसका उपयोग डेटा में प्रस्तुत की गई त्रुटियों को जांचने और संभावित रूप से सही करने के लिए किया जाता है।

इतिहास

पहली डिस्क ड्राइव, आईबीएम चुंबकीय डिस्क ड्राइव का 1957 का इतिहास आईबीएम 350, में प्रति दस 100 अक्षर छेत्र थे, प्रत्येक वर्ण छह बिट्स का था और इसमें एक समता बिट सम्मलित था। सभी अभिलेखन सतहों पर प्रति छेत्रों की संख्या समान थी। प्रत्येक क्षेत्र से संबद्ध कोई अभिलिखित पहचानकर्ता क्षेत्र (आईडी) नहीं था।[3]

1961 में आईबीएम चुंबकीय डिस्क_ड्राइव का इतिहासम आईबीएम 1301 ने परिवर्तनीय लंबाई वाले क्षेत्रों को प्रस्तुत किया, जिसे आईबीएम द्वारा अभिलेख कहा गया, और प्रत्येक अभिलेख में एक अभिलेख पता छेत्र को अभिलेख डेटा से अलग जोड़ा गया।[4][5] सभी आधुनिक डिस्क ड्राइव में पता छेत्र होते है, जिन्हें आईडी छेत्र कहा जाता है, जो छेत्र में डेटा से अलग होते है।

इसके अतिरिक्त 1961 में ब्रायंट ने अपनी 4000 श्रृंखलाओं के साथ ज़ोन_बिट_अभिलेखन की अवधारणा प्रस्तुत की थी, जिसने व्यास के कार्य के रूप में प्रति छेत्रों की संख्या को अलग-अलग करने की अनुमति दी थी - एक आंतरिक रास्ते की तुलना में बाहरी रास्ते पर अधिक छेत्र होते है।[6] यह 1990 के दशक में उद्योग अभ्यास बन गया और आज भी मानक है।

आईबीएम मैग्नेटिक डिस्क ड्राइव का इतिहास आईबीएम प्रणाली/360 और आईबीएम प्रणाली/360 के साथ 1964 में घोषित अन्य आईबीएम मेनफ्रेम_एचडीडी ने चक्रीय अतिरिक्तता जांच (सीआरसी ) के साथ अपने छेत्रों के सभी त्रुटियों का पता लगता है, जिसमें प्रति पता अक्षर को प्रतिस्थापित किया गया था। आईबीएम के क्षेत्रों ने इस समय भौतिक क्षेत्र में एक तीसरा क्षेत्र जोड़ा, जो डेटा की खोज में सहायता के लिए एक प्रमुख क्षेत्र था। इन आईबीएम भौतिक क्षेत्रों, जिन्हें अभिलेख कहा जाता है, के तीन मूल भाग होते है, एक काउंट छेत्र जो एक आईडी छेत्र के रूप में कार्य करता है, एक प्रमुख छेत्र जो अधिकांश डिस्क ड्राइव क्षेत्रों में मौजूद नहीं है और एक डेटा छेत्र, जिसे अभिलेख के लिए अक्सर काउंट_की_डेटा प्रारूप कहा जाता है।

आईबीएम_magnetic डिस्क ड्राइव का 1970 का इतिहास#आईबीएम 3330 अधिकांश त्रुटियों का पता लगाकर और कई त्रुटियों के सुधार की अनुमति देकर डेटा अखंडता में सुधार करने के लिए त्रुटि सुधार कोड (ईसीसी ) के साथ प्रत्येक क्षेत्र के डेटा छेत्र पर सीआरसी को प्रतिस्थापित करता है।[7] अंतत: डिस्क क्षेत्रों के सभी क्षेत्रों में ईसीसी थे।

