डेटा अवशेष: Difference between revisions
No edit summary |
No edit summary |
||
Line 45: | Line 45: | ||
ओवरराइट तकनीक सामान्यतः प्रत्येक स्थान पर एक ही डेटा को लिखती है प्रायः सभी शून्यों का एक पैटर्न कम से कम मानक सिस्टम फ़ंक्शंस का उपयोग करके पुनः मीडिया से पढ़कर डेटा को पुनर्प्राप्त करने मे सक्षम हो सकता है अधिक उन्नत डेटा पुनर्प्राप्त तकनीकों का सामना करने के प्रयास में, विशिष्ट ओवरराइट पैटर्न और कई पास प्रायः निर्धारित किए गए हैं ये किसी भी नियंत्रित संकेत को मिटाने के उद्देश्य से सामान्य पैटर्न मे हो सकते हैं उदाहरण के लिए, सात-पास पैटर्न 0xF6, 0x00, 0xFF, 0x00, 0xFF, यादृच्छिक रूप से कभी-कभी गलत तरीके से अमेरिकी मानक डीओडी 5220.22-एम को उत्तरदायी माना जाता है। | ओवरराइट तकनीक सामान्यतः प्रत्येक स्थान पर एक ही डेटा को लिखती है प्रायः सभी शून्यों का एक पैटर्न कम से कम मानक सिस्टम फ़ंक्शंस का उपयोग करके पुनः मीडिया से पढ़कर डेटा को पुनर्प्राप्त करने मे सक्षम हो सकता है अधिक उन्नत डेटा पुनर्प्राप्त तकनीकों का सामना करने के प्रयास में, विशिष्ट ओवरराइट पैटर्न और कई पास प्रायः निर्धारित किए गए हैं ये किसी भी नियंत्रित संकेत को मिटाने के उद्देश्य से सामान्य पैटर्न मे हो सकते हैं उदाहरण के लिए, सात-पास पैटर्न 0xF6, 0x00, 0xFF, 0x00, 0xFF, यादृच्छिक रूप से कभी-कभी गलत तरीके से अमेरिकी मानक डीओडी 5220.22-एम को उत्तरदायी माना जाता है। | ||
अधिलेखन के साथ एक चुनौती यह है कि डिस्क के कुछ क्षेत्र मीडिया की कमी या अन्य त्रुटियों के कारण अप्राप्य हो सकते हैं [[सॉफ़्टवेयर]] ओवरराइट उच्च-सुरक्षा वातावरण में भी समस्याग्रस्त हो सकता है जिसके लिए उपयोग किए जा रहे सॉफ़्टवेयर द्वारा प्रदान किए जाने वाले डेटा पर अधिक नियंत्रण की आवश्यकता होती है। उन्नत भंडारण तकनीकों का उपयोग भी फ़ाइल-आधारित ओवरराइट को अप्रभावी बना सकता है। अधिलेखन के अंतर्गत नीचे की चर्चा देखें। | |||
ऐसी विशेष मशीनें और सॉफ्टवेयर हैं जो अधिलेखन करने में सक्षम | ऐसी विशेष मशीनें और सॉफ्टवेयर हैं जो अधिलेखन करने में सक्षम हैं सॉफ़्टवेयर कभी-कभी एक स्टैंडअलोन ऑपरेटिंग सिस्टम हो सकता है जिसे विशेष रूप से डेटा नष्ट करने के लिए डिज़ाइन किया गया है सुरक्षा विभाग के डीओडी 5220.22-एम के लिए हार्ड ड्राइव को रिक्त करने के लिए विशेष रूप से डिजाइन की गई मशीनें भी हैं।<ref>{{Cite book|title=Manual reissues DoD 5220.22-M, "National Industrial Security Program Operating|date=2006|citeseerx=10.1.1.180.8813}}</ref> | ||
=== ओवरराइट किए गए डेटा को पुनर्प्राप्त करने की व्यवहार्यता === | |||
[[पीटर गुटमैन (कंप्यूटर वैज्ञानिक)]] ने 1990 के दशक के मध्य में नाममात्र के अधिलेखित मीडिया से डेटा | [[पीटर गुटमैन (कंप्यूटर वैज्ञानिक)]] ने 1990 के दशक के मध्य में नाममात्र के अधिलेखित मीडिया से डेटा पुनर्प्राप्ति का परीक्षण किया था और उन्होंने सुझाव दिया कि [[चुंबकीय बल माइक्रोस्कोपी]] इस प्रकार के डेटा को पुनर्प्राप्त करने में सक्षम हो सकती है और विशिष्ट ड्राइव तकनीकों के लिए विशिष्ट पैटर्न को विकसित किया जा सकता है जिसे इस प्रकार का सामना करने के लिए डिज़ाइन किया गया है<ref name="Gutmann">{{cite journal|title=मैग्नेटिक और सॉलिड-स्टेट मेमोरी से डेटा का सुरक्षित विलोपन|author=Peter Gutmann|date=July 1996|url=http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html|access-date=2007-12-10}}</ref> तब से इन पैटर्नों को गुटमैन पद्धति के रूप में जाना जाने लगा है। | ||
निजी [[नेशनल ब्यूरो ऑफ इकोनॉमिक रिसर्च]] के एक अर्थशास्त्री डैनियल फीनबर्ग का | निजी [[नेशनल ब्यूरो ऑफ इकोनॉमिक रिसर्च|राष्ट्रीय आर्थिक ब्यूरो शोध]] के एक अर्थशास्त्री डैनियल फीनबर्ग का कथन है कि आधुनिक हार्ड ड्राइव से अधिलेखित डेटा की संभावना अर्बन-लीजेंड है<ref>{{cite journal|title=Can Intelligence Agencies Recover Overwritten Data?|author=Daniel Feenberg|url=http://www.nber.org/sys-admin/overwritten-data-gutmann.html|access-date=2007-12-10}}</ref> उन्होंने वाटरगेट ब्रेक-इन पर चर्चा करते हुए [[रिचर्ड निक्सन]] के एक टेप पर बनाए गए " {{frac|18|1|2}} मिनट के अंतराल" [[रोज मैरी वुड्स]] की ओर भी संकेत किया और इस अंतराल में मिटाई गई जानकारी को पुनर्प्राप्त नहीं किया गया है फेनबर्ग का कथन है कि ऐसा करना आधुनिक उच्च सघनता वाले डिजिटल संकेत को पुनर्प्राप्त की तुलना में एक आसान कार्य हो सकता है नवंबर 2007 तक, संयुक्त राज्य अमेरिका का रक्षा विभाग एक ही सुरक्षा क्षेत्र के भीतर चुंबकीय मीडिया को रिक्त करने के लिए अधिलेखन को स्वीकार्य मानता है लेकिन स्वच्छता पद्धति के रूप में बाद के लिए केवल चुंबकीय विक्षेपण या भौतिक विनाश स्वीकार्य माना जाता है।<ref name="DSSmatrix">{{cite web|url=http://www.oregon.gov/DAS/OP/docs/policy/state/107-009-005_Exhibit_B.pdf?ga=t| title=डीएसएस समाशोधन और स्वच्छता मैट्रिक्स|publisher=[[Defense Security Service|DSS]]| format=PDF|date=2007-06-28|access-date=2010-11-04}}</ref> | ||
