ऑपरेटर उत्पाद विस्तार: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:


== 2डी यूक्लिडियन क्वांटम क्षेत्र सिद्धांत ==
== 2डी यूक्लिडियन क्वांटम क्षेत्र सिद्धांत ==
2डी यूक्लिडियन क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार [[लॉरेंट श्रृंखला]] विस्तार है जो दो ऑपरेटरों से जुड़ा है। लॉरेंट श्रृंखला [[टेलर श्रृंखला]] का सामान्यीकरण है जिसमें विस्तार चर (ओं) के व्युत्क्रम की कई शक्तियाँ टेलर श्रृंखला में जोड़ी जाती हैं: परिमित क्रम (ओं) के ध्रुव (ओं) को श्रृंखला में जोड़ा जाता है।
2डी यूक्लिडियन क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार एक [[लॉरेंट श्रृंखला]] विस्तार है जो दो ऑपरेटरों से जुड़ा है। लॉरेंट श्रृंखला [[टेलर श्रृंखला]] का सामान्यीकरण है जिसमें विस्तार चर (ओं) के व्युत्क्रम की कई शक्तियाँ टेलर श्रृंखला में परिमित क्रम (ओं) के पोल (ओं) को श्रृंखला में जोड़ा जाता है।


ह्यूरिस्टिक रूप से, क्वांटम क्षेत्र सिद्धांत में [[ऑपरेटर (गणित)]] द्वारा प्रस्तुत भौतिक वेधशालाओं के परिणाम में रुचि है। यदि कोई दो बिन्दुओं पर दो भौतिक प्रेक्षण करने का परिणाम जानना चाहता है <math>z</math> और <math>w</math>, कोई भी इन ऑपरेटरों को बढ़ते समय में ऑर्डर दे सकता है।
ह्यूरिस्टिक रूप से, क्वांटम क्षेत्र सिद्धांत में [[ऑपरेटर (गणित)]] द्वारा प्रस्तुत भौतिक अवलोकनों के परिणाम में रुचि है। यदि कोई दो बिन्दुओं <math>z</math> और <math>w</math> पर दो भौतिक प्रेक्षण करने का परिणाम जानना चाहता है, कोई भी इन ऑपरेटरों को बढ़ते हुए समय में क्रमित किया जा सकता है।


यदि नक्शा अनुरूप तरीके से समन्वय करता है, तो वह अक्सर रेडियल ऑर्डरिंग में रुचि रखता है। यह टाइम ऑर्डरिंग का एनालॉग है जहां बढ़ते समय को जटिल विमान पर कुछ बढ़ते दायरे में मैप किया गया है। सृजन संचालकों के [[सामान्य क्रम]] में भी रुचि है।
यदि नक्शा अनुरूप विधि से समन्वय करता है, तो वह अधिकांश रेडियल क्रमित में रुचि रखता है। यह समय क्रमित का एनालॉग है जहां बढ़ते समय को जटिल तल पर कुछ बढ़ते सीमा में माप किया गया है। सृजन संचालकों के [[सामान्य क्रम]] में भी रुचि है।


रेडियल-ऑर्डर किए गए ओपीई को सामान्य-ऑर्डर किए गए ओपीई माइनस नॉन-नॉर्मल-ऑर्डर किए गए शब्दों के रूप में लिखा जा सकता है। गैर-सामान्य-आदेशित शर्तों को अक्सर [[कम्यूटेटर]] के रूप में लिखा जा सकता है, और इनमें उपयोगी सरलीकृत पहचान होती है। रेडियल ऑर्डरिंग विस्तार के अभिसरण की आपूर्ति करता है।
रेडियल-क्रमित किए गए ओपीई को सामान्य-क्रमित किए गए ओपीई ऋणात्मक गैर-सामान्य-क्रमित किए गए शब्दों के रूप में लिखा जा सकता है। गैर-सामान्य-क्रमित शर्तों को अधिकांश [[कम्यूटेटर]] के रूप में लिखा जा सकता है, और इनमें उपयोगी सरलीकृत पहचान होती है। रेडियल क्रमितिंग विस्तार के अभिसरण की आपूर्ति करता है।


