क्वांटम तुच्छता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Possible outcome of renormalization in physics}}
{{short description|Possible outcome of renormalization in physics}}
{{quantum field theory}}
{{quantum field theory}}
एक [[क्वांटम क्षेत्र सिद्धांत]] में, स्पर्शोन्मुख स्वतंत्रता आवरण और प्रत्यावरण एक पारम्परिक सिद्धांत के अवलोकनीय पुनर्सामान्यीकृत प्रभार के मूल्य को प्रतिबंधित कर सकते हैं। यदि पुनर्सामान्यीकृत आवेश का एकमात्र परिणामी मान शून्य है, तो सिद्धांत को नगण्य या गैर-अंतःक्रिया करने वाला कहा जाता है। इस प्रकार,आश्चर्यजनक रूप से, एक पारम्परिक सिद्धांत जो परस्पर क्रिया करने वाले कणों का वर्णन करता प्रतीत होता है, जब क्वांटम क्षेत्र सिद्धांत के रूप में महसूस किया जाता है, तो गैर-अंतःक्रिया मुक्त कणों का एक नगण्य सिद्धांत बन सकता है। इस घटना को क्वांटम  नगण्यता कहा जाता है। प्रभावी प्रमाण इस विचार का समर्थन करते हैं कि एक क्षेत्र सिद्धांत जिसमें मात्र एक स्केलर [[हिग्स बॉसन]] सम्मिलित है, चार स्पेसटाइम आयामों में नगण्य है,<ref>{{cite book | author1 = R. Fernandez | author2-link = Jurg Frohlich | author2 = J. Froehlich | author3-link = Alan Sokal | author3 = A. D. Sokal | year = 1992 | title = क्वांटम फील्ड थ्योरी में रैंडम वॉक, क्रिटिकल फेनोमेना और ट्रिवियलिटी| publisher = [[Springer (publisher)|Springer]] | isbn = 0-387-54358-9 }}</ref><ref name="TrivPurs">
एक [[क्वांटम क्षेत्र सिद्धांत]] में, आवेश स्क्रीनिंग पारंपरिक थ्योरी के प्रत्यक्ष  "पुनर्सामान्यीकृत आवेश के मूल्य को प्रतिबंधित कर सकते हैं। यदि पुनर्सामान्यीकृत आवेश का एकमात्र परिणामी मान शून्य है, तो सिद्धांत को "तुच्छ" या गैर-अंतःक्रिया करने वाला कहा जाता है। इस प्रकार,आश्चर्यजनक रूप से, एक पारम्परिक सिद्धांत जो परस्पर क्रिया करने वाले कणों का वर्णन करता प्रतीत होता है, जब क्वांटम क्षेत्र सिद्धांत के रूप में अनुभव किया जाता है, तो गैर-अंतःक्रिया मुक्त कणों का एक "तुच्छ" सिद्धांत बन सकता है। इस घटना को क्वांटम  तुच्छता कहा जाता है। प्रभावी प्रमाण इस विचार का समर्थन करते हैं कि एक क्षेत्र सिद्धांत जिसमें मात्र एक अदिश [[हिग्स बॉसन]] सम्मिलित है, चार स्पेसटाइम आयामों में "तुच्छ"        है,<ref>{{cite book | author1 = R. Fernandez | author2-link = Jurg Frohlich | author2 = J. Froehlich | author3-link = Alan Sokal | author3 = A. D. Sokal | year = 1992 | title = क्वांटम फील्ड थ्योरी में रैंडम वॉक, क्रिटिकल फेनोमेना और ट्रिवियलिटी| publisher = [[Springer (publisher)|Springer]] | isbn = 0-387-54358-9 }}</ref><ref name="TrivPurs">
{{cite journal
{{cite journal
  | author=D. J. E. Callaway
  | author=D. J. E. Callaway
Line 11: Line 11:
  | doi=10.1016/0370-1573(88)90008-7
  | doi=10.1016/0370-1573(88)90008-7
|bibcode = 1988PhR...167..241C | author-link=David J E Callaway
|bibcode = 1988PhR...167..241C | author-link=David J E Callaway
  }}</ref> परंतु हिग्स बोसोन के अतिरिक्त अन्य कणों सहित यथार्थवादी प्रारूपों की स्थिति सामान्य रूप से ज्ञात नहीं है। फिर भी, क्योंकि हिग्स बोसोन [[कण भौतिकी]] के [[मानक मॉडल|मानक]] प्रारूप में एक केंद्रीय भूमिका निभाता है, हिग्स प्रारूप में नगण्यता का प्रश्न बहुत महत्वपूर्ण है।
  }}</ref> परंतु हिग्स बोसोन के अतिरिक्त अन्य कणों सहित यथार्थवादी प्रारूपों की स्थिति सामान्य रूप से ज्ञात नहीं है। फिर भी, क्योंकि हिग्स बोसोन [[कण भौतिकी]] के [[मानक मॉडल|मानक]] प्रारूप में एक केंद्रीय भूमिका निभाता है, हिग्स प्रारूप में तुच्छता  का प्रश्न बहुत महत्वपूर्ण है।


