कार्यात्मक एकीकरण: Difference between revisions
(Created page with "{{Short description|Integration over the space of functions}} {{distinguish|functional integration (neurobiology)}} कार्यात्मक एकीकरण गण...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Integration over the space of functions}} | {{Short description|Integration over the space of functions}} | ||
प्रकार्यात्मक समाकलन ( तंत्रिका जैविकी) के साथ भ्रमित नहीं होना चाहिए। | |||
'''''प्रकार्यात्मक समाकलन''''' गणित और भौतिकी में परिणामों का एक संग्रह है जहां [[अभिन्न|समाकलन]] का प्रक्षेत्र अब समष्टि का क्षेत्र नहीं है, बल्कि एक फलन समष्टि है। आंशिक अवकल समीकरणों के अध्ययन में, और कणों और क्षेत्रों के क्वांटम यांत्रिकी के पथ समाकल दृष्टिकोण में, प्रकार्यात्मक समाकल प्रायिकता में उत्पन्न होते हैं। | |||
साधारण समाकलन ([[लेबेसेग एकीकरण|लेबेसेग समाकलन]] के अर्थ में) में समाकलित (समाकल्य) और समष्टि का एक क्षेत्र होता है, जिस पर फलन (समाकलन का प्रक्षेत्र) को समाकलन किया जाता है। समाकलन की प्रक्रिया में समाकलन के प्रक्षेत्र के प्रत्येक बिंदु के लिए समाकल्य के मानो को जोड़ना सम्मिलित है। इस प्रक्रिया को दृढ़ बनाने के लिए एक सीमित प्रक्रिया की आवश्यकता होती है, जहाँ समाकलन के क्षेत्र को छोटे और छोटे क्षेत्रों में विभाजित किया जाता है। प्रत्येक छोटे क्षेत्र के लिए, समाकलन का मान अधिक भिन्न नहीं हो सकता है, इसलिए इसे एकल मान से बदला जा सकता है। एक प्रकार्यात्मक समाकलन में समाकलन का प्रक्षेत्र फलनों की एक समष्टि है। प्रत्येक फलन के लिए, समाकल्य जोड़ने के लिए एक मान देता है। इस प्रक्रिया को परिशुद्ध बनाने से ऐसी चुनौतियाँ सामने आती हैं जो वर्तमान शोध का विषय बनी रहती हैं। | |||
1919 | 1919 <ref>{{Cite journal | ||
| volume = 20 | | volume = 20 | ||
| issue = 4 | | issue = 4 | ||
Line 17: | Line 17: | ||
| jstor = 1967122 | | jstor = 1967122 | ||
| doi = 10.2307/1967122 | | doi = 10.2307/1967122 | ||
}}</ref> और | }}</ref> के एक लेख में पर्सी जॉन डेनियल द्वारा और ब्राउनियन गति पर 1921 के अपने लेखों में समापन अध्ययनों की एक श्रृंखला में नॉर्बर्ट वीनर द्वारा प्रकार्यात्मक समाकलन विकसित किया गया था। उन्होंने एक कण के यादृच्छिक पथ की संभावना निर्दिष्ट करने के लिए एक परिशुद्ध विधि (अब [[वीनर माप]] के रूप में जाना जाता है) विकसित की। [[रिचर्ड फेनमैन]] ने एक और प्रकार्यात्मक समाकलन, पथ समाकलन सूत्रीकरण विकसित किया, जो प्रणाली के क्वांटम गुणों की गणना के लिए उपयोगी है। फेनमैन के पथ समाकलन में, एक कण के लिए एक अद्वितीय प्रक्षेप-वक्र की उत्कृष्ट धारणा को उत्कृष्ट पथों के अनंत योग द्वारा प्रतिस्थापित किया जाता है, प्रत्येक को इसके उत्कृष्ट गुणों के अनुसार अलग-अलग भारित किया जाता है। | ||
सैद्धांतिक भौतिकी में परिमाणीकरण तकनीकों के लिए | सैद्धांतिक भौतिकी में परिमाणीकरण तकनीकों के लिए प्रकार्यात्मक समाकलन केंद्रीय है। प्रकार्यात्मक समाकलन के बीजगणितीय गुणों का उपयोग [[क्वांटम इलेक्ट्रोडायनामिक्स|क्वांटम विद्युतगतिकी]] और कण भौतिकी के [[मानक मॉडल]] में गुणों की गणना करने के लिए उपयोग की जाने वाली श्रृंखला को विकसित करने के लिए किया जाता है। | ||