दूसरी ओर 2014 [[एनआईएसटी]] विशेष प्रकाशन 800-88 रेव. 1 (पी. 7) के अनुसार चुंबकीय मीडिया वाले भंडारण उपकरणों के लिए बाइनरी शून्य जैसे निश्चित पैटर्न के साथ एक एकल ओवरराइट पास सामान्यतः डेटा की पुनर्प्राप्ति में भी अवरोध को उत्पन्न करता है यदि डेटा को पुनः प्राप्त करने के प्रयास के लिए अत्याधुनिक प्रयोगशाला तकनीकों को प्रयुक्त किया जाता है<ref>{{cite journal | |||
दूसरी ओर | |||
| url = https://csrc.nist.gov/publications/detail/sp/800-88/rev-1/final | | url = https://csrc.nist.gov/publications/detail/sp/800-88/rev-1/final | ||
| title = Special Publication 800-88 Rev. 1: Guidelines for Media Sanitization | | title = Special Publication 800-88 Rev. 1: Guidelines for Media Sanitization | ||
Line 70: | Line 68: | ||
| last4 = Stine | | last4 = Stine | ||
| first4 = Kevin | | first4 = Kevin | ||
}}</ref> | }}</ref> तो उदाहरण के लिए ओवरराइट द्वारा एक विश्लेष चुंबकीय बल माइक्रोस्कोपी सहित पुनर्प्राप्ति तकनीकों का यह भी निष्कर्ष है कि आधुनिक ड्राइव के लिए केवल एक वाइप ही आवश्यक है वे बताते हैं कि कई वाइप्स के लिए आवश्यक लंबे समय ने "एक ऐसी स्थिति उत्पन्न कर दी है जहां कई संगठन इस विषय को अस्वीकृत कर देते हैं जिसके परिणामस्वरूप डेटा रिसाव और डेटा त्रुटि होती है।" <ref>{{cite journal | ||
| title = Overwriting Hard Drive Data: The Great Wiping Controversy | | title = Overwriting Hard Drive Data: The Great Wiping Controversy | ||
| first = Craig | last = Wright | | first = Craig | last = Wright | ||
Line 80: | Line 78: | ||
| pages = 243–257 |date=December 2008 | | pages = 243–257 |date=December 2008 | ||
| volume = 5352 }}</ref> | | volume = 5352 }}</ref> | ||
=== | === चुंबकीय विक्षेपण === | ||
चुंबकीय विक्षेपण एक डिस्क या ड्राइव के चुंबकीय क्षेत्र को हटाने या कम करने के लिए एक | चुंबकीय विक्षेपण एक डिस्क या ड्राइव के चुंबकीय क्षेत्र को हटाने या कम करने के लिए एक चुंबकीय विक्षेपण नामक डिवाइस का उपयोग कर रहा है जिसे मीडिया को मिटाने के लिए डिज़ाइन किया गया है [[चुंबकीय भंडारण]] के लिए प्रयुक्त चुंबकीय विक्षेपण पूरे मीडिया तत्व को शीघ्र और प्रभावी रूप से शुद्ध कर सकता है। | ||
चुंबकीय विक्षेपण प्रायः [[हार्ड डिस्क]] को निष्क्रिय कर देता है | चुंबकीय विक्षेपण प्रायः [[हार्ड डिस्क]] को निष्क्रिय कर देता है क्योंकि यह निम्न-स्तरीय [[डिस्क प्रारूप]] को मिटा देता है जो केवल निर्माण के समय उद्योग में किया जाता है कुछ स्थितियों मे निर्माता के यहां सुरक्षित ड्राइव को कार्यात्मक स्थिति में लौटाना संभव है हालांकि, कुछ आधुनिक चुंबकीय विक्षेपण इतनी जटिल चुंबकीय स्पंदन का उपयोग करते हैं कि मोटर जो प्लेट्स को घूर्ण करती है चुंबकीय विक्षेपण प्रक्रिया में नष्ट हो सकती है और सर्विसिंग लागत प्रभावी नहीं हो सकती है डीगॉस्ड कंप्यूटर टेप जैसे डीएलटी को सामान्यतः मानक उपभोक्ता हार्डवेयर के साथ सुधारा और पुन: उपयोग किया जा सकता है। | ||
कुछ उच्च-सुरक्षा परिवेशों में, किसी को एक डीगॉसर का उपयोग करने की आवश्यकता हो सकती है जिसे कार्य के लिए अनुमोदित किया गया | कुछ उच्च-सुरक्षा परिवेशों में, किसी को एक डीगॉसर का उपयोग करने की आवश्यकता हो सकती है जिसे कार्य के लिए अनुमोदित किया गया है उदाहरण के लिए, [[संयुक्त राज्य अमेरिका|अमेरिकी सरकार]] और सैन्य अधिकार क्षेत्र में [[राष्ट्रीय सुरक्षा एजेंसी|राष्ट्रीय सुरक्षा संस्था]] के "मूल्यांकित उत्पादों की सूची" से एक डीगॉसर का उपयोग करने की आवश्यकता हो सकती है।<ref name="NSAEPL">{{cite web | ||
| title=Media Destruction Guidance | | title=Media Destruction Guidance | ||
| publisher=NSA | | publisher=NSA | ||
| url=http://www.nsa.gov/ia/mitigation_guidance/media_destruction_guidance/|access-date=2009-03-01}}</ref> | | url=http://www.nsa.gov/ia/mitigation_guidance/media_destruction_guidance/|access-date=2009-03-01}}</ref> | ||
=== [[ कूटलेखन ]] === | === [[ कूटलेखन |कूटलेखन]] === | ||
मीडिया पर संग्रहीत होने से पहले डेटा को एन्क्रिप्ट करना डेटा अवशिष्टता के | मीडिया पर संग्रहीत होने से पहले डेटा को एन्क्रिप्ट करना डेटा अवशिष्टता के विषय में चिंताओं को कम कर सकता है यदि डिक्रिप्शन [[कुंजी (क्रिप्टोग्राफी)]] जटिल और सावधानीपूर्वक नियंत्रित है तो यह प्रभावी रूप से मीडिया पर किसी भी डेटा को अप्राप्य बना सकता है यहां तक कि यदि कुंजी मीडिया पर संग्रहीत है तो पूरी डिस्क की तुलना में केवल कुंजी को अधिलेखित करना आसान या तीव्र सिद्ध हो सकता है इस प्रक्रिया को क्रिप्टो-श्रेडिंग कहा जाता है। | ||