यह हिग्स नगण्यता [[क्वांटम इलेक्ट्रोडायनामिक्स|क्वांटम]] विद्युतगतिकी में [[लैंडौ पोल]] समस्या के समान है, जहां यह क्वांटम सिद्धांत बहुत उच्च गति के पैमाने पर असंगत हो सकता है जब तक कि पुनर्सामान्यीकृत आवेश को शून्य पर समुच्चय नहीं किया जाता है, अर्थात, जब तक कि क्षेत्र सिद्धांत में कोई अंतःक्रिया न हो। लैंडौ पोल प्रश्न को सामान्यतः  क्वांटम विद्युतगतिकी के लिए साधारण शैक्षणिक रुचि के रूप में माना जाता है क्योंकि असंगत रूप से बड़े गति पैमाने पर असंगतता प्रकट होती है। यद्यपि यह उन सिद्धांतों का विषय नहीं है जिनमें प्राथमिक स्केलर हिग्स बोसॉन सम्मिलित है, गति के पैमाने के रूप में जिस पर एक नगण्य सिद्धांत विसंगतियों को प्रदर्शित करता है, बड़े हैड्रॉन कोलाइडर जैसे प्रायोगिक प्रयासों को प्रस्तुत करने के लिए सुलभ हो सकता है। इन हिग्स सिद्धांतों में, हिग्स कण की स्वयं के साथ अन्योन्यक्रिया को W और Z बोसोन के द्रव्यमान के साथ-साथ [[इलेक्ट्रॉन]] और म्यूऑन जैसे [[लेपटोन]] द्रव्यमान को उत्पन्न करने के लिए प्रस्तुत किया गया है। यदि मानक प्रारूप जैसे कण भौतिकी के यथार्थवादी प्रारूप नगण्यता के मुद्दों से पीड़ित हैं, तो प्राथमिक स्केलर हिग्स कण के विचार को संशोधित या त्यागना पड़ सकता है।
यह हिग्स तुच्छता        [[क्वांटम इलेक्ट्रोडायनामिक्स|क्वांटम]] विद्युतगतिकी में [[लैंडौ पोल]] समस्या के समान है, जहां यह क्वांटम सिद्धांत बहुत उच्च गति के पैमाने पर असंगत हो सकता है जब तक कि पुनर्सामान्यीकृत आवेश को शून्य पर समुच्चय नहीं किया जाता है, अर्थात, जब तक कि क्षेत्र सिद्धांत में कोई अंतःक्रिया न हो। लैंडौ पोल प्रश्न को सामान्यतः  क्वांटम विद्युतगतिकी के लिए साधारण शैक्षणिक रुचि के रूप में माना जाता है क्योंकि असंगत रूप से बड़े गति पैमाने पर असंगतता प्रकट होती है। यद्यपि यह उन सिद्धांतों का विषय नहीं है जिनमें प्राथमिक स्केलर हिग्स बोसॉन सम्मिलित है, गति के पैमाने के रूप में जिस पर एक "तुच्छ"        सिद्धांत विसंगतियों को प्रदर्शित करता है, बड़े हैड्रॉन कोलाइडर जैसे प्रायोगिक प्रयासों को प्रस्तुत करने के लिए सुलभ हो सकता है। इन हिग्स सिद्धांतों में, हिग्स कण की स्वयं के साथ अन्योन्यक्रिया को W और Z बोसोन के द्रव्यमान के साथ-साथ [[इलेक्ट्रॉन]] और म्यूऑन जैसे [[लेपटोन]] द्रव्यमान को उत्पन्न करने के लिए प्रस्तुत किया गया है। यदि मानक प्रारूप जैसे कण भौतिकी के यथार्थवादी प्रारूप तुच्छता        के मुद्दों से पीड़ित हैं, तो प्राथमिक स्केलर हिग्स कण के विचार को संशोधित या त्यागना पड़ सकता है।