== | == प्रकार्यात्मक समाकलन == | ||
जबकि मानक [[रीमैन इंटीग्रल|रीमैन समाकलन]] x के मानों की एक सतत श्रेणी पर एक फलन f(x) का योग करता है, प्रकार्यात्मक समाकलन एक [[कार्यात्मक (गणित)|प्रकार्यात्मक (गणित)]] G[f] का योग करता है जिसे फलनों की निरंतर सीमा (या समष्टि) पर एक फलन के फलन ''f'' के रूप में माना जा सकता है। अधिकांश प्रकार्यात्मक समाकलों का परिशुद्ध मूल्यांकन नहीं किया जा सकता है, लेकिन क्षोभ विधियों का उपयोग करके मूल्यांकन किया जाना चाहिए। एक प्रकार्यात्मक समाकलन की औपचारिक परिभाषा है | |||
जबकि मानक [[रीमैन इंटीग्रल]] x के मानों की एक सतत श्रेणी पर एक | |||
<math display="block"> | <math display="block"> | ||
\int G[f]\; \mathcal{D}[f] \equiv \int_{\mathbb{R}}\cdots \int_{\mathbb{R}} G[f] \prod_x df(x)\;. | \int G[f]\; \mathcal{D}[f] \equiv \int_{\mathbb{R}}\cdots \int_{\mathbb{R}} G[f] \prod_x df(x)\;. | ||
</math> | </math> | ||
हालाँकि, | हालाँकि, अधिकतम स्थितियों में फलन f(x) को लंबकोणीय फलनों की एक अनंत श्रृंखला के रूप में लिखा जा सकता है जैसे कि <math>f(x) = f_n H_n(x)</math> और फिर परिभाषा बन जाती है | ||
<math display="block"> | <math display="block"> | ||
\int G[f] \; \mathcal{D}[f] \equiv \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} G(f_1; f_2; \ldots) \prod_n df_n\;, | \int G[f] \; \mathcal{D}[f] \equiv \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} G(f_1; f_2; \ldots) \prod_n df_n\;, | ||
</math> | </math> | ||
जो | जो अधिक समझ में आता है। समाकल को बड़े अक्षर <math>\mathcal{D}</math> के साथ प्रकार्यात्मक समाकलन के रूप में दिखाया गया है। प्रकार्यात्मक समाकलन माप में फलन की फलनिक आश्रितता को इंगित करने के लिए कभी-कभी तर्क वर्ग कोष्ठक <math>\mathcal{D}[f]</math> में लिखा जाता है। | ||
== उदाहरण == | == उदाहरण == | ||
अधिकांश प्रकार्यात्मक समाकल वास्तव में अनंत होते हैं, लेकिन | अधिकांश प्रकार्यात्मक समाकल वास्तव में अनंत होते हैं, लेकिन प्रायः दो संबंधित प्रकार्यात्मक समाकलों के भागफल की सीमा अभी भी परिमित हो सकती है। प्रकार्यात्मक समाकलन जिनका मूल्यांकन किया जा सकता है, सामान्य रूप से निम्नलिखित [[ गॉसियन अभिन्न |गॉसियन समाकलन]] से प्रारंभ होते हैं: | ||
:<math> | :<math> | ||
Line 45: | Line 43: | ||
जिसमें <math> | जिसमें <math> | ||
K(x;y)=K(y;x) | K(x;y)=K(y;x) | ||
</math> | </math> J(x) के संबंध में प्रकार्यात्मक रूप से इसे अलग करके और फिर 0 पर स्थापित करके यह f में एक एकपदीय द्वारा एक घातीय गुणा हो जाता है। इसे देखने के लिए, निम्नलिखित संकेतन का उपयोग करें: | ||
<math> | <math> | ||