एन्क्रिप्शन फ़ाइल | एन्क्रिप्शन फ़ाइल दर फ़ाइल के आधार पर या संपूर्ण डिस्क पर किया जा सकता है कोल्ड बूट अटैक एक पूर्ण-[[डिस्क एन्क्रिप्शन]] विधि को नष्ट करने के कुछ संभावित तरीकों में से एक है क्योंकि माध्यम के अन-एन्क्रिप्टेड अनुभाग में प्लेन टेक्स्ट कुंजी को स्थित करने की कोई संभावना नहीं है आगे की चर्चा के लिए रैम में अधिलेखन डेटा अनुभाग देखें। | ||
अन्य | अन्य चैनल अटैक (जैसे [[कीलॉगर्स]], डिक्रिप्शन कुंजी वाले लिखित नोट का अधिग्रहण या [[रबर-नली क्रिप्टैनालिसिस|रबर-होज़ क्रिप्टैनालिसिस]]) सफलता की अधिक संभावना प्रदान कर सकते हैं लेकिन नियोजित क्रिप्टोग्राफ़िक पद्धति में कमजोरियों पर विश्वास नहीं करते हैं इस प्रकार, इस लेख के लिए उनकी प्रासंगिकता नगण्य होती है। | ||
=== मीडिया विनाश === | === मीडिया विनाश === | ||
[[File:Destroyed Hard Drive.jpg|thumb|250px| | [[File:Destroyed Hard Drive.jpg|thumb|250px|भौतिक रूप से नष्ट हार्ड डिस्क ड्राइव के भाग।]]अंतर्निहित भंडारण मीडिया का पूरी तरह से नष्ट डेटा अवशिष्टता का सामना करने का सबसे निश्चित तरीका है हालाँकि यह प्रक्रिया सामान्यतः जटिल होती है, और इसके लिए अत्यधिक विस्तृत तरीकों की आवश्यकता हो सकती है क्योंकि मीडिया के एक छोटे से भाग में भी बड़ी मात्रा में डेटा हो सकता है। | ||
विशिष्ट विनाश तकनीकों में सम्मिलित हैं: | विशिष्ट विनाश तकनीकों में सम्मिलित हैं: | ||
* मीडिया | * मीडिया का भौतिक रूप से परिवर्तन (उदाहरण के लिए, ग्राइंडिंग) | ||
* रासायनिक मीडिया को एक गैर-पठनीय, गैर-विपरीत-रचनात्मक स्थिति में | * रासायनिक मीडिया को एक गैर-पठनीय, गैर-विपरीत-रचनात्मक स्थिति में परिवर्तित कर देता है (उदाहरण के लिए, क्षारक या [[संक्षारक]] रसायनों के संपर्क में आने के माध्यम से) | ||
* [[चरण संक्रमण]] (उदाहरण के लिए, एक ठोस डिस्क का द्रवीकरण या वाष्पीकरण) | * [[चरण संक्रमण|प्रावस्था संक्रमण]] (उदाहरण के लिए, एक ठोस डिस्क का द्रवीकरण या वाष्पीकरण) | ||
* चुंबकीय मीडिया के लिए, इसके तापमान को [[क्यूरी बिंदु]] से ऊपर | * चुंबकीय मीडिया के लिए, इसके तापमान को [[क्यूरी बिंदु|क्यूरी तापांक]] से ऊपर करना | ||
* कई इलेक्ट्रिक | * कई इलेक्ट्रिक या इलेक्ट्रॉनिक वाष्पशील और गैर-वाष्पशील भंडारण मीडिया के लिए विद्युत चुम्बकीय क्षेत्रों के संपर्क में सुरक्षित परिचालन विनिर्देशों (जैसे, उच्च-[[वोल्टेज]] विद्युत प्रवाह या उच्च-आयाम वाले [[माइक्रोवेव|सूक्ष्म तरंग]] या आयनीकरण विकिरण) से बहुत अधिक है।{{Citation needed|date=November 2009}} | ||
== | == संवृति == | ||
=== | === अप्राप्य मीडिया क्षेत्र === | ||
भंडारण मीडिया में ऐसे क्षेत्र हो सकते हैं जो सामान्य साधनों से | भंडारण मीडिया में ऐसे क्षेत्र हो सकते हैं जो सामान्य साधनों से अप्राप्य हो जाते हैं उदाहरण के लिए, डेटा लिखे जाने के बाद चुंबकीय डिस्क अप्राप्य नए क्षेत्रों को विकसित कर सकती हैं और टेपों को अंतर-रिकॉर्ड अंतराल की आवश्यकता होती है आधुनिक हार्ड डिस्क में प्रायः सीमांत क्षेत्रों या अनुभाग मे पुनर्आवंटन की सुविधा होती है जो इस प्रकार से स्वचालित होती है कि ऑपरेटिंग सिस्टम को इसके साथ कार्य करने की आवश्यकता नहीं होती है समस्या एसएसडीएस में विशेष रूप से महत्वपूर्ण है जो अपेक्षाकृत बड़ी स्थानांतरित अयोग्य ब्लॉक तालिकाओं पर निर्भर करती है अधिलेखन द्वारा डेटा अवशिष्टता का सामना करने का प्रयास ऐसी स्थितियों में सफल नहीं हो सकता है क्योंकि डेटा अवशिष्टता ऐसे नाममात्र अप्राप्य क्षेत्रों में स्थित रह सकते हैं। | ||
=== उन्नत भंडारण प्रणाली === | === उन्नत भंडारण प्रणाली === | ||
अधिक परिष्कृत विशेषताओं वाली डेटा भंडारण प्रणालियाँ | अधिक परिष्कृत विशेषताओं वाली डेटा भंडारण प्रणालियाँ विशेष रूप से प्रति-फ़ाइल के आधार पर ओवरराइट को अप्रभावी बना सकती हैं उदाहरण के लिए, [[जर्नलिंग फाइल सिस्टम]] कई स्थानों में लेखन संचालन रिकॉर्ड करके और लेनदेन-जैसे शब्दार्थों को प्रयुक्त करके डेटा की अखंडता को बढ़ाता है ऐसी प्रणालियों पर डेटा अवशिष्टता नाममात्र फ़ाइल संग्रहण स्थान के बाहरी स्थानों में सम्मिलित हो सकते हैं कुछ फाइल सिस्टम कॉपीराइट या निर्मित [[संशोधन नियंत्रण]] को भी प्रयुक्त करते हैं इस प्रयास के साथ कि फाइल में लिखना कभी भी डेटा को इन-प्लेस ओवरराइट नहीं करता है। इसके अतिरिक्त [[RAID|आरएआईडी]] और [[फ़ाइल सिस्टम विखंडन]] तकनीकों जैसी तकनीकों के परिणामस्वरूप फ़ाइल डेटा को कई स्थानों पर या तो डिज़ाइन द्वारा (दोष सहिष्णुता के लिए) या डेटा अवशिष्टता के रूप में लिखा जा सकता है। | ||