यद्यपि, अन्य कणों को सम्मिलित करने वाली सिद्धांतों में स्थिति अधिक जटिल हो जाती है,तो अन्य कणों को जोड़ने से एक साधारण सिद्धांत को गैर-साधारण बनाया जा सकता है, लेकिन इसकी कीमत में प्रतिबंधों को प्रवेश कराना पड़ता है। सिद्धांत के विवरणों पर निर्भर करता है कि क्या हिग्स द्रव्यमान सीमित हो सकता है या फिर पूर्वानुमानित हो सकता है। ये क्वांटम नगण्यता प्रतिबंध तंत्र पारंपरिक स्तर पर प्राप्त छवि तेजी से भिन्न होते हैं, जहां हिग्स द्रव्यमान एक मुक्त पैरामीटर होता है
यद्यपि, अन्य कणों को सम्मिलित करने वाली सिद्धांतों में स्थिति अधिक जटिल हो जाती है,तो अन्य कणों को जोड़ने से एक साधारण सिद्धांत को गैर-साधारण बनाया जा सकता है, लेकिन इसकी कीमत में प्रतिबंधों को प्रवेश कराना पड़ता है। सिद्धांत के विवरणों पर निर्भर करता है कि क्या हिग्स द्रव्यमान सीमित हो सकता है या फिर पूर्वानुमानित हो सकता है। ये क्वांटम तुच्छता        प्रतिबंध तंत्र पारंपरिक स्तर पर प्राप्त छवि तेजी से भिन्न होते हैं, जहां हिग्स द्रव्यमान एक मुक्त पैरामीटर होता है


== नगण्यता और पुनर्सामान्यीकरण समूह ==
== तुच्छता        और पुनर्सामान्यीकरण समूह ==
नगण्यता के आधुनिक विचार सामान्यतः केनेथ जी विल्सन और अन्य लोगों द्वारा बड़े पैमाने पर विकसित वास्तविक-अंतरिक्ष [[पुनर्सामान्यीकरण समूह]] के संदर्भ में तैयार किए जाते हैं। नगण्यता की जांच सामान्यतः [[जाली गेज सिद्धांत]] के संदर्भ में की जाती है। पुनर्सामान्यीकरण प्रक्रिया के भौतिक अर्थ और सामान्यीकरण की गहरी समझ, जो पारंपरिक पुनर्सामान्यीकरण सिद्धांतों के फैलाव समूह से परे है, तथा संघनित पदार्थ भौतिकी से आई है।  
तुच्छता        के आधुनिक विचार सामान्यतः केनेथ जी विल्सन और अन्य लोगों द्वारा बड़े पैमाने पर विकसित वास्तविक-अंतरिक्ष [[पुनर्सामान्यीकरण समूह]] के संदर्भ में तैयार किए जाते हैं। तुच्छता        की जांच सामान्यतः [[जाली गेज सिद्धांत]] के संदर्भ में की जाती है। पुनर्सामान्यीकरण प्रक्रिया के भौतिक अर्थ और सामान्यीकरण की गहरी समझ, जो पारंपरिक पुनर्सामान्यीकरण सिद्धांतों के फैलाव समूह से परे है, तथा संघनित पदार्थ भौतिकी से आई है।  


1966 में लियो पी. कैडानॉफ के द्वारा प्रस्तावित "ब्लॉक-स्पिन" पुनर्सामान्यीकरण समूह है। [3] ब्लॉकिंग विचार एक विधि है जो संक्षेप में बड़ी दूरियों पर सिद्धांत के घटकों को छोटी दूरियों पर सिद्धांत के घटकों के समूह के रूप में परिभाषित करने के लिए होता है।
1966 में लियो पी. कैडानॉफ के द्वारा प्रस्तावित "ब्लॉक-स्पिन" पुनर्सामान्यीकरण समूह है। [3] ब्लॉकिंग विचार एक विधि है जो संक्षेप में बड़ी दूरियों पर सिद्धांत के घटकों को छोटी दूरियों पर सिद्धांत के घटकों के समूह के रूप में परिभाषित करने के लिए होता है।
Line 26: Line 26:
अधिक तकनीकी शब्दों में कहें तों, हमारे पास एक सिद्धांत है जिसे स्थिति चर में वर्णित एक निश्चित कार्यकारी <math>Z</math> फलन और एक निश्चित सम्बन्ध <math>\{J_k\}</math> के समुच्चय द्वारा वर्णित किया जाता है। यह फलन एक विभाजन फलन, एक कार्य, एक हैमिल्टोनियन फलन आदि हो सकता है। इसमें प्रणाली की भौतिकी का संपूर्ण विवरण सम्मिलित होना चाहिए।
अधिक तकनीकी शब्दों में कहें तों, हमारे पास एक सिद्धांत है जिसे स्थिति चर में वर्णित एक निश्चित कार्यकारी <math>Z</math> फलन और एक निश्चित सम्बन्ध <math>\{J_k\}</math> के समुच्चय द्वारा वर्णित किया जाता है। यह फलन एक विभाजन फलन, एक कार्य, एक हैमिल्टोनियन फलन आदि हो सकता है। इसमें प्रणाली की भौतिकी का संपूर्ण विवरण सम्मिलित होना चाहिए।