1980 के दशक से पहले क्षेत्र के आकार का बहुत कम मानकीकरण होता था, डिस्क ड्राइव में अधिकतम संख्या में बिट्स थे और विभिन्न प्रणाली निर्माताओं ने अपने ओएस और अनुप्रयोगों के अनुरूप रास्ते को विभिन्न छेत्र आकारों में उप-विभाजित किया था। 1980 के दशक की प्रारंभ में आईबीएम कंप्यूटर की लोकप्रियता और 1980 के दशक के अंत में आगमन के कारण 512-बाइट क्षेत्र एचडीडी और इसी तरह के भंडारण उपकरणों के लिए एक उद्योग मानक क्षेत्र बन गया था।

1970 के दशक में आईबीएम ने फिक्स्ड-ब्लॉक आर्किटेक्चर डायरेक्ट एक्सेस भंडारण उपकरण(FBA DASDs) को अपने काउंट की डेटा DASD की लाइन में जोड़ा जाता है। सीकेडी डीएएसडी ने कई चर लंबाई क्षेत्रों का समर्थन किया जबकि आईबीएम एफबीए डीएएसडी ने 512, 1024, 2048, या 4096 बाइट्स के छेत्र आकार का समर्थन किया था।

2000 में उद्योग व्यापार संगठन, अंतरराष्ट्रीय डिस्क ड्राइव उपकरण एंड मैटेरियल्स एसोसिएशन (आईडीईएमए) ने कार्यान्वयन और मानकों को परिभाषित करने के लिए काम प्रारंभ किया जो डेटा भंडारण क्षमताओं में भविष्य में वृद्धि को समायोजित करने के लिए 512 बाइट्स से अधिक क्षेत्र आकार के प्रारूपों को नियंत्रित करता है।[8] भविष्य के आईडीईएमए मानक की प्रत्याशा में 2007 के अंत तक, सैमसंग और तोशिबा ने 4096 बाइट क्षेत्रों के साथ 1.8-इंच हार्ड डिस्क ड्राइव का शिपमेंट शुरू किया। 2010 में आईडीईएमए ने 4096 छेत्र ड्राइव के लिए उन्नत प्रारूप मानक पूरा किया,[8]सभी निर्माताओं के लिए जनवरी 2011 के रूप में 512 से 4096 बाइट क्षेत्रों में परिवर्तन की तिथि निर्धारित करना,[9] और उन्नत प्रारूप ड्राइव जल्द ही प्रचलित हो गए।

संबंधित इकाइयां

छेत्र बनाम ब्लॉक

जबकि क्षेत्र विशेष रूप से भौतिक डिस्क क्षेत्र का अर्थ है, डेटा के एक छोटे से हिस्से को संदर्भित करने के लिए शब्द ब्लॉक का उपयोग शिथिल रूप से किया गया है। संदर्भ के आधार पर ब्लॉक के कई अर्थ है। डेटा स्टोरेज के संदर्भ में, एक ब्लॉक (डेटा स्टोरेज) डिस्क छेत्रों पर एक अमूर्त है जो संभवतः कई क्षेत्रों को सम्मलित करता है। अन्य संदर्भों में, यह डेटा स्ट्रीम की इकाई या उपयोगिता के लिए संचालन की इकाई हो सकती है।[10] उदाहरण के लिए, यूनिक्स कंप्यूटर प्रोग्राम डीडी (यूनिक्स) एक को पैरामीटर के साथ निष्पादन के दौरान उपयोग किए जाने वाले ब्लॉक आकार को सेट करने की अनुमति देता है bs=bytes. यह dd द्वारा डिलीवर किए गए डेटा के आकार को निर्दिष्ट करता है, और यह छेत्रों या फ़ाइल प्रणाली ब्लॉक से संबंधित नहीं है।

लिनक्स में, डिस्क क्षेत्र का आकार निर्धारित किया जा सकता है sudo fdisk -l | grep "Sector size" और ब्लॉक आकार के साथ निर्धारित किया जा सकता है sudo blockdev --getbsz /dev/sda.[11]

छेत्र और क्लस्टर

कंप्यूटर फाइल प्रणाली में, क्लस्टर (कभी-कभी आवंटन इकाई या ब्लॉक भी कहा जाता है) फाइलों और निर्देशिकाओं के लिए डिस्क स्थान आवंटन की एक इकाई है। ऑन-डिस्क डेटा संरचनाओं के प्रबंधन के ओवरप्रमुख को कम करने के लिए, फ़ाइल प्रणाली डिफ़ॉल्ट रूप से अलग-अलग डिस्क छेत्रों को आवंटित नहीं करता है, लेकिन छेत्रों के सन्निहित समूह, जिन्हें क्लस्टर कहा जाता है।