जब वे मूल रूप से लिखे | जब वे मूल रूप से लिखे और ओवरराइट किए गए थे उस समय के बीच ब्लॉक को स्थानांतरित करके डेटा वियर स्तरीकरण भी डेटा इरेज़र को कम कर सकता है इस कारण से, ऑपरेटिंग सिस्टम या स्वचालित वेयर स्तरीकरण की विशेषता वाले अन्य सॉफ़्टवेयर के अनुरूप कुछ सुरक्षा प्रोटोकॉल किसी दिए गए ड्राइव के मुक्त-स्पेस वाइप का संचालन करने का सुझाव देते हैं और फिर कई छोटी आसानी से पहचानी जाने वाली जंक फ़ाइलों या फ़ाइलों को भरने के लिए अन्य गैर-संवेदनशील डेटा वाली फ़ाइलों की प्रतिलिपि बनाते हैं जितना संभव हो उतना ड्राइव, सिस्टम हार्डवेयर और सॉफ्टवेयर के संतोषजनक संचालन के लिए आवश्यक रिक्त स्थान की मात्रा को छोड़कर जैसे-जैसे भंडारण और सिस्टम की मांग बढ़ती है "जंक डेटा" फ़ाइलों को स्थान खाली करने के लिए आवश्यक रूप से हटाया जा सकता है यहां तक कि यदि जंक डेटा फ़ाइलों को हटाना सुरक्षित नहीं है तो उनकी प्रारंभिक गैर-संवेदनशीलता उनसे शेष डेटा की पुनर्प्राप्ति के परिणामों को लगभग शून्य कर देती है।{{Citation needed|date=August 2014}} | ||
=== | === प्रकाशीय मीडिया === | ||
चूंकि [[ऑप्टिकल डिस्क]] चुंबकीय नहीं होते हैं | चूंकि [[ऑप्टिकल डिस्क|प्रकाशीय डिस्क]] चुंबकीय नहीं होते हैं वे पारंपरिक चुंबकीय विक्षेपण द्वारा मिटाए नहीं जाते हैं ऑप्टिकल (प्रकाशीय) मीडिया (सीडी-आर, डीवीडी-आर, आदि) को भी अधिलेखन द्वारा शुद्ध नहीं किया जा सकता है पुनर्लेखन योग्य ऑप्टिकल मीडिया, जैसे [[सीडी-आर|सीडी-आरडब्ल्यू]] और [[डीवीडी-आर|डीवीडी-आरडब्ल्यू]] अधिलेखन के लिए ग्रहणशील हो सकते हैं ऑप्टिकल डिस्क को सफलतापूर्वक रिक्त करने के तरीकों में धात्विक डेटा परत को हटाना या नष्ट करना, श्रेडिंग, भस्मीकरण, विनाशकारी विद्युत आर्किंग (जैसे सूक्ष्मतरंग ऊर्जा के संपर्क में) और एक पॉलीकार्बोनेट विलायक (जैसे, एसीटोन) में डूबना सम्मिलित होता है। | ||
=== सॉलिड-स्टेट ड्राइव | === सॉलिड-स्टेट ड्राइव (एसएसडी) डेटा === | ||
चुंबकीय केंद्र रिकॉर्डिंग और शोध कैलिफोर्निया विश्वविद्यालय, सैन डिएगो के शोध ने ठोस-राज्य ड्राइव (एसएसडी) पर संग्रहीत डेटा को मिटाने में निहित समस्याओं को प्रकाशित किया है शोधकर्ताओं ने एसएसडी पर फाइल भंडारण के साथ तीन समस्याओं की खोज की है:<ref name="SSD">{{cite journal|date=February 2011|title=फ्लैश-आधारित सॉलिड स्टेट ड्राइव से विश्वसनीय रूप से डेटा मिटाना|url=http://www.usenix.org/events/fast11/tech/full_papers/Wei.pdf|author1=Michael Wei|author2=Laura M. Grupp|author3=Frederick E. Spada|author4=Steven Swanson}}</ref> | |||
{{quote|सबसे पहले, अंतर्निहित | {{quote|सबसे पहले, अंतर्निहित क्रम प्रभावी होते हैं लेकिन निर्माता कभी-कभी उन्हें गलत तरीके से कार्यान्वित करते हैं दूसरा, एसएसडी के पूरे दृश्य एड्रेस को दो बार ओवरराइट करना संभव है लेकिन सदैव नहीं, यह ड्राइव को रिक्त करने के लिए पर्याप्त होता है। तीसरा, व्यक्तिगत फ़ाइल स्वच्छता के लिए सम्मिलित हार्ड ड्राइव-उन्मुख तकनीकों में से कोई भी एसएसडी पर प्रभावी नहीं है।<ref name="SSD"/>{{rp|page=1}} |}} | ||
सॉलिड-स्टेट ड्राइव | सॉलिड-स्टेट ड्राइव (एसएसडी) जो फ्लैश-आधारित हैं, हार्ड-डिस्क ड्राइव (एचडीडी) से दो प्रकार से भिन्न हैं: पहला, जिस प्रकार से डेटा संग्रहीत किया जाता है और दूसरा, जिस प्रकार से उस डेटा को प्रबंधित और नियंत्रित करने के लिए एल्गोरिदम का उपयोग किया जाता है पहले मिटाए गए डेटा को पुनर्प्राप्त करने के लिए इन अंतरों का लाभ प्राप्त किया जा सकता है एसएसडी डेटा तक अभिगम्य के लिए कंप्यूटर सिस्टम द्वारा उपयोग किए जाने वाले तार्किक एड्रेसों और भौतिक भंडारण की पहचान करने वाले आंतरिक एड्रेसों के बीच अप्रत्यक्ष परत को बनाए रखते हैं अप्रत्यक्षता की यह परत विशेष मीडिया इंटरफेस को अदृश्य रखती है और एसएसडी प्रदर्शन, विश्वसनीयता और जीवन काल (वियर स्तरीकरण देखें) को बढ़ाती है लेकिन यह उन डेटा की प्रतियां भी बना सकती है जो उपयोगकर्ता के लिए अदृश्य हैं और एक परिष्कृत अटैक को पुनर्प्राप्त कर सकता है संपूर्ण डिस्क को रिक्त करने के लिए उपयुक्त रूप से प्रयुक्त किए जाने पर एसएसडी हार्डवेयर में निर्मित सेनिटाइज कमांड प्रभावी पाए गए हैं और पूरे डिस्क को रिक्त करने के लिए केवल सॉफ्टवेयर तकनीकों को सबसे अधिक कार्य करने के लिए पाया जा सकता है लेकिन इसको प्रत्येक समय में नहीं उपयोग कर सकते है<ref name="SSD"/>{{rp|section 5}} परीक्षण में, कोई भी सॉफ़्टवेयर तकनीक व्यक्तिगत फ़ाइलों को साफ करने के लिए प्रभावी नहीं थी इनमें गाटमान प्रक्रम,यूएस डीओडी 5220.22-एम, आरसीएमपी टीएसएसआईटी ओपीएस-II, श्रायर-7 पीएएस और मैकओएस पर सुरक्षित रिक्त ट्रैश (ओएस एक्स 10.3-10.9 संस्करणों में सम्मिलित एक सुविधा) जैसे प्रसिद्ध एल्गोरिदम सम्मिलित हैं।<ref name="SSD"/>{{rp|section 5}} | ||