अब हम स्थिति चर के एक निश्चित अवरोधक परिवर्तन <math>\{s_i\}\to \{\tilde s_i\}</math> पर विचार करते हैं , <math>\tilde s_i</math>की संख्या <math>s_i</math> की संख्या से कम होना चाहिए।  अब हम सिर्फ <math>\tilde s_i</math> के संबंध में <math>Z</math>  फलन  को लिखने का प्रयास करेंगे। यदि इसे निश्चित पैरामीटर <math>\{J_k\} \to \{\tilde J_k\}</math> की कुछ परिवर्तन से प्राप्त किया जा सकता है, तो सिद्धांत को पुनर्सामान्यीकरण योग्य कहा जा सकता है। आरजी प्रवाह में सबसे महत्वपूर्ण जानकारी इसके निश्चित बिंदु हैं। तंत्र के संभावित सूक्ष्म क्षेत्र, बड़े मापदंडों पर, निश्चित बिंदुओं के इस समुच्चय द्वारा दिए गए हैं। यदि ये निश्चित बिंदु एक मुक्त क्षेत्र सिद्धांत के अनुरूप हैं, तो सिद्धांत को नगण्य कहा जाता है। जाली गेज सिद्धांत क्वांटम नगण्यता के अध्ययन में कई निश्चित बिंदु दिखाई देते हैं, परंतु इनसे जुड़े क्वांटम क्षेत्र सिद्धांतों की प्रकृति एक खुला प्रश्न है।<ref name="TrivPurs" />
अब हम स्थिति चर के एक निश्चित अवरोधक परिवर्तन <math>\{s_i\}\to \{\tilde s_i\}</math> पर विचार करते हैं , <math>\tilde s_i</math>की संख्या <math>s_i</math> की संख्या से कम होना चाहिए।  अब हम सिर्फ <math>\tilde s_i</math> के संबंध में <math>Z</math>  फलन  को लिखने का प्रयास करेंगे। यदि इसे निश्चित पैरामीटर <math>\{J_k\} \to \{\tilde J_k\}</math> की कुछ परिवर्तन से प्राप्त किया जा सकता है, तो सिद्धांत को पुनर्सामान्यीकरण योग्य कहा जा सकता है। आरजी प्रवाह में सबसे महत्वपूर्ण जानकारी इसके निश्चित बिंदु हैं। तंत्र के संभावित सूक्ष्म क्षेत्र, बड़े मापदंडों पर, निश्चित बिंदुओं के इस समुच्चय द्वारा दिए गए हैं। यदि ये निश्चित बिंदु एक मुक्त क्षेत्र सिद्धांत के अनुरूप हैं, तो सिद्धांत को "तुच्छ"        कहा जाता है। जाली गेज सिद्धांत क्वांटम तुच्छता        के अध्ययन में कई निश्चित बिंदु दिखाई देते हैं, परंतु इनसे जुड़े क्वांटम क्षेत्र सिद्धांतों की प्रकृति एक खुला प्रश्न है।<ref name="TrivPurs" />