G[f,J]=-\frac{1}{2} \int_{\mathbb{R}}\left[\int_{\mathbb{R}} f(x) K(x;y) f(y)\,dy + J(x) f(x)\right]dx\, \quad,\quad W[J]=\int \exp\lbrace G[f,J]\rbrace\mathcal{D}[f]\;. | G[f,J]=-\frac{1}{2} \int_{\mathbb{R}}\left[\int_{\mathbb{R}} f(x) K(x;y) f(y)\,dy + J(x) f(x)\right]dx\, \quad,\quad W[J]=\int \exp\lbrace G[f,J]\rbrace\mathcal{D}[f]\;. | ||
</math> | </math> | ||
इस अंकन के साथ पहले समीकरण को इस प्रकार लिखा जा सकता है: | इस अंकन के साथ पहले समीकरण को इस प्रकार लिखा जा सकता है: | ||
Line 55: | Line 54: | ||
\dfrac{W[J]}{W[0]}=\exp\left\lbrace\frac{1}{2}\int_{\mathbb{R}^2} J(x) K^{-1}(x;y) J(y) \,dx\,dy\right\rbrace. | \dfrac{W[J]}{W[0]}=\exp\left\lbrace\frac{1}{2}\int_{\mathbb{R}^2} J(x) K^{-1}(x;y) J(y) \,dx\,dy\right\rbrace. | ||
</math> | </math> | ||
अब, | |||
अब, <math> | |||
W[J] | W[J] | ||
</math> और फिर | </math> की परिभाषा में प्रकार्यात्मक अवकल लेकर और फिर <math> | ||
J=0 | J=0 | ||
</math> | </math> में मूल्यांकन करते हुए प्राप्त करता है: | ||
<math> | <math> | ||
Line 72: | Line 72: | ||
\qquad\qquad\qquad\qquad\vdots | \qquad\qquad\qquad\qquad\vdots | ||
</math> | </math> | ||
जिसका परिणाम अपेक्षित है। अधिक से अधिक, पहले समीकरण का उपयोग करके एक उपयोगी परिणाम पर आता है: | जिसका परिणाम अपेक्षित है। अधिक से अधिक, पहले समीकरण का उपयोग करके एक उपयोगी परिणाम पर आता है: | ||
Line 85: | Line 86: | ||
K^{-1}(a;b)\,. | K^{-1}(a;b)\,. | ||
</math> | </math> | ||
एक अन्य उपयोगी | |||
एक अन्य उपयोगी समाकलन प्रकार्यात्मक [[डेल्टा समारोह|डेल्टा फलन]] है: | |||
:<math> | :<math> | ||
\int \exp\left\lbrace \int_{\mathbb{R}} f(x) g(x)dx\right\rbrace \mathcal{D}[f] = \delta[g] = \prod_x\delta\big(g(x)\big), | \int \exp\left\lbrace \int_{\mathbb{R}} f(x) g(x)dx\right\rbrace \mathcal{D}[f] = \delta[g] = \prod_x\delta\big(g(x)\big), | ||
</math> | </math> | ||
जो | जो प्रतिबंध को निर्दिष्ट करने के लिए उपयोगी है। ग्रासमैन-मान फलन <math>\psi(x)</math>, पर प्रकार्यात्मक समाकल भी किया जा सकता है, जहां <math>\psi(x) \psi(y) = -\psi(y) \psi(x)</math> क्वांटम विद्युत्-गतिक में फ़र्मियन से जुड़ी गणनाओं के लिए उपयोगी है। | ||
== पथ | == पथ समाकलन के लिए दृष्टिकोण == | ||
प्रकार्यात्मक समाकल जहां समाकलन के स्थान में पथ (ν = 1) को कई अलग-अलग तरीकों से परिभाषित किया जा सकता है। पपरिभाषाएं दो अलग-अलग वर्गों में आती हैं: वीनर के सिद्धांत से प्राप्त निर्माण एक माप के आधार पर एक समाकल उत्पन्न करते हैं, जबकि फेनमैन के पथ समाकल के बाद के निर्माण नहीं होते हैं। इन दो व्यापक विभाजनों के अंदर भी, समाकल समान नहीं हैं, अर्थात, उन्हें विभिन्न वर्गों के फलनों के लिए अलग-अलग परिभाषित किया गया है। | |||
=== वीनर | === वीनर समाकलन === | ||