512-बाइट छेत्रों का उपयोग करने वाली डिस्क पर, 512-बाइट क्लस्टर में एक छेत्र होता है, जबकि 4-किबिबाइट (KiB) क्लस्टर में आठ छेत्र होते है।

एक क्लस्टर डिस्क स्थान की सबसे छोटी तार्किक मात्रा है जिसे फ़ाइल रखने के लिए आवंटित किया जा सकता है। बड़े समूहों के साथ फ़ाइल प्रणाली पर छोटी फ़ाइलों को संग्रहीत करने से डिस्क स्थान बर्बाद हो जाएगा, ऐसे व्यर्थ डिस्क स्थान को सुस्त स्थान कहा जाता है। क्लस्टर आकार के लिए जो औसत फ़ाइल आकार बनाम छोटे है, प्रति फ़ाइल व्यर्थ स्थान सांख्यिकीय रूप से क्लस्टर आकार का लगभग आधा होगा, बड़े क्लस्टर आकार के लिए, व्यर्थ स्थान अधिक हो जाएगा। हालाँकि, एक बड़ा क्लस्टर आकार बहीखाता ओवरप्रमुख और विखंडन को कम करता है, जिससे पढ़ने (कंप्यूटर) और समग्र रूप से लिखने की गति में सुधार हो सकता है। विशिष्ट क्लस्टर आकार 1 छेत्र (512 बी) से लेकर 128 छेत्र (64 किबिबाइट) तक होते है।

एक क्लस्टर को डिस्क पर भौतिक रूप से सन्निहित होने की आवश्यकता नहीं है, यह एक से अधिक ट्रैक (डिस्क ड्राइव) फैला सकता है या, यदि इंटरलीविंग (डिस्क स्टोरेज) का उपयोग किया जाता है, तो ट्रैक के भीतर असंतत भी हो सकता है। यह डिस्क विखंडन के साथ भ्रमित नहीं होना चाहिए, क्योंकि क्षेत्र अभी भी तार्किक रूप से सन्निहित है।

एक खोया क्लस्टर तब होता है जब निर्देशिका सूची से फ़ाइल हटा दी जाती है, लेकिन फ़ाइल आवंटन तालिका (एफएटी) अभी भी फ़ाइल को आवंटित क्लस्टर दिखाती है।[12] डॉस 4.0 में शब्द क्लस्टर को आवंटन इकाई में बदल दिया गया था। हालाँकि क्लस्टर शब्द अभी भी व्यापक रूप से उपयोग किया जाता है।[13]

ज़ोन बिट अभिलेखन

यदि एक क्षेत्र को एक त्रिज्या और एक ट्रैक के बीच चौराहे के रूप में परिभाषित किया गया है, जैसा कि प्रारंभी हार्ड ड्राइव और अधिकांश फ्लॉपी डिस्क के मामले में था, तो डिस्क के बाहर की ओर के क्षेत्र शारीरिक रूप से धुरी के निकट के क्षेत्रों से अधिक लंबे होते है। क्योंकि प्रत्येक क्षेत्र में अभी भी बाइट्स की समान संख्या होती है, बाहरी क्षेत्रों में आंतरिक की तुलना में बिट घनत्व कम होता है, जो चुंबकीय सतह का एक अक्षम उपयोग है। समाधान ज़ोन बिट अभिलेखन है, जिसमें डिस्क को ज़ोन में विभाजित किया गया है, प्रत्येक में कम संख्या में सन्निहित ट्रैक सम्मलित है। प्रत्येक क्षेत्र को तब क्षेत्रों में विभाजित किया जाता है जैसे कि प्रत्येक क्षेत्र का भौतिक आकार समान होता है। क्योंकि बाहरी क्षेत्रों में आंतरिक क्षेत्रों की तुलना में अधिक परिधि होती है, उन्हें अधिक क्षेत्र आवंटित किए जाते है। इसे ज़ोन बिट अभिलेखन के रूप में जाना जाता है।[14] ज़ोन बिट अभिलेखन का एक परिणाम यह है कि सन्निहित पठन और लेखन आंतरिक ट्रैक्स की तुलना में बाहरी ट्रैक्स (निचले ब्लॉक पतों के अनुरूप) पर विशेष रूप से तेज़ होते है, क्योंकि प्रत्येक घुमाव के साथ अधिक बिट सिर के नीचे से गुजरते है, यह अंतर 25% या अधिक हो सकता है।