कई एसएसडी उपकरणों में टीआरआईएम सुविधा, | कई एसएसडी उपकरणों में टीआरआईएम सुविधा, यदि ठीक से प्रयुक्त की जाती है तो इसे हटाए जाने के बाद अंततः डेटा मिटा दिया जाता है <ref>{{Cite journal|last=Homaidi|first=Omar Al|date=2009|title=Data Remanence: Secure Deletion of Data in SSDs|url=https://www.diva-portal.org/smash/record.jsf?dswid=-8239&pid=diva2%3A832529|journal=}}</ref>{{citation needed|reason=This doesn't appear to be a secure method for deletion/sanitization|date=April 2017}} लेकिन इस प्रक्रिया में कुछ समय अर्थात कई मिनट लग सकते है सामान्यतः कई पुराने ऑपरेटिंग सिस्टम इस सुविधा का समर्थन नहीं करते हैं अर्थात ड्राइव और ऑपरेटिंग सिस्टम के सभी संयोजन कार्य नहीं करते हैं।<ref>{{cite web|url=http://forensic.belkasoft.com/en/why-ssd-destroy-court-evidence |title=कंप्यूटर फोरेंसिक जांच के लिए डिजिटल साक्ष्य निष्कर्षण सॉफ्टवेयर|publisher=Forensic.belkasoft.com |date=October 2012 |access-date=2014-04-01}}</ref> | ||
=== रैम में डेटा | === रैम में डेटा === | ||
[[ स्थिर रैंडम-एक्सेस मेमोरी |स्थिर रैंडम-एक्सेस मेमोरी]] (एसआरएएम) में डेटा अवशिष्टता देखा गया है | [[ स्थिर रैंडम-एक्सेस मेमोरी |स्थिर रैंडम-एक्सेस मेमोरी]] (एसआरएएम) में डेटा अवशिष्टता को देखा गया है जिसे सामान्यतः अस्थिर माना जाता है अर्थात, डेटा बाहरी ऊर्जा की त्रुटि के साथ एक अध्ययन में कमरे के तापमान पर भी [[डेटा प्रतिधारण]] को देखा गया था।<ref name="skorobogatov">{{cite journal|title=स्थैतिक रैम में कम तापमान डेटा अवशेष|author=Sergei Skorobogatov|publisher=University of Cambridge, Computer Laboratory|date=June 2002|doi=10.48456/tr-536 |url=http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-536.html}}</ref> | ||
[[गतिशील रैंडम-एक्सेस मेमोरी]] (डीरैम) में डेटा अवशिष्टता भी देखा गया है। आधुनिक डीरैम | [[गतिशील रैंडम-एक्सेस मेमोरी]] (डीरैम) में डेटा अवशिष्टता भी देखा गया है। आधुनिक डीरैम चिप में एक अंतर्निहित आवधिक आवर्ती मॉड्यूल होता है क्योंकि उन्हें न केवल डेटा को बनाए रखने के लिए विद्युत की आपूर्ति की आवश्यकता होती है बल्कि उनके डेटा को उनके एकीकृत परिपथों में संधारित्र से लुप्त होने से स्थगित करने के लिए समय-समय पर रिफ्रेश किया जाना आवश्यक होता है एक अध्ययन में कमरे के तापमान पर सेकंड से लेकर मिनट तक के डेटा अवधारण के साथ डीरैम में डेटा अवशिष्टता को पाया गया और तरल नाइट्रोजन के साथ ठंडा होने पर रिफ्रेश किए बिना एक पूरा सप्ताह रखा गया था<ref name="Halderman">{{cite journal|title=Lest We Remember: Cold Boot Attacks on Encryption Keys|author=J. Alex Halderman|author-link=J. Alex Halderman|date=July 2008|url=https://www.usenix.org/legacy/event/sec08/tech/full_papers/halderman/halderman.pdf|display-authors=etal}}</ref> अध्ययन मे लेखक माइक्रोसॉफ्ट [[BitLocker Drive Encryption|बिटलौकर ड्राइव एन्क्रिप्शन]], एप्पल [[FileVault|फाइलवॉल्ट]], लिनक्स के लिए [[dm-crypt|डीएम-क्रिप्ट]] और [[TrueCrypt|ट्रूक्रिप्ट]] सहित कई लोकप्रिय [[पूर्ण डिस्क एन्क्रिप्शन]] सिस्टम के लिए क्रिप्टोग्राफ़िक कुंजियों को पुनर्प्राप्त करने के लिए एक कोल्ड बूट अटैक का उपयोग करने में सक्षम थे।<ref name="Halderman" />{{rp|page=12}}{{Anchor|RAM}} | ||
कुछ मेमोरी | कुछ मेमोरी मे कमी के अतिरिक्त ऊपर वर्णित अध्ययन मे लेखक कुंजियों को कुशल उपयोग के लिए विस्तारित किए जाने के बाद जिस प्रकार से कुंजियों को संग्रहीत किया जाता है जैसे कि कुंजी निर्धारण में अतिरेक का लाभ उठाने में सक्षम थे लेखक सुझाव देते हैं कि जब मालिक के भौतिक नियंत्रण में न हो, तो कंप्यूटर को "स्लीप मोड" स्थिति में छोड़ने के अतिरिक्त संचालित किया जाना चाहिए। कुछ स्थितियों में जैसे कि सॉफ्टवेयर प्रोग्राम बिटलॉकर के कुछ मोड की लेखक अनुशंसा करते हैं कि एक बूट पासवर्ड या रिमूवेबल यूएसबी डिवाइस पर एक कुंजी का उपयोग किया जाता है।<ref name="Halderman" /> {{rp|page=12}} ट्रेसर लिनक्स के लिए एक [[कर्नेल (ऑपरेटिंग सिस्टम)]] पैच है जो विशेष रूप से कोल्ड बूट को स्थगित करने के लिए होता है यह सुनिश्चित करके रैम पर अटैक करता है कि एन्क्रिप्शन कुंजियाँ उपयोगकर्ता के स्थान से सुलभ नहीं हैं और जब भी संभव हो सिस्टम रैम के अतिरिक्त सीपीयू में संग्रहीत होती हैं डिस्क एन्क्रिप्शन सॉफ्टवेयर [[VeraCrypt|वेराक्रिप्ट]] के नए संस्करण 64-बिट विंडोज पर इन रैम कुंजियों और पासवर्ड को एन्क्रिप्ट कर सकते हैं।<ref>https://www.veracrypt.fr/en/Release%20Notes.html VeraCrypt release notes</ref> | ||
== मानक == | == मानक == | ||
; ऑस्ट्रेलिया | ; ऑस्ट्रेलिया | ||
* [[ऑस्ट्रेलियाई सिग्नल निदेशालय]] आईएसएम 2014, ऑस्ट्रेलियाई सरकार सूचना सुरक्षा मैनुअल, 2014 <ref>{{cite web | * [[ऑस्ट्रेलियाई सिग्नल निदेशालय|ऑस्ट्रेलियाई संकेत प्रबंध-विभाग]] आईएसएम 2014, ऑस्ट्रेलियाई सरकार सूचना सुरक्षा मैनुअल, 2014 <ref>{{cite web | ||