[[वीनर प्रक्रिया]] में, ब्राउनियन गति पथों के एक वर्ग को एक प्रायिकता | [[वीनर प्रक्रिया]] में, ब्राउनियन गति पथों के एक वर्ग को एक प्रायिकता दी गई है। वर्ग में पथ w होते हैं जो एक निश्चित समय में समष्टि के एक छोटे से क्षेत्र से जाने के लिए जाने जाते हैं। समष्टि के विभिन्न क्षेत्रों के माध्यम से पारित होने को एक दूसरे से स्वतंत्र माना जाता है, और ब्राउनियन पथ के किसी भी दो बिंदुओं के बीच की दूरी को [[सामान्य वितरण]] माना जाता है। गाऊसी-वितरित एक विचरण के साथ जो समय t पर निर्भर करता है और एक प्रसार स्थिरांक D पर निर्भर करता है: | ||
:<math>\Pr\big(w(s + t), t \mid w(s), s\big) = \frac{1}{\sqrt{2\pi D t}} \exp\left(-\frac{\|w(s+t) - w(s)\|^2}{2Dt}\right).</math> | :<math>\Pr\big(w(s + t), t \mid w(s), s\big) = \frac{1}{\sqrt{2\pi D t}} \exp\left(-\frac{\|w(s+t) - w(s)\|^2}{2Dt}\right).</math> | ||
पथों के वर्ग के लिए प्रायिकता एक क्षेत्र में | पथों के वर्ग के लिए प्रायिकता एक क्षेत्र में प्रारंभ होने और फिर अगले क्षेत्र में होने की प्रायिकता को गुणा करके पाई जा सकती है। कई छोटे क्षेत्रों की सीमा पर विचार करके वीनर माप विकसित किया जा सकता है। | ||
* इतो और स्ट्रैटोनोविच | * इतो और स्ट्रैटोनोविच गणना | ||
=== फेनमैन | === फेनमैन समाकलन === | ||
* ट्रोटर | * ट्रोटर सूत्र, या लाइ गुणनफल [[झूठ उत्पाद सूत्र|सूत्र]] | ||
* | *वर्तिका के घूर्णन का काक विचार। | ||
* x- | * x-बिन्दु-वर्ग या i S[x] + x-बिन्दु-वर्ग का उपयोग करना। | ||
* कार्टियर डेविट-मोरेट | * कार्टियर डेविट-मोरेट मापों के अतिरिक्त समाकलन पर निर्भर करता है | ||
=== लेवी | === लेवी समाकलन === | ||
* [[आंशिक क्वांटम यांत्रिकी]] | * [[आंशिक क्वांटम यांत्रिकी]] | ||
Line 120: | Line 121: | ||
== यह भी देखें == | == यह भी देखें == | ||
* पथ | * पथ समाकलन सूत्रीकरण | ||
*[[विभाजन समारोह (क्वांटम क्षेत्र सिद्धांत)]] | *[[विभाजन समारोह (क्वांटम क्षेत्र सिद्धांत)|विभाजन फलन (क्वांटम क्षेत्र सिद्धांत)]] | ||
* [[काठी बिंदु सन्निकटन]] | * [[काठी बिंदु सन्निकटन|सैडल बिंदु सन्निकटन]] | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 09:56, 2 May 2023
प्रकार्यात्मक समाकलन ( तंत्रिका जैविकी) के साथ भ्रमित नहीं होना चाहिए।
प्रकार्यात्मक समाकलन गणित और भौतिकी में परिणामों का एक संग्रह है जहां समाकलन का प्रक्षेत्र अब समष्टि का क्षेत्र नहीं है, बल्कि एक फलन समष्टि है। आंशिक अवकल समीकरणों के अध्ययन में, और कणों और क्षेत्रों के क्वांटम यांत्रिकी के पथ समाकल दृष्टिकोण में, प्रकार्यात्मक समाकल प्रायिकता में उत्पन्न होते हैं।
साधारण समाकलन (लेबेसेग समाकलन के अर्थ में) में समाकलित (समाकल्य) और समष्टि का एक क्षेत्र होता है, जिस पर फलन (समाकलन का प्रक्षेत्र) को समाकलन किया जाता है। समाकलन की प्रक्रिया में समाकलन के प्रक्षेत्र के प्रत्येक बिंदु के लिए समाकल्य के मानो को जोड़ना सम्मिलित है। इस प्रक्रिया को दृढ़ बनाने के लिए एक सीमित प्रक्रिया की आवश्यकता होती है, जहाँ समाकलन के क्षेत्र को छोटे और छोटे क्षेत्रों में विभाजित किया जाता है। प्रत्येक छोटे क्षेत्र के लिए, समाकलन का मान अधिक भिन्न नहीं हो सकता है, इसलिए इसे एकल मान से बदला जा सकता है। एक प्रकार्यात्मक समाकलन में समाकलन का प्रक्षेत्र फलनों की एक समष्टि है। प्रत्येक फलन के लिए, समाकल्य जोड़ने के लिए एक मान देता है। इस प्रक्रिया को परिशुद्ध बनाने से ऐसी चुनौतियाँ सामने आती हैं जो वर्तमान शोध का विषय बनी रहती हैं।