Line 32: Line 32:
== ऐतिहासिक पृष्ठभूमि ==
== ऐतिहासिक पृष्ठभूमि ==


क्वांटम क्षेत्र सिद्धांतों की संभावित नगण्यता के पहले संभावित प्रमाण को लंडाऊ, अब्रीकोसोव,और खलात्निकॉव द्वारा प्राप्त किया गया था। उन्होंने "बेयर" आवेश g0 के साथ देखा गया उपलब्ध आवेश के इस संबंध को खोज लिया था।
क्वांटम क्षेत्र सिद्धांतों की संभावित तुच्छता        के पहले संभावित प्रमाण को लंडाऊ, अब्रीकोसोव,और खलात्निकॉव द्वारा प्राप्त किया गया था। उन्होंने "बेयर" आवेश g0 के साथ देखा गया उपलब्ध आवेश के इस संबंध को खोज लिया था।
{{NumBlk|:|<math>g_\text{obs} = \frac{g_0}{1+\beta_2 g_0 \ln \Lambda/m}~,</math>|{{EquationRef|1}}}}
{{NumBlk|:|<math>g_\text{obs} = \frac{g_0}{1+\beta_2 g_0 \ln \Lambda/m}~,</math>|{{EquationRef|1}}}}
यदि g0 अंतिमतः सीमा वाले मोमेंटम कटऑफ Λ के बढ़ते मूल्यों के लिए शून्य होता है, जहाँ m कार्यकारी होता है, तो गॉब्स शून्य के दिशा में जाता है।
यदि g0 अंतिमतः सीमा वाले मोमेंटम कटऑफ Λ के बढ़ते मूल्यों के लिए शून्य होता है, जहाँ m कार्यकारी होता है, तो गॉब्स शून्य के दिशा में जाता है।
Line 53: Line 53:
}}
}}


बाद वाला मामला पूर्ण सिद्धांत में क्वांटम  नगण्यता से मेल खाता है, जैसा कि [[रिडक्टियो एड बेतुका|जैसा कि रिडक्टियो एड एब्सर्डम]] द्वारा देखा जा सकता है। यदि  गॉब्स परिमित है, तो सिद्धांत आंतरिक रूप से असंगत है। इससे बचने का एक ही उपाय है, <math>\mu_0</math> को असीमित करना, जो कि मात्र गॉब्स → 0 के लिए संभव होता है।.
बाद वाला मामला पूर्ण सिद्धांत में क्वांटम  तुच्छता        से मेल खाता है, जैसा कि [[रिडक्टियो एड बेतुका|जैसा कि रिडक्टियो एड एब्सर्डम]] द्वारा देखा जा सकता है। यदि  गॉब्स परिमित है, तो सिद्धांत आंतरिक रूप से असंगत है। इससे बचने का एक ही उपाय है, <math>\mu_0</math> को असीमित करना, जो कि मात्र गॉब्स → 0 के लिए संभव होता है।.


== निष्कर्ष ==
== निष्कर्ष ==


नतीजतन, यह सवाल कि क्या कण भौतिकी का मानक प्रारूप गैर- नगण्य है, एक गंभीर अनसुलझा सवाल बना हुआ है। शुद्ध अदिश क्षेत्र सिद्धांत की नगण्यता के सैद्धांतिक प्रमाण उपस्थित हैं, लेकिन पूर्ण मानक प्रारूप की स्थिति अज्ञात है। मानक प्रारूप पर निहित बाधाओं पर चर्चा की गई है।<ref>{{Cite journal  
नतीजतन, यह सवाल कि क्या कण भौतिकी का मानक प्रारूप गैर- "तुच्छ"        है, एक गंभीर अनसुलझा सवाल बना हुआ है। शुद्ध अदिश क्षेत्र सिद्धांत की तुच्छता        के सैद्धांतिक प्रमाण उपस्थित हैं, लेकिन पूर्ण मानक प्रारूप की स्थिति अज्ञात है। मानक प्रारूप पर निहित बाधाओं पर चर्चा की गई है।<ref>{{Cite journal  
| last1 = Callaway | first1 = D.  
| last1 = Callaway | first1 = D.  
| last2 = Petronzio | first2 = R.  
| last2 = Petronzio | first2 = R.  