|title=Australia Government Information Security Manual | |title=Australia Government Information Security Manual | ||
|publisher=[[Australian Signals Directorate]] | |publisher=[[Australian Signals Directorate]] | ||
Line 153: | Line 151: | ||
}}</ref> | }}</ref> | ||
; कनाडा | ; कनाडा | ||
* [[रॉयल कैनेडियन माउंटेड पुलिस]] | * [[रॉयल कैनेडियन माउंटेड पुलिस]] बी 2-002, सूचान प्रौद्योगिकी मीडिया ओवरराइट और सुरक्षित इरेज उत्पाद मई 2009 <ref>{{cite web | ||
|title = IT Media Overwrite and Secure Erase Products | |title = IT Media Overwrite and Secure Erase Products | ||
|publisher = [[Royal Canadian Mounted Police]] | |publisher = [[Royal Canadian Mounted Police]] | ||
Line 162: | Line 160: | ||
|archive-date = 2011-06-15 | |archive-date = 2011-06-15 | ||
}}</ref> | }}</ref> | ||
* [[संचार सुरक्षा प्रतिष्ठान]] समाशोधन और इलेक्ट्रॉनिक डेटा संग्रहण उपकरणों को अवर्गीकृत करना, जुलाई 2006 <ref>{{cite web |title=इलेक्ट्रॉनिक डेटा संग्रहण उपकरणों की समाशोधन और अवर्गीकरण| publisher=[[Communications Security Establishment]] |date=July 2006 |format=PDF | url=https://www.cse-cst.gc.ca/en/publication/itsg-06}}</ref> | * [[संचार सुरक्षा प्रतिष्ठान|संचार सुरक्षा संस्थान]] समाशोधन और इलेक्ट्रॉनिक डेटा संग्रहण उपकरणों को अवर्गीकृत करना, जुलाई 2006 <ref>{{cite web |title=इलेक्ट्रॉनिक डेटा संग्रहण उपकरणों की समाशोधन और अवर्गीकरण| publisher=[[Communications Security Establishment]] |date=July 2006 |format=PDF | url=https://www.cse-cst.gc.ca/en/publication/itsg-06}}</ref> | ||
; न्यूज़ीलैंड | ; न्यूज़ीलैंड | ||
* [[सरकारी संचार सुरक्षा ब्यूरो]] | * [[सरकारी संचार सुरक्षा ब्यूरो|जीसीएसबी]] एनजेडआईएसएम 2016, न्यूज़ीलैंड सूचना सुरक्षा मैनुअल वी 2.5, जुलाई 2016 <ref>{{cite web | ||
| title=New Zealand Information Security Manual v2.5 | | title=New Zealand Information Security Manual v2.5 | ||
| publisher = [[Government Communications Security Bureau]] |date=July 2016|format=PDF | | publisher = [[Government Communications Security Bureau]] |date=July 2016|format=PDF | ||
| url = http://www.gcsb.govt.nz/publications/the-nz-information-security-manual/ | | url = http://www.gcsb.govt.nz/publications/the-nz-information-security-manual/ | ||
}}</ref> | }}</ref> | ||
* [[न्यूजीलैंड सुरक्षा खुफिया सेवा]] पीएसएम 2009, सुरक्षात्मक सुरक्षा | * [[न्यूजीलैंड सुरक्षा खुफिया सेवा|न्यूजीलैंड सुरक्षा सूचना सेवा]] पीएसएम 2009, सुरक्षात्मक सुरक्षा मैनुअल। | ||
; यूनाइटेड किंगडम | ; यूनाइटेड किंगडम | ||
* [[संपत्ति निपटान और सूचना सुरक्षा एलायंस]] ( | * [[संपत्ति निपटान और सूचना सुरक्षा एलायंस|संपत्ति अधिकार और सूचना सुरक्षा एलायंस]] (एडीआईएसए), एडीआईएसए सूचान प्रौद्योगिकी संपत्ति सूचना सुरक्षा मानक।<ref>{{cite web |url=http://www.adisa.org.uk |url-status=dead |archive-url=https://web.archive.org/web/20101101215756/http://www.adisa.org.uk/ |archive-date=2010-11-01 |title=ADISA: ASSET DISPOSAL & INFORMATION SECURITY ALLIANCE}}</ref> | ||
; संयुक्त राज्य अमेरिका | ; संयुक्त राज्य अमेरिका | ||
* राष्ट्रीय मानक और प्रौद्योगिकी संस्थान विशेष प्रकाशन 800-88, मीडिया स्वच्छता के लिए दिशानिर्देश, सितंबर 2006 <ref name="SP800-88"/>* राष्ट्रीय औद्योगिक सुरक्षा कार्यक्रम|डीओडी 5220.22-एम, राष्ट्रीय औद्योगिक सुरक्षा कार्यक्रम संचालन मैनुअल (एनआईएसपीओएम), फरवरी 2006 <ref name=NISPOM>{{cite web|url=http://www.dss.mil/isp/odaa/documents/nispom2006-5220.pdf#page=75 |title=राष्ट्रीय औद्योगिक सुरक्षा कार्यक्रम संचालन मैनुअल|publisher=[[Defense Security Service|DSS]] |access-date=2010-09-22 |date=February 2006 |url-status=dead |archive-url=https://web.archive.org/web/20110524003922/http://www.dss.mil/isp/odaa/documents/nispom2006-5220.pdf |archive-date=2011-05-24 }}</ref> | * राष्ट्रीय मानक और प्रौद्योगिकी संस्थान विशेष प्रकाशन 800-88, मीडिया स्वच्छता के लिए दिशानिर्देश, सितंबर 2006 <ref name="SP800-88"/>* राष्ट्रीय औद्योगिक सुरक्षा कार्यक्रम|डीओडी 5220.22-एम, राष्ट्रीय औद्योगिक सुरक्षा कार्यक्रम संचालन मैनुअल (एनआईएसपीओएम), फरवरी 2006 <ref name=NISPOM>{{cite web|url=http://www.dss.mil/isp/odaa/documents/nispom2006-5220.pdf#page=75 |title=राष्ट्रीय औद्योगिक सुरक्षा कार्यक्रम संचालन मैनुअल|publisher=[[Defense Security Service|DSS]] |access-date=2010-09-22 |date=February 2006 |url-status=dead |archive-url=https://web.archive.org/web/20110524003922/http://www.dss.mil/isp/odaa/documents/nispom2006-5220.pdf |archive-date=2011-05-24 }}</ref> | ||