परिणाम कुछ शब्दों के संदर्भ में दो ऑपरेटरों के उत्पाद का अभिसरण विस्तार है, जिसमें जटिल विमान (लॉरेंट शर्तों) में ध्रुव हैं और जो परिमित हैं। यह परिणाम केवल बिंदु के चारों ओर विस्तार के रूप में दो अलग-अलग बिंदुओं पर दो ऑपरेटरों के विस्तार का प्रतिनिधित्व करता है, जहां ध्रुव प्रतिनिधित्व करते हैं जहां दो अलग-अलग बिंदु समान बिंदु होते हैं।
परिणाम कुछ शब्दों के संदर्भ में दो ऑपरेटरों के उत्पाद का अभिसरण विस्तार है, जिसमें जटिल तल (लॉरेंट शर्तों) में ध्रुव हैं और जो परिमित हैं। यह परिणाम केवल बिंदु के चारों ओर विस्तार के रूप में दो अलग-अलग बिंदुओं पर दो ऑपरेटरों के विस्तार का प्रतिनिधित्व करता है, जहां ध्रुव प्रतिनिधित्व करते हैं जहां दो अलग-अलग बिंदु समान बिंदु होते हैं।


:<math>1/(z-w)</math>.
:<math>1/(z-w)</math>.


इससे संबंधित यह है कि जटिल तल पर संचालिका (गणित) सामान्य रूप से कार्य के रूप में लिखा जाता है <math>z</math> और <math>\bar{z}</math>. इन्हें क्रमशः [[होलोमॉर्फिक फ़ंक्शन]] और [[एंटीहोलोमॉर्फिक फ़ंक्शन]] | एंटी-होलोमोर्फिक भागों के रूप में संदर्भित किया जाता है, क्योंकि वे विलक्षणता (परिमित संख्या) को छोड़कर निरंतर और भिन्न होते हैं। वास्तव में उन्हें [[मेरोमोर्फिक]] कहना चाहिए, लेकिन होलोमोर्फिक फ़ंक्शन आम बोलचाल है। सामान्य तौर पर, ऑपरेटर उत्पाद विस्तार होलोमोर्फिक और एंटी-होलोमोर्फिक भागों में अलग नहीं हो सकता है, खासकर अगर <math>\log z</math> विस्तार में शर्तें। हालांकि, ओपीई के डेरिवेटिव अक्सर विस्तार को होलोमोर्फिक और एंटी-होलोमोर्फिक विस्तार में अलग कर सकते हैं। यह अभिव्यक्ति भी ओपीई है और सामान्य तौर पर अधिक उपयोगी है।
इससे संबंधित यह है कि जटिल तल पर एक संकारक (गणित) सामान्यतः <math>z</math> और <math>\bar{z}</math> के फलन के रूप में लिखा जाता है। इन्हें क्रमशः [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] और [[एंटीहोलोमॉर्फिक फ़ंक्शन|एंटीहोलोमॉर्फिक फलन]] भागों के रूप में संदर्भित किया जाता है, क्योंकि वे विलक्षणता (परिमित संख्या) को छोड़कर निरंतर और भिन्न होते हैं। वास्तव में उन्हें [[मेरोमोर्फिक]] कहना चाहिए, किन्तु होलोमोर्फिक फलन सामान्य बोलचाल है। सामान्यतः, ऑपरेटर उत्पाद विस्तार होलोमोर्फिक और एंटी-होलोमोर्फिक भागों में अलग नहीं हो सकता है, विशेषकर यदि विस्तार में <math>\log z</math> शब्द हैं। चूंकि, ओपीई के डेरिवेटिव अधिकांश विस्तार को होलोमोर्फिक और एंटी-होलोमोर्फिक विस्तार में अलग कर सकते हैं। यह अभिव्यक्ति भी एक ओपीई है और सामान्यतः अधिक उपयोगी है।