उन्नत प्रारूप

1998 में पारंपरिक 512-बाइट छेत्र आकार को क्षमता बढ़ाने के लिए एक बाधा के रूप में पहचाना गया था, जो उस समय मूर के नियम से अधिक की दर से बढ़ रहा था। 4096-बाइट क्षेत्रों का उपयोग करके उन्नत प्रारूप के कार्यान्वयन के माध्यम से डेटा छेत्र की लंबाई बढ़ाने से यह बाधा दूर हो गई, इसने ईसीसी की शक्ति में वृद्धि करते हुए डेटा सतह क्षेत्र की दक्षता में पाँच से तेरह प्रतिशत की वृद्धि की, जिससे बदले में उच्च क्षमता की अनुमति मिली। प्रारूप को 2005 में एक उद्योग संघ द्वारा मानकीकृत किया गया था और 2011 तक सभी हार्ड ड्राइव निर्माताओं के सभी नए उत्पादों में सम्मलित किया गया था।

यह भी देखें

संदर्भ

  1. Hamington, Suzie (2004-01-01). कंप्यूटर विज्ञान (in English). Lotus Press. p. 42. ISBN 9788189093242.
  2. Tucker, Allen B. (2004-06-28). कंप्यूटर साइंस हैंडबुक, दूसरा संस्करण (in English). CRC Press. p. 86. ISBN 9780203494455.
  3. 305 RAMAC Random Access Method of Accounting and Control Manual of Operation (PDF). IBM. 1957.
  4. IBM 1301, Models 1 and 2, Disk Storage and IBM 1302, Models 1 and 2, Disk Storage with IBM 7090, 7094, and 7094 II Data Processing Systems (PDF). IBM. A22-6785.
  5. IBM 1301, Models 1 and 2, Disk Storage and IBM 1302, Models 1 and 2, Disk Storage with IBM 1410 and 7010 Data Processing Systems (PDF). IBM. A22-6788.
  6. Technical Data - Series 4000 Disk File (PDF). Bryant Computer Products. 1963.
  7. Reference Manual for IBM 3330 Series Disk Storage (PDF). IBM. March 1974. GA26-1615-3.
  8. 8.0 8.1 "The Advent of Advanced Format". IDEMA. Retrieved 2013-11-18.
  9. Skinner, Heather (29 June 2010). "IDEMA launches "Are you ready?" campaign to prepare industry for Hard Disk Drive sector format change" (PDF). www.idema.org. Archived from the original on 14 December 2020. Retrieved 14 December 2020.
  10. "ब्लॉक आकार और क्लस्टर आकार के बीच अंतर". unix.stackexchange.com. Retrieved 2015-12-13.
  11. "फ़ाइल के लिए डिस्क सेक्टर और ब्लॉक आवंटन". stackoverflow.com. Retrieved 2015-12-13.
  12. "क्रॉस-लिंक्ड फ़ाइलों या खोए हुए समूहों के कारण होने वाली त्रुटियाँ". Archived from the original on 2015-03-06. Retrieved 2020-08-03.
  13. Mueller, Scott (2002). Upgrading and repairing PCs, p. 1354. ISBN 0-7897-2745-5.
  14. Kern Wong (January 1989), DP8459 Zoned Bit Recording (PDF), National Semiconductor, archived from the original (PDF) on 2011-06-15, retrieved 2010-03-10