Line 179: | Line 177: | ||
| url = http://www.usaid.gov/policy/ads/500/d522022m.pdf | | url = http://www.usaid.gov/policy/ads/500/d522022m.pdf | ||
|access-date=2007-12-07}} with the [[Defense Security Service]] (DSS) ''Clearing and Sanitization Matrix''; includes Change 1, July 31, 1997. | |access-date=2007-12-07}} with the [[Defense Security Service]] (DSS) ''Clearing and Sanitization Matrix''; includes Change 1, July 31, 1997. | ||
</ref> DSS अभी भी यह मैट्रिक्स प्रदान करता है और यह विधियों को निर्दिष्ट करना जारी रखता है।<ref name="DSSmatrix" /> मैट्रिक्स के नवंबर 2007 के संस्करण के अनुसार, चुंबकीय मीडिया के स्वच्छताकरण के लिए अधिलेखन अब स्वीकार्य नहीं है। केवल चुंबकीय विक्षेपण (NSA अनुमोदित | </ref> DSS अभी भी यह मैट्रिक्स प्रदान करता है और यह विधियों को निर्दिष्ट करना जारी रखता है।<ref name="DSSmatrix" /> मैट्रिक्स के नवंबर 2007 के संस्करण के अनुसार, चुंबकीय मीडिया के स्वच्छताकरण के लिए अधिलेखन अब स्वीकार्य नहीं है। केवल चुंबकीय विक्षेपण (NSA अनुमोदित चुंबकीय विक्षेपण के साथ) या भौतिक विनाश स्वीकार्य है।<ref name=NISPOM/> | ||
* [[ संयुक्त राज्य सेना | संयुक्त राज्य सेना]] AR380-19, सूचना प्रणाली सुरक्षा, फरवरी 1998 <ref>{{cite web | url=http://www.fas.org/irp/doddir/army/r380_19.pdf | title= सूचना प्रणाली सुरक्षा|date=February 1998}}</ref> AR 25-2 द्वारा प्रतिस्थापित https://armypubs.army.mil/epubs/DR_pubs/DR_a/pdf/web/ARN17503_AR25_2_Admin_FINAL.pdf (सेना प्रकाशन निदेशालय, 2009) | * [[ संयुक्त राज्य सेना | संयुक्त राज्य सेना]] AR380-19, सूचना प्रणाली सुरक्षा, फरवरी 1998 <ref>{{cite web | url=http://www.fas.org/irp/doddir/army/r380_19.pdf | title= सूचना प्रणाली सुरक्षा|date=February 1998}}</ref> AR 25-2 द्वारा प्रतिस्थापित https://armypubs.army.mil/epubs/DR_pubs/DR_a/pdf/web/ARN17503_AR25_2_Admin_FINAL.pdf (सेना प्रकाशन निदेशालय, 2009) | ||
* [[संयुक्त राज्य वायु सेना]] AFSSI 8580, रेमनेंस सिक्योरिटी, 17 नवंबर 2008<ref>[http://www.af.mil/shared/media/epubs/AFI33-106.pdf AFI 33-106] {{webarchive|url=https://web.archive.org/web/20121022224013/http://www.af.mil/shared/media/epubs/AFI33-106.pdf |date=2012-10-22 }}</ref> | * [[संयुक्त राज्य वायु सेना]] AFSSI 8580, रेमनेंस सिक्योरिटी, 17 नवंबर 2008<ref>[http://www.af.mil/shared/media/epubs/AFI33-106.pdf AFI 33-106] {{webarchive|url=https://web.archive.org/web/20121022224013/http://www.af.mil/shared/media/epubs/AFI33-106.pdf |date=2012-10-22 }}</ref> |
Revision as of 12:35, 4 May 2023
डेटा अवशिष्टता डिजिटल डेटा का अवशिष्ट प्रतिनिधित्व है जो डेटा को हटाने या मिटाने के प्रयासों के बाद भी बना रहता है यह अवशेष नाममात्र फ़ाइल विलोपन संचालन द्वारा डेटा को सुरक्षित रखने के परिणामस्वरूप हो सकता है भंडारण मीडिया के परिवर्तन से यह मीडिया के पहले से लिखे गए डेटा को नहीं हटाता है या भंडारण मीडिया के भौतिक गुणों के माध्यम से पहले से लिखे गए डेटा को पुनर्प्राप्त करने की स्वीकृति देता है डेटा अवशिष्टता सूचना संवेदनशीलता का असावधानीपूर्ण प्रकटीकरण को संभव कर सकता है यदि भंडारण मीडिया को एक अनियंत्रित वातावरण उदाहरण के लिए रीसायकल बिन में परिवर्तित करने डेटा नष्ट हो सकता है डेटा अवशिष्टता का सामना करने के लिए विभिन्न तकनीकों का विकास किया गया है इन तकनीकों को समाशोधन, शुद्धिकरण/स्वच्छता या खंडन के रूप में वर्गीकृत किया गया है जिसके विशिष्ट प्रकारों में अधिलेखन, चुंबकीय विक्षेपण, कूट लेखन और मीडिया खंडन सम्मिलित हैं।
प्रत्येक उपायो का प्रभावी अनुप्रयोग कई कारकों से जटिल हो सकता है जिसमें मीडिया जो अप्राप्य है वह भंडारण जिसको प्रभावी रूप से मिटाया नहीं जा सकता है, उन्नत भंडारण प्रणालियाँ जो डेटा के पूरे जीवन चक्र में डेटा के इतिहास को बनाए रखती हैं और मेमोरी में डेटा की दृढ़ता जिसे सामान्यतः अस्थिर माना जाता है डेटा के सुरक्षित निष्कासन और डेटा अवशिष्टता के उन्मूलन के लिए कई मानक सम्मिलित हैं।
कारण