== ऑपरेटर उत्पाद बीजगणित ==
== ऑपरेटर उत्पाद बीजगणित ==
सामान्य मामले में, किसी को फ़ील्ड्स (या ऑपरेटर्स) का सेट दिया जाता है <math>A^i(x)</math> क्षेत्र पर कुछ बीजगणित पर मूल्यवान माना जाता है। उदाहरण के लिए, फिक्सिंग एक्स, द <math>A^i(x)</math> कुछ झूठे बीजगणित को फैलाने के लिए लिया जा सकता है। कई गुना, ऑपरेटर उत्पाद पर रहने के लिए x को मुक्त करना <math>A^i(x)B^j(y)</math> तो यह कार्यों के चक्र में बस कुछ तत्व है। सामान्य तौर पर, इस तरह के छल्लों में सार्थक बयान देने के लिए पर्याप्त संरचना नहीं होती है; इस प्रकार, सिस्टम को मजबूत करने के लिए अतिरिक्त स्वयंसिद्धों पर विचार किया जाता है।
सामान्य मामले में, किसी को फ़ील्ड्स (या ऑपरेटर्स) का सेट दिया जाता है <math>A^i(x)</math> क्षेत्र पर कुछ बीजगणित पर मूल्यवान माना जाता है। उदाहरण के लिए, फिक्सिंग एक्स, द <math>A^i(x)</math> कुछ झूठे बीजगणित को फैलाने के लिए लिया जा सकता है। कई गुना, ऑपरेटर उत्पाद पर रहने के लिए x को मुक्त करना <math>A^i(x)B^j(y)</math> तो यह कार्यों के चक्र में बस कुछ तत्व है। सामान्यतः, इस तरह के छल्लों में सार्थक बयान देने के लिए पर्याप्त संरचना नहीं होती है; इस प्रकार, सिस्टम को मजबूत करने के लिए अतिरिक्त स्वयंसिद्धों पर विचार किया जाता है।


ऑपरेटर उत्पाद बीजगणित रूप का [[साहचर्य बीजगणित]] है
ऑपरेटर उत्पाद बीजगणित रूप का [[साहचर्य बीजगणित]] है


:<math>A^i(x)B^j(y) = \sum_k f^{ij}_k (x,y,z) C^k(z)</math>
:<math>A^i(x)B^j(y) = \sum_k f^{ij}_k (x,y,z) C^k(z)</math>
[[संरचना स्थिर]] है <math>f^{ij}_k (x,y,z)</math> कुछ सदिश बंडल के अनुभागों के बजाय एकल-मूल्यवान फ़ंक्शन होना आवश्यक है। इसके अलावा, फ़ील्ड को फ़ंक्शन के रिंग को फैलाना आवश्यक है। व्यावहारिक गणनाओं में, आमतौर पर यह आवश्यक होता है कि राशियाँ अभिसरण के कुछ दायरे के भीतर विश्लेषणात्मक हों; आम तौर पर के [[अभिसरण की त्रिज्या]] के साथ <math>|x-y|</math>. इस प्रकार, फलनों के वलय को बहुपद फलनों के वलय के रूप में लिया जा सकता है।
[[संरचना स्थिर]] है <math>f^{ij}_k (x,y,z)</math> कुछ सदिश बंडल के अनुभागों के बजाय एकल-मूल्यवान फलन होना आवश्यक है। इसके अलावा, फ़ील्ड को फलन के रिंग को फैलाना आवश्यक है। व्यावहारिक गणनाओं में, आमतौर पर यह आवश्यक होता है कि राशियाँ अभिसरण के कुछ सीमा के भीतर विश्लेषणात्मक हों; आम तौर पर के [[अभिसरण की त्रिज्या]] के साथ <math>|x-y|</math>. इस प्रकार, फलनों के वलय को बहुपद फलनों के वलय के रूप में लिया जा सकता है।