1919 [1] के एक लेख में पर्सी जॉन डेनियल द्वारा और ब्राउनियन गति पर 1921 के अपने लेखों में समापन अध्ययनों की एक श्रृंखला में नॉर्बर्ट वीनर द्वारा प्रकार्यात्मक समाकलन विकसित किया गया था। उन्होंने एक कण के यादृच्छिक पथ की संभावना निर्दिष्ट करने के लिए एक परिशुद्ध विधि (अब वीनर माप के रूप में जाना जाता है) विकसित की। रिचर्ड फेनमैन ने एक और प्रकार्यात्मक समाकलन, पथ समाकलन सूत्रीकरण विकसित किया, जो प्रणाली के क्वांटम गुणों की गणना के लिए उपयोगी है। फेनमैन के पथ समाकलन में, एक कण के लिए एक अद्वितीय प्रक्षेप-वक्र की उत्कृष्ट धारणा को उत्कृष्ट पथों के अनंत योग द्वारा प्रतिस्थापित किया जाता है, प्रत्येक को इसके उत्कृष्ट गुणों के अनुसार अलग-अलग भारित किया जाता है।
सैद्धांतिक भौतिकी में परिमाणीकरण तकनीकों के लिए प्रकार्यात्मक समाकलन केंद्रीय है। प्रकार्यात्मक समाकलन के बीजगणितीय गुणों का उपयोग क्वांटम विद्युतगतिकी और कण भौतिकी के मानक मॉडल में गुणों की गणना करने के लिए उपयोग की जाने वाली श्रृंखला को विकसित करने के लिए किया जाता है।
प्रकार्यात्मक समाकलन
जबकि मानक रीमैन समाकलन x के मानों की एक सतत श्रेणी पर एक फलन f(x) का योग करता है, प्रकार्यात्मक समाकलन एक प्रकार्यात्मक (गणित) G[f] का योग करता है जिसे फलनों की निरंतर सीमा (या समष्टि) पर एक फलन के फलन f के रूप में माना जा सकता है। अधिकांश प्रकार्यात्मक समाकलों का परिशुद्ध मूल्यांकन नहीं किया जा सकता है, लेकिन क्षोभ विधियों का उपयोग करके मूल्यांकन किया जाना चाहिए। एक प्रकार्यात्मक समाकलन की औपचारिक परिभाषा है
उदाहरण
अधिकांश प्रकार्यात्मक समाकल वास्तव में अनंत होते हैं, लेकिन प्रायः दो संबंधित प्रकार्यात्मक समाकलों के भागफल की सीमा अभी भी परिमित हो सकती है। प्रकार्यात्मक समाकलन जिनका मूल्यांकन किया जा सकता है, सामान्य रूप से निम्नलिखित गॉसियन समाकलन से प्रारंभ होते हैं:
जिसमें J(x) के संबंध में प्रकार्यात्मक रूप से इसे अलग करके और फिर 0 पर स्थापित करके यह f में एक एकपदीय द्वारा एक घातीय गुणा हो जाता है। इसे देखने के लिए, निम्नलिखित संकेतन का उपयोग करें:
इस अंकन के साथ पहले समीकरण को इस प्रकार लिखा जा सकता है:
अब, की परिभाषा में प्रकार्यात्मक अवकल लेकर और फिर में मूल्यांकन करते हुए प्राप्त करता है:
जिसका परिणाम अपेक्षित है। अधिक से अधिक, पहले समीकरण का उपयोग करके एक उपयोगी परिणाम पर आता है:
इन परिणामों को एक साथ रखकर और हमारे पास मूल अंकन का समर्थन करते हुए:
एक अन्य उपयोगी समाकलन प्रकार्यात्मक डेल्टा फलन है:
जो प्रतिबंध को निर्दिष्ट करने के लिए उपयोगी है। ग्रासमैन-मान फलन , पर प्रकार्यात्मक समाकल भी किया जा सकता है, जहां क्वांटम विद्युत्-गतिक में फ़र्मियन से जुड़ी गणनाओं के लिए उपयोगी है।
पथ समाकलन के लिए दृष्टिकोण