कई ऑपरेटिंग सिस्टम, फ़ाइल मैनेजर और अन्य सॉफ्टवेयर एक सुविधा प्रदान करते हैं जहां उपयोगकर्ता द्वारा उस नियमों का अनुरोध करने पर फ़ाइल शीघ्रता से हटाई नहीं जाती है इसके अतिरिक्त, फ़ाइल को एक रीसायकल बिन (कंप्यूटिंग) में ले जाया जाता है जिससे उपयोगकर्ता के लिए गलती को पूर्ववत करना आसान हो जाता है इसी प्रकार कई सॉफ़्टवेयर उत्पाद स्वचालित रूप से उन फ़ाइलों की बैकअप प्रतियां बनाते हैं जिन्हें संपादित किया जा रहा है उपयोगकर्ता के मूल संस्करण को पुनर्स्थापित करने या संभावित क्रैश (स्वतः सहेज की सुविधा) से पुनर्प्राप्त करने की स्वीकृति प्रदान की जा सके। यहां तक कि जब एक स्पष्ट रूप से हटाई गई फ़ाइल प्रतिधारण सुविधा प्रदान नहीं की जाती है या जब उपयोगकर्ता इसका उपयोग नहीं करता है तो ऑपरेटिंग सिस्टम वास्तव में किसी फ़ाइल की डेटा को तब तक नहीं हटाते हैं जब तक कि वे इस विषय से अवगत न हों कि एसएसडी की तरह स्पष्ट मिटाने के आदेश आवश्यक हैं। ऐसी स्थितियों में ऑपरेटिंग सिस्टम सीरियल साटा ट्रिम (कंप्यूटिंग) कमांड या एससीएसआई यूएनएमएपी कमांड प्रारम्भ करता है ताकि ड्राइव को पता चल सके कि अब हटाए गए डेटा को बनाए नहीं रखा जा सकता है।
इसके अतिरिक्त वे फाइल सिस्टम डायरेक्टरी से फाइल की उपस्थिति को हटा देते हैं क्योंकि इसमें कम कार्य की आवश्यकता होती है और इसलिए यह तीव्र है और फ़ाइल का डेटा वास्तविक डेटा भंडारण माध्यम पर रहता है यह डेटा तब तक रहता है जब तक ऑपरेटिंग सिस्टम नए डेटा के लिए स्थान का पुन: उपयोग नहीं करता है कुछ सिस्टम में सामान्य रूप से उपलब्ध यूटिलिटी सॉफ़्टवेयर द्वारा आसानी से हटाए जाने को सक्षम करने के लिए पर्याप्त फ़ाइल सिस्टम मेटाडेटा भी पीछे छोड़ दिया जाता है यहां तक कि जब हटाना या समाप्त करना असंभव हो गया हो तब तक डेटा को अधिलेखित नहीं किया जाता है जब तक की सॉफ्टवेयर द्वारा पढ़ा जा सकता है जो डिस्क भंडारण से प्रत्यक्ष रूप से पढ़ता है इसी प्रकार कंप्यूटर फोरेंसिक प्रायः ऐसे सॉफ्टवेयर का उपयोग करते हैं जिससे किसी सिस्टम मे परिवर्तन, पुनर्विभाजन या डिस्क छवि के प्रत्येक भाग में लिखने की संभावना नहीं होती है हालांकि अधिकांश सॉफ़्टवेयर में छवि में सम्मिलित फ़ाइलों को छोड़कर सभी के कारण डिस्क रिक्त दिखाई देगी या रीइमेजिंग की स्थिति में रिक्त दिखाई देती है।
यदि भंडारण मीडिया को ओवरराइट कर दिया गया हो तो मीडिया के भौतिक गुण पूर्व डेटा को पुनर्प्राप्ति की स्वीकृति दे सकते हैं हालांकि अधिकांश स्थिति में यह पुनर्प्राप्ति केवल भंडारण डिवाइस से सामान्य तरीके से पढ़ने से संभव नहीं है लेकिन प्रयोगशाला मे तकनीकों का उपयोग जैसे कि डिवाइस को अलग करना और प्रत्यक्ष रूप से इसके घटकों को पढ़ने की आवश्यकता होती है।
- डेटा के सुरक्षित निष्कासन और डेटा अवशिष्टता के उन्मूलन के लिए कई मानक सम्मिलित हैं।
प्रत्युपाय
डेटा अवशिष्टता को नष्ट करने के लिए सामान्यतः तीन स्तरों को स्वीकृति दी गई है:
समाशोधन
समाशोधन भंडारण उपकरणों से संवेदनशील डेटा को इस प्रकार से हटाना है कि यह आश्वासन है कि सामान्य सिस्टम फ़ंक्शंस या सॉफ़्टवेयर फ़ाइल/डेटा पुनर्प्राप्ति उपयोगिताओं का उपयोग करके डेटा अभी भी पुनर्प्राप्त करने योग्य हो सकता है लेकिन विशेष प्रयोगशाला तकनीकों के बिना डेटा का पुनर्निर्माण नहीं किया जा सकता है।[1]
समाशोधन सामान्यतः एक संगठन के भीतर आकस्मिक प्रकटीकरण के विरुद्ध एक प्रशासनिक सुरक्षा है उदाहरण के लिए किसी संगठन के भीतर हार्ड ड्राइव का पुन: उपयोग करने से पहले इसके डेटा को अगले उपयोगकर्ता के लिए उनके आकस्मिक प्रकटीकरण को स्थगित करने के लिए रिक्त किया जा सकता है।
शुद्धीकरण
शुद्धीकरण या स्वच्छीकरण एक सिस्टम या भंडारण डिवाइस से संवेदनशील डेटा का भौतिक पुनर्लेखन है इस अभिप्राय से कि डेटा को पुनर्प्राप्त नहीं किया जा सकता है[2] डेटा की संवेदनशीलता के अनुपात में शुद्धिकरण सामान्यतः नियंत्रण से परे मीडिया को प्रारम्भ करने से पहले किया जाता है जैसे कि पुराने मीडिया भंडारण को हटाने या मीडिया को विभिन्न सुरक्षा आवश्यकताओं वाले कंप्यूटर पर ले जाने से पहले किया जाता है।
विनाश (डिस्ट्रक्शन)
भंडारण मीडिया को पारंपरिक उपकरणों के लिए अनुपयोगी बना दिया गया है मीडिया को नष्ट करने की प्रभावशीलता माध्यम और विधि से भिन्न होती है मीडिया के रिकॉर्डिंग संघनता और विनाश तकनीक के आधार पर यह प्रयोगशाला विधियों द्वारा डेटा को पुनर्प्राप्त करने योग्य छोड़ सकता है इसके विपरीत उपयुक्त तकनीकों का उपयोग करके विनाश पुनर्प्राप्ति को स्थगित करने का सबसे सुरक्षित तरीका है।
विशिष्ट विधि
अधिलेखन
डेटा अवशिष्टता का सामना करने के लिए उपयोग की जाने वाली एक सामान्य विधि भंडारण मीडिया को नए डेटा के साथ अधिलेखित करना है प्रिंट मीडिया को नष्ट करने के सामान्य तरीकों के अनुरूप इसे प्रायः फ़ाइल या डिस्क को रिक्त करना या विभाजित करना कहा जाता है हालांकि इस प्रक्रिया मे कोई समानता नहीं होती है क्योंकि इस प्रकार की प्रक्रिया प्रायः एकल सॉफ्टवेयर में प्रयुक्त की जा सकती है और मीडिया के केवल एक भाग को निश्चित रूप से लक्षित करने में सक्षम हो सकती है यह कुछ अनुप्रयोगों के लिए एक लोकप्रिय एवं कम लागत वाला विकल्प है जब तक मीडिया लिखने योग्य है और क्षतिग्रस्त नहीं है तब तक अधिलेखन सामान्यतः समाशोधन का एक स्वीकार्य तरीका है।
ओवरराइट तकनीक सामान्यतः प्रत्येक स्थान पर एक ही डेटा को लिखती है प्रायः सभी शून्यों का एक पैटर्न कम से कम मानक सिस्टम फ़ंक्शंस का उपयोग करके पुनः मीडिया से पढ़कर डेटा