उपरोक्त को आवश्यकता के रूप में देखा जा सकता है जो कार्यों की अंगूठी पर लगाया जाता है; इस आवश्यकता को [[अनुरूप क्षेत्र सिद्धांत]] के क्षेत्र में लागू करना [[अनुरूप बूटस्ट्रैप]] के रूप में जाना जाता है।
उपरोक्त को आवश्यकता के रूप में देखा जा सकता है जो कार्यों की अंगूठी पर लगाया जाता है; इस आवश्यकता को [[अनुरूप क्षेत्र सिद्धांत]] के क्षेत्र में लागू करना [[अनुरूप बूटस्ट्रैप]] के रूप में जाना जाता है।
Line 34: Line 34:
क्वांटम क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार (ओपीई) स्थानीय क्षेत्रों के योग (संभवतः अनंत) के रूप में विभिन्न बिंदुओं पर दो [[क्षेत्र (भौतिकी)]] के उत्पाद के अभिसरण का त्रिज्या है।
क्वांटम क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार (ओपीई) स्थानीय क्षेत्रों के योग (संभवतः अनंत) के रूप में विभिन्न बिंदुओं पर दो [[क्षेत्र (भौतिकी)]] के उत्पाद के अभिसरण का त्रिज्या है।


अधिक सटीक, अगर <math> y </math> बिंदु है, और <math> A </math> और <math> B </math> [[ऑपरेटर-मूल्यवान क्षेत्र]] हैं, तो [[खुला पड़ोस]] है <math> O </math> का <math> y </math> ऐसा कि सभी के लिए <math> x \in O\setminus  \{y\} </math>
अधिक सटीक, यदि <math> y </math> बिंदु है, और <math> A </math> और <math> B </math> [[ऑपरेटर-मूल्यवान क्षेत्र]] हैं, तो [[खुला पड़ोस]] है <math> O </math> का <math> y </math> ऐसा कि सभी के लिए <math> x \in O\setminus  \{y\} </math>
:<math>A(x)B(y)=\sum_{i}c_i(x-y) C_i(y)</math>
:<math>A(x)B(y)=\sum_{i}c_i(x-y) C_i(y)</math>
जहाँ योग परिमित रूप से या गणनीय रूप से कई पदों से अधिक है, C<sub>i</sub> ऑपरेटर-मूल्यवान फ़ील्ड हैं, c<sub>i</sub> [[विश्लेषणात्मक कार्य]] खत्म हो गए हैं <math> O\setminus \{y\} </math> और योग भीतर [[ऑपरेटर टोपोलॉजी]] में अभिसारी है <math> O\setminus \{y\} </math>.
जहाँ योग परिमित रूप से या गणनीय रूप से कई पदों से अधिक है, C<sub>i</sub> ऑपरेटर-मूल्यवान फ़ील्ड हैं, c<sub>i</sub> [[विश्लेषणात्मक कार्य]] खत्म हो गए हैं <math> O\setminus \{y\} </math> और योग भीतर [[ऑपरेटर टोपोलॉजी]] में अभिसारी है <math> O\setminus \{y\} </math>.


ओपीई का उपयोग अक्सर अनुरूप क्षेत्र सिद्धांत में किया जाता है।
ओपीई का उपयोग अधिकांश अनुरूप क्षेत्र सिद्धांत में किया जाता है।


अंकन <math>F(x,y)\sim G(x,y)</math> अक्सर यह बताने के लिए प्रयोग किया जाता है कि अंतर G(x,y)-F(x,y) बिंदु x=y पर विश्लेषणात्मक रहता है। यह [[तुल्यता संबंध]] है।
अंकन <math>F(x,y)\sim G(x,y)</math> अधिकांश यह बताने के लिए प्रयोग किया जाता है कि अंतर G(x,y)-F(x,y) बिंदु x=y पर विश्लेषणात्मक रहता है। यह [[तुल्यता संबंध]] है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 07:41, 2 May 2023

क्वांटम क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार (ओपीई) का उपयोग क्षेत्रों के उत्पाद को समान क्षेत्रों के योग के रूप में परिभाषित करने के लिए एक स्वयंसिद्ध के रूप में किया जाता है। स्वयंसिद्ध के रूप में, यह क्वांटम क्षेत्र सिद्धांत के लिए गैर-उत्तेजित दृष्टिकोण प्रदान करता है। उदाहरण वर्टेक्स ऑपरेटर बीजगणित है, जिसका उपयोग द्वि-आयामी अनुरूप क्षेत्र सिद्धांत | द्वि-आयामी अनुरूप क्षेत्र सिद्धांत बनाने के लिए किया गया है। क्या इस परिणाम को सामान्य रूप से क्यूएफटी तक बढ़ाया जा सकता है, इस प्रकार एक उत्तेजित करने वाले दृष्टिकोण की कई कठिनाइयों का समाधान एक खुला शोध प्रश्न बना हुआ है।

व्यावहारिक गणनाओं में, जैसे कि विभिन्न कोलाइडर प्रयोगों में प्रकीर्णन का आयाम के लिए आवश्यक, ऑपरेटर उत्पाद विस्तार का उपयोग क्यूसीडी योग नियमों में दोनों उत्तेजित और गैर उत्तेजित (संघनित) गणनाओं के परिणामों को संयोजित करने के लिए किया जाता है।

2डी यूक्लिडियन क्वांटम क्षेत्र सिद्धांत

2डी यूक्लिडियन क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार एक लॉरेंट श्रृंखला विस्तार है जो दो ऑपरेटरों से जुड़ा है। लॉरेंट श्रृंखला टेलर श्रृंखला का सामान्यीकरण है जिसमें विस्तार चर (ओं) के व्युत्क्रम की कई शक्तियाँ टेलर श्रृंखला में परिमित क्रम (ओं) के पोल (ओं) को श्रृंखला में जोड़ा जाता है।

ह्यूरिस्टिक रूप से, क्वांटम क्षेत्र सिद्धांत में ऑपरेटर (गणित) द्वारा प्रस्तुत भौतिक अवलोकनों के परिणाम में रुचि है। यदि कोई दो बिन्दुओं और पर दो भौतिक प्रेक्षण करने का परिणाम जानना चाहता है, कोई भी इन ऑपरेटरों को बढ़ते हुए समय में क्रमित किया जा सकता है।

यदि नक्शा अनुरूप विधि से समन्वय करता है, तो वह अधिकांश रेडियल क्रमित में रुचि रखता है। यह समय क्रमित का एनालॉग है जहां बढ़ते समय को जटिल तल पर कुछ बढ़ते सीमा में माप किया गया है। सृजन संचालकों के सामान्य क्रम में भी रुचि है।

रेडियल-क्रमित किए गए ओपीई को सामान्य-क्रमित किए गए ओपीई ऋणात्मक गैर-सामान्य-क्रमित किए गए शब्दों के रूप में लिखा जा सकता है। गैर-सामान्य-क्रमित शर्तों को अधिकांश कम्यूटेटर के रूप में लिखा जा सकता है, और इनमें उपयोगी सरलीकृत पहचान होती है। रेडियल क्रमितिंग विस्तार के अभिसरण की आपूर्ति करता है।

परिणाम कुछ शब्दों के संदर्भ में दो ऑपरेटरों के उत्पाद का अभिसरण विस्तार है, जिसमें जटिल तल (लॉरेंट शर्तों) में ध्रुव हैं और जो परिमित हैं। यह परिणाम केवल बिंदु के चारों ओर विस्तार के रूप में दो अलग-अलग बिंदुओं पर दो ऑपरेटरों के विस्तार का प्रतिनिधित्व करता है, जहां ध्रुव प्रतिनिधित्व करते हैं जहां दो अलग-अलग बिंदु समान बिंदु होते हैं।

.

इससे संबंधित यह है कि जटिल तल पर एक संकारक (गणित) सामान्यतः और के फलन के रूप में लिखा जाता है। इन्हें क्रमशः होलोमॉर्फिक फलन और एंटीहोलोमॉर्फिक फलन भागों के रूप में संदर्भित किया जाता है, क्योंकि वे विलक्षणता (परिमित संख्या) को छोड़कर निरंतर और भिन्न होते हैं। वास्तव में उन्हें मेरोमोर्फिक कहना चाहिए, किन्तु होलोमोर्फिक फलन सामान्य बोलचाल है। सामान्यतः, ऑपरेटर उत्पाद विस्तार होलोमोर्फिक और एंटी-होलोमोर्फिक भागों में अलग नहीं हो सकता है, विशेषकर यदि विस्तार में शब्द हैं। चूंकि, ओपीई के डेरिवेटिव अधिकांश विस्तार को होलोमोर्फिक और एंटी-होलोमोर्फिक विस्तार में अलग कर सकते हैं। यह अभिव्यक्ति भी एक ओपीई है और सामान्यतः अधिक उपयोगी है।

