बीजगणित की व्यापकता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[गणित के इतिहास]] में, बीजगणित की व्यापकता [[ऑगस्टिन-लुई कॉची]] द्वारा तर्क की एक विधि का वर्णन करने के लिए उपयोग किया गया एक वाक्यांश था जिसका उपयोग 18 वीं शताब्दी में [[लियोनहार्ड यूलर]] और [[जोसेफ-लुई लाग्रेंज]] जैसे गणितज्ञों द्वारा किया गया था।<ref name=Jahnke>{{citation|title=A history of analysis|first=Hans Niels|last=Jahnke|publisher=American Mathematical Society|year=2003|isbn=978-0-8218-2623-2|page=131|url=https://books.google.com/books?id=CVRZEXFVsZkC&pg=PA131 }}.</ref> विशेष रूप से [[अनंत उत्पाद|अनंत श्रृंखला]] में | [[गणित के इतिहास]] में, बीजगणित की व्यापकता [[ऑगस्टिन-लुई कॉची]] द्वारा तर्क की एक विधि का वर्णन करने के लिए उपयोग किया गया एक वाक्यांश था जिसका उपयोग 18 वीं शताब्दी में [[लियोनहार्ड यूलर]] और [[जोसेफ-लुई लाग्रेंज]] जैसे गणितज्ञों द्वारा किया गया था।<ref name=Jahnke>{{citation|title=A history of analysis|first=Hans Niels|last=Jahnke|publisher=American Mathematical Society|year=2003|isbn=978-0-8218-2623-2|page=131|url=https://books.google.com/books?id=CVRZEXFVsZkC&pg=PA131 }}.</ref> विशेष रूप से [[अनंत उत्पाद|अनंत श्रृंखला]] में हेरफेर करने में। कोएटसियर के अनुसार,<ref name=Koetsier>{{citation|first=Teun|last=Koetsier|title=Lakatos' philosophy of mathematics: A historical approach|publisher=North-Holland|year=1991|pages=206–210}}.</ref> [[बीजगणित]] सिद्धांत की व्यापकता, मोटे तौर पर, मान लिया गया है कि बीजगणितीय नियम जो अभिव्यक्तियों के एक निश्चित वर्ग के लिए धारण करते हैं, उन्हें सामान्यतः वस्तुओं के एक बड़े वर्ग पर लागू करने के लिए बढ़ाया जा सकता है, यदि नियम अब स्पष्ट रूप से मान्य न हों। परिणामस्वरूप, 18वीं सदी के गणितज्ञों का मानना था कि वे बीजगणित और [[ गणना |गणना]] के सामान्य नियमों को लागू करके सार्थक परिणाम प्राप्त कर सकते हैं जो अनंत विस्तारों में हेरफेर करते हुए भी परिमित विस्तार के लिए मान्य हैं। | ||
[[कोर्स डी एनालिसिस]] जैसे कार्यों में, कॉची ने "बीजगणित की व्यापकता" विधियों के उपयोग को अस्वीकार कर दिया और [[गणितीय विश्लेषण]] के लिए अधिक [[कठोर]] आधार की मांग की। | |||
== उदाहरण == | == उदाहरण == |
Revision as of 11:41, 30 April 2023
गणित के इतिहास में, बीजगणित की व्यापकता ऑगस्टिन-लुई कॉची द्वारा तर्क की एक विधि का वर्णन करने के लिए उपयोग किया गया एक वाक्यांश था जिसका उपयोग 18 वीं शताब्दी में लियोनहार्ड यूलर और जोसेफ-लुई लाग्रेंज जैसे गणितज्ञों द्वारा किया गया था।[1] विशेष रूप से अनंत श्रृंखला में हेरफेर करने में। कोएटसियर के अनुसार,[2] बीजगणित सिद्धांत की व्यापकता, मोटे तौर पर, मान लिया गया है कि बीजगणितीय नियम जो अभिव्यक्तियों के एक निश्चित वर्ग के लिए धारण करते हैं, उन्हें सामान्यतः वस्तुओं के एक बड़े वर्ग पर लागू करने के लिए बढ़ाया जा सकता है, यदि नियम अब स्पष्ट रूप से मान्य न हों। परिणामस्वरूप, 18वीं सदी के गणितज्ञों का मानना था कि वे बीजगणित और गणना के सामान्य नियमों को लागू करके सार्थक परिणाम प्राप्त कर सकते हैं जो अनंत विस्तारों में हेरफेर करते हुए भी परिमित विस्तार के लिए मान्य हैं।
कोर्स डी एनालिसिस जैसे कार्यों में, कॉची ने "बीजगणित की व्यापकता" विधियों के उपयोग को अस्वीकार कर दिया और गणितीय विश्लेषण के लिए अधिक कठोर आधार की मांग की।
उदाहरण
एक उदाहरण[2]श्रृंखला की यूलर की व्युत्पत्ति है
-
(1)
के लिए . उन्होंने सबसे पहले पहचान का मूल्यांकन किया
-
(2)
पर प्राप्त करने के लिए
-
(3)
के दाहिने हाथ की ओर अनंत श्रृंखला (3) सभी वास्तविक संख्याओं के लिए अपसरण करता है . लेकिन फिर भी अभिन्न यह टर्म-बाय-टर्म देता है (1), एक पहचान जिसे फूरियर विश्लेषण द्वारा सत्य माना जाता है।[example needed]
यह भी देखें
संदर्भ
- ↑ Jahnke, Hans Niels (2003), A history of analysis, American Mathematical Society, p. 131, ISBN 978-0-8218-2623-2.
- ↑ 2.0 2.1 Koetsier, Teun (1991), Lakatos' philosophy of mathematics: A historical approach, North-Holland, pp. 206–210.