Revision as of 08:12, 2 May 2023

एक क्वांटम क्षेत्र सिद्धांत में, आवेश स्क्रीनिंग पारंपरिक थ्योरी के प्रत्यक्ष "पुनर्सामान्यीकृत आवेश के मूल्य को प्रतिबंधित कर सकते हैं। यदि पुनर्सामान्यीकृत आवेश का एकमात्र परिणामी मान शून्य है, तो सिद्धांत को "तुच्छ" या गैर-अंतःक्रिया करने वाला कहा जाता है। इस प्रकार,आश्चर्यजनक रूप से, एक पारम्परिक सिद्धांत जो परस्पर क्रिया करने वाले कणों का वर्णन करता प्रतीत होता है, जब क्वांटम क्षेत्र सिद्धांत के रूप में अनुभव किया जाता है, तो गैर-अंतःक्रिया मुक्त कणों का एक "तुच्छ" सिद्धांत बन सकता है। इस घटना को क्वांटम तुच्छता कहा जाता है। प्रभावी प्रमाण इस विचार का समर्थन करते हैं कि एक क्षेत्र सिद्धांत जिसमें मात्र एक अदिश हिग्स बॉसन सम्मिलित है, चार स्पेसटाइम आयामों में "तुच्छ" है,[1][2] परंतु हिग्स बोसोन के अतिरिक्त अन्य कणों सहित यथार्थवादी प्रारूपों की स्थिति सामान्य रूप से ज्ञात नहीं है। फिर भी, क्योंकि हिग्स बोसोन कण भौतिकी के मानक प्रारूप में एक केंद्रीय भूमिका निभाता है, हिग्स प्रारूप में तुच्छता का प्रश्न बहुत महत्वपूर्ण है।

यह हिग्स तुच्छता क्वांटम विद्युतगतिकी में लैंडौ पोल समस्या के समान है, जहां यह क्वांटम सिद्धांत बहुत उच्च गति के पैमाने पर असंगत हो सकता है जब तक कि पुनर्सामान्यीकृत आवेश को शून्य पर समुच्चय नहीं किया जाता है, अर्थात, जब तक कि क्षेत्र सिद्धांत में कोई अंतःक्रिया न हो। लैंडौ पोल प्रश्न को सामान्यतः क्वांटम विद्युतगतिकी के लिए साधारण शैक्षणिक रुचि के रूप में माना जाता है क्योंकि असंगत रूप से बड़े गति पैमाने पर असंगतता प्रकट होती है। यद्यपि यह उन सिद्धांतों का विषय नहीं है जिनमें प्राथमिक स्केलर हिग्स बोसॉन सम्मिलित है, गति के पैमाने के रूप में जिस पर एक "तुच्छ" सिद्धांत विसंगतियों को प्रदर्शित करता है, बड़े हैड्रॉन कोलाइडर जैसे प्रायोगिक प्रयासों को प्रस्तुत करने के लिए सुलभ हो सकता है। इन हिग्स सिद्धांतों में, हिग्स कण की स्वयं के साथ अन्योन्यक्रिया को W और Z बोसोन के द्रव्यमान के साथ-साथ इलेक्ट्रॉन और म्यूऑन जैसे लेपटोन द्रव्यमान को उत्पन्न करने के लिए प्रस्तुत किया गया है। यदि मानक प्रारूप जैसे कण भौतिकी के यथार्थवादी प्रारूप तुच्छता के मुद्दों से पीड़ित हैं, तो प्राथमिक स्केलर हिग्स कण के विचार को संशोधित या त्यागना पड़ सकता है।

यद्यपि, अन्य कणों को सम्मिलित करने वाली सिद्धांतों में स्थिति अधिक जटिल हो जाती है,तो अन्य कणों को जोड़ने से एक साधारण सिद्धांत को गैर-साधारण बनाया जा सकता है, लेकिन इसकी कीमत में प्रतिबंधों को प्रवेश कराना पड़ता है। सिद्धांत के विवरणों पर निर्भर करता है कि क्या हिग्स द्रव्यमान सीमित हो सकता है या फिर पूर्वानुमानित हो सकता है। ये क्वांटम तुच्छता प्रतिबंध तंत्र पारंपरिक स्तर पर प्राप्त छवि तेजी से भिन्न होते हैं, जहां हिग्स द्रव्यमान एक मुक्त पैरामीटर होता है

तुच्छता और पुनर्सामान्यीकरण समूह

तुच्छता के आधुनिक विचार सामान्यतः केनेथ जी विल्सन और अन्य लोगों द्वारा बड़े पैमाने पर विकसित वास्तविक-अंतरिक्ष पुनर्सामान्यीकरण समूह के संदर्भ में तैयार किए जाते हैं। तुच्छता की जांच सामान्यतः जाली गेज सिद्धांत के संदर्भ में की जाती है। पुनर्सामान्यीकरण प्रक्रिया के भौतिक अर्थ और सामान्यीकरण की गहरी समझ, जो पारंपरिक पुनर्सामान्यीकरण सिद्धांतों के फैलाव समूह से परे है, तथा संघनित पदार्थ भौतिकी से आई है।