प्रकार्यात्मक समाकल जहां समाकलन के स्थान में पथ (ν = 1) को कई अलग-अलग तरीकों से परिभाषित किया जा सकता है। पपरिभाषाएं दो अलग-अलग वर्गों में आती हैं: वीनर के सिद्धांत से प्राप्त निर्माण एक माप के आधार पर एक समाकल उत्पन्न करते हैं, जबकि फेनमैन के पथ समाकल के बाद के निर्माण नहीं होते हैं। इन दो व्यापक विभाजनों के अंदर भी, समाकल समान नहीं हैं, अर्थात, उन्हें विभिन्न वर्गों के फलनों के लिए अलग-अलग परिभाषित किया गया है।
वीनर समाकलन
वीनर प्रक्रिया में, ब्राउनियन गति पथों के एक वर्ग को एक प्रायिकता दी गई है। वर्ग में पथ w होते हैं जो एक निश्चित समय में समष्टि के एक छोटे से क्षेत्र से जाने के लिए जाने जाते हैं। समष्टि के विभिन्न क्षेत्रों के माध्यम से पारित होने को एक दूसरे से स्वतंत्र माना जाता है, और ब्राउनियन पथ के किसी भी दो बिंदुओं के बीच की दूरी को सामान्य वितरण माना जाता है। गाऊसी-वितरित एक विचरण के साथ जो समय t पर निर्भर करता है और एक प्रसार स्थिरांक D पर निर्भर करता है:
पथों के वर्ग के लिए प्रायिकता एक क्षेत्र में प्रारंभ होने और फिर अगले क्षेत्र में होने की प्रायिकता को गुणा करके पाई जा सकती है। कई छोटे क्षेत्रों की सीमा पर विचार करके वीनर माप विकसित किया जा सकता है।
- इतो और स्ट्रैटोनोविच गणना
फेनमैन समाकलन
- ट्रोटर सूत्र, या लाइ गुणनफल सूत्र
- वर्तिका के घूर्णन का काक विचार।
- x-बिन्दु-वर्ग या i S[x] + x-बिन्दु-वर्ग का उपयोग करना।
- कार्टियर डेविट-मोरेट मापों के अतिरिक्त समाकलन पर निर्भर करता है
लेवी समाकलन
- आंशिक क्वांटम यांत्रिकी
- आंशिक श्रोडिंगर समीकरण
- लेवी प्रक्रिया
- आंशिक सांख्यिकीय यांत्रिकी
यह भी देखें
- पथ समाकलन सूत्रीकरण
- विभाजन फलन (क्वांटम क्षेत्र सिद्धांत)
- सैडल बिंदु सन्निकटन
संदर्भ
- ↑ Daniell, P. J. (July 1919). "Integrals in An Infinite Number of Dimensions". The Annals of Mathematics. Second Series. 20 (4): 281–288. doi:10.2307/1967122. JSTOR 1967122.
अग्रिम पठन
- Jean Zinn-Justin (2009), Scholarpedia 4(2):8674.
- Kleinert, Hagen, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 4th edition, World Scientific (Singapore, 2004); Paperback ISBN 981-238-107-4 (also available online: PDF-files)
- Laskin, Nick (2000). "Fractional quantum mechanics". Physical Review E. 62 (3): 3135–3145. arXiv:0811.1769. Bibcode:2000PhRvE..62.3135L. doi:10.1103/PhysRevE.62.3135. PMID 11088808. S2CID 15480739.
- Laskin, Nick (2002). "Fractional Schrödinger equation". Physical Review E. 66 (5): 056108. arXiv:quant-ph/0206098. Bibcode:2002PhRvE..66e6108L. doi:10.1103/PhysRevE.66.056108. PMID 12513557. S2CID 7520956.
- Minlos, R. A. (2001) [1994], "Integral over trajectories", Encyclopedia of Mathematics, EMS Press
- O. G. Smolyanov, E. T. Shavgulidze. Continual integrals. Moscow, Moscow State University Press, 1990. (in Russian). http://lib.mexmat.ru/books/5132
- Victor Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, Springer 1983
- Sergio Albeverio, Sonia Mazzucchi, A unified approach to infinite-dimensional integration, Reviews in Mathematical Physics, 28, 1650005 (2016)