ऑपरेटर उत्पाद बीजगणित

सामान्य मामले में, किसी को फ़ील्ड्स (या ऑपरेटर्स) का सेट दिया जाता है क्षेत्र पर कुछ बीजगणित पर मूल्यवान माना जाता है। उदाहरण के लिए, फिक्सिंग एक्स, द कुछ झूठे बीजगणित को फैलाने के लिए लिया जा सकता है। कई गुना, ऑपरेटर उत्पाद पर रहने के लिए x को मुक्त करना तो यह कार्यों के चक्र में बस कुछ तत्व है। सामान्यतः, इस तरह के छल्लों में सार्थक बयान देने के लिए पर्याप्त संरचना नहीं होती है; इस प्रकार, सिस्टम को मजबूत करने के लिए अतिरिक्त स्वयंसिद्धों पर विचार किया जाता है।

ऑपरेटर उत्पाद बीजगणित रूप का साहचर्य बीजगणित है

संरचना स्थिर है कुछ सदिश बंडल के अनुभागों के बजाय एकल-मूल्यवान फलन होना आवश्यक है। इसके अलावा, फ़ील्ड को फलन के रिंग को फैलाना आवश्यक है। व्यावहारिक गणनाओं में, आमतौर पर यह आवश्यक होता है कि राशियाँ अभिसरण के कुछ सीमा के भीतर विश्लेषणात्मक हों; आम तौर पर के अभिसरण की त्रिज्या के साथ . इस प्रकार, फलनों के वलय को बहुपद फलनों के वलय के रूप में लिया जा सकता है।

उपरोक्त को आवश्यकता के रूप में देखा जा सकता है जो कार्यों की अंगूठी पर लगाया जाता है; इस आवश्यकता को अनुरूप क्षेत्र सिद्धांत के क्षेत्र में लागू करना अनुरूप बूटस्ट्रैप के रूप में जाना जाता है।

ऑपरेटर उत्पाद बीजगणित का उदाहरण वर्टेक्स ऑपरेटर बीजगणित है। वर्तमान में यह आशा की जाती है कि ऑपरेटर उत्पाद बीजगणित का उपयोग सभी क्वांटम क्षेत्र सिद्धांत को स्वयंसिद्ध करने के लिए किया जा सकता है; उन्होंने अनुरूप क्षेत्र सिद्धांतों के लिए सफलतापूर्वक ऐसा किया है, और क्या उन्हें गैर-उत्तेजित करने वाले क्यूएफटी के आधार के रूप में इस्तेमाल किया जा सकता है, यह खुला शोध क्षेत्र है।

ऑपरेटर उत्पाद विस्तार

क्वांटम क्षेत्र सिद्धांत में, ऑपरेटर उत्पाद विस्तार (ओपीई) स्थानीय क्षेत्रों के योग (संभवतः अनंत) के रूप में विभिन्न बिंदुओं पर दो क्षेत्र (भौतिकी) के उत्पाद के अभिसरण का त्रिज्या है।

अधिक सटीक, यदि बिंदु है, और और ऑपरेटर-मूल्यवान क्षेत्र हैं, तो खुला पड़ोस है का ऐसा कि सभी के लिए

जहाँ योग परिमित रूप से या गणनीय रूप से कई पदों से अधिक है, Ci ऑपरेटर-मूल्यवान फ़ील्ड हैं, ci विश्लेषणात्मक कार्य खत्म हो गए हैं और योग भीतर ऑपरेटर टोपोलॉजी में अभिसारी है .

ओपीई का उपयोग अधिकांश अनुरूप क्षेत्र सिद्धांत में किया जाता है।

अंकन अधिकांश यह बताने के लिए प्रयोग किया जाता है कि अंतर G(x,y)-F(x,y) बिंदु x=y पर विश्लेषणात्मक रहता है। यह तुल्यता संबंध है।

यह भी देखें

  • वर्टेक्स ऑपरेटर बीजगणित
  • क्यूसीडी योग नियम

बाहरी संबंध