1966 में लियो पी. कैडानॉफ के द्वारा प्रस्तावित "ब्लॉक-स्पिन" पुनर्सामान्यीकरण समूह है। [3] ब्लॉकिंग विचार एक विधि है जो संक्षेप में बड़ी दूरियों पर सिद्धांत के घटकों को छोटी दूरियों पर सिद्धांत के घटकों के समूह के रूप में परिभाषित करने के लिए होता है।

इस दृष्टिकोण ने वैचारिक बिंदु का उल्लेख किया और केनेथ विल्सन के व्यापक महत्वपूर्ण योगदान में पूर्ण संगणनीय पदार्थ दिया गया। विल्सन के विचारों की शक्ति का प्रमाण 1974 में लंबे समय से चल रहे एक समस्या, कोंडो समस्या के एक निर्माणात्मक कथात्मक पुनर्सामान्यीकरण समाधान द्वारा और 1971 में दूसरे क्रमशः चरण के तटस्थ समस्याओं और महत्वपूर्ण विकासों के सिद्धांत में उनकी नई विधि के पूर्ववत विकासों द्वारा दिखाया गया था।

अधिक तकनीकी शब्दों में कहें तों, हमारे पास एक सिद्धांत है जिसे स्थिति चर में वर्णित एक निश्चित कार्यकारी फलन और एक निश्चित सम्बन्ध के समुच्चय द्वारा वर्णित किया जाता है। यह फलन एक विभाजन फलन, एक कार्य, एक हैमिल्टोनियन फलन आदि हो सकता है। इसमें प्रणाली की भौतिकी का संपूर्ण विवरण सम्मिलित होना चाहिए।

अब हम स्थिति चर के एक निश्चित अवरोधक परिवर्तन पर विचार करते हैं , की संख्या की संख्या से कम होना चाहिए। अब हम सिर्फ के संबंध में फलन को लिखने का प्रयास करेंगे। यदि इसे निश्चित पैरामीटर की कुछ परिवर्तन से प्राप्त किया जा सकता है, तो सिद्धांत को पुनर्सामान्यीकरण योग्य कहा जा सकता है। आरजी प्रवाह में सबसे महत्वपूर्ण जानकारी इसके निश्चित बिंदु हैं। तंत्र के संभावित सूक्ष्म क्षेत्र, बड़े मापदंडों पर, निश्चित बिंदुओं के इस समुच्चय द्वारा दिए गए हैं। यदि ये निश्चित बिंदु एक मुक्त क्षेत्र सिद्धांत के अनुरूप हैं, तो सिद्धांत को "तुच्छ" कहा जाता है। जाली गेज सिद्धांत क्वांटम तुच्छता के अध्ययन में कई निश्चित बिंदु दिखाई देते हैं, परंतु इनसे जुड़े क्वांटम क्षेत्र सिद्धांतों की प्रकृति एक खुला प्रश्न है।[2]


ऐतिहासिक पृष्ठभूमि

क्वांटम क्षेत्र सिद्धांतों की संभावित तुच्छता के पहले संभावित प्रमाण को लंडाऊ, अब्रीकोसोव,और खलात्निकॉव द्वारा प्राप्त किया गया था। उन्होंने "बेयर" आवेश g0 के साथ देखा गया उपलब्ध आवेश के इस संबंध को खोज लिया था।

 

 

 

 

(1)

यदि g0 अंतिमतः सीमा वाले मोमेंटम कटऑफ Λ के बढ़ते मूल्यों के लिए शून्य होता है, जहाँ m कार्यकारी होता है, तो गॉब्स शून्य के दिशा में जाता है।

वास्तव में, समीकरण 1 की उचित व्याख्या इसके विपरीत होती है, ताकि गॉब्स का सही मान प्राप्त करने के लिए g0 (जो लंबाई स्केल 1/Λ से संबंधित होता है) चुना जाता है।

 

 

 

 

(2)

यहाँ जब Λ के साथ g0 की वृद्धि होती है तब g0 ≈ 1 क्षेत्र में समीकरण (1) और (2) को अमान्य कर देती है। (1) और (2) उन्होंने g0 ≪ 1 के लिए प्राप्त किए थे। इसलिए समीकरण (2) में "लैंडाऊ पोल" का अस्तित्व कोई भौतिक मान नहीं रखता।

आवेश g(μ) का वास्तविक व्यवहार परमाणु स्तर μ के फंक्शन के रूप में पूर्ण गेल-मैन-लो इक्वेशन द्वारा निर्धारित किया जाता है।

 

 

 

 

(3)

मान लीजिए कि एक समीकरण दिया गया है जिसे अधिकृत ढंग से इंटीग्रेट किया जाता है। यदि मान μ के लिए g(μ) = गॉब्स और μ = Λ के लिए g(μ) = g0 की शर्तों के अंतर्गत मात्र दाहिने हाथ की ओर _ वाले शब्द को ही रखा जाता है तो इससे समीकरण (1) और (2) कैसे मिलते हैं।

बोगोलियुबोव और शिर्कोव द्वारा वर्गीकृत करने के अनुसार फलन β(g) के दिखने पर, के व्यावहारिक रूप से तीन अलग-अलग स्थितियां होती हैं,

  1. यदि परिमित मान पर शून्य है g*, तों g की वृद्धि संतृप्त है, i.e. के ;
  2. यदि अपरिवर्तनशील है और के साथ के रूप में व्यवहार करता है , तों की वृद्धि अनंत तक जारी रहेगी।
  3. यदि के साथ दीर्घ के लिए तों परिमित मान पर भिन्न है और वास्तविक लैंडौ पोल उत्पन्न होता है: सिद्धांत की अनिश्चितता के कारण आंतरिक रूप से के लिए . असंगत है।

बाद वाला मामला पूर्ण सिद्धांत में क्वांटम तुच्छता से मेल खाता है, जैसा कि जैसा कि रिडक्टियो एड एब्सर्डम द्वारा देखा जा सकता है। यदि गॉब्स परिमित है, तो सिद्धांत आंतरिक रूप से असंगत है। इससे बचने का एक ही उपाय है, को असीमित करना, जो कि मात्र गॉब्स → 0 के लिए संभव होता है।.

निष्कर्ष

नतीजतन, यह सवाल कि क्या कण भौतिकी का मानक प्रारूप गैर- "तुच्छ" है, एक गंभीर अनसुलझा सवाल बना हुआ है। शुद्ध अदिश क्षेत्र सिद्धांत की तुच्छता के सैद्धांतिक प्रमाण उपस्थित हैं, लेकिन पूर्ण मानक प्रारूप की स्थिति अज्ञात है। मानक प्रारूप पर निहित बाधाओं पर चर्चा की गई है।[3][4][5] [6][7][8]


यह भी देखें

संदर्भ

  1. R. Fernandez; J. Froehlich; A. D. Sokal (1992). क्वांटम फील्ड थ्योरी में रैंडम वॉक, क्रिटिकल फेनोमेना और ट्रिवियलिटी. Springer. ISBN 0-387-54358-9.
  2. 2.0 2.1 D. J. E. Callaway (1988). "Triviality Pursuit: Can Elementary Scalar Particles Exist?". Physics Reports. 167 (5): 241–320. Bibcode:1988PhR...167..241C. doi:10.1016/0370-1573(88)90008-7.
  3. Callaway, D.; Petronzio, R. (1987). "Is the standard model Higgs mass predictable?". Nuclear Physics B. 292: 497–526. Bibcode:1987NuPhB.292..497C. doi:10.1016/0550-3213(87)90657-2.
  4. I. M. Suslov (2010). "Asymptotic Behavior of the β Function in the φ4 Theory: A Scheme Without Complex Parameters". Journal of Experimental and Theoretical Physics. 111 (3): 450–465. arXiv:1010.4317. Bibcode:2010JETP..111..450S. doi:10.1134/S1063776110090153. S2CID 118545858.
  5. Frasca, Marco (2011). Mapping theorem and Green functions in Yang-Mills theory (PDF). The many faces of QCD. Trieste: Proceedings of Science. p. 039. arXiv:1011.3643. Bibcode:2010mfq..confE..39F. Retrieved 2011-08-27.
  6. Callaway, D. J. E. (1984). "हिग्स मास पर प्राथमिक स्केलर और ऊपरी सीमा के साथ गेज सिद्धांतों की गैर-तुच्छता". Nuclear Physics B. 233 (2): 189–203. Bibcode:1984NuPhB.233..189C. doi:10.1016/0550-3213(84)90410-3.
  7. Lindner, M. (1986). "Implications of triviality for the standard model". Zeitschrift für Physik C. 31 (2): 295–300. Bibcode:1986ZPhyC..31..295L. doi:10.1007/BF01479540. S2CID 123166350.
  8. Urs Heller, Markus Klomfass, Herbert Neuberger, and Pavlos Vranas, (1993). "Numerical analysis of the Higgs mass triviality bound", Nucl. Phys., B405: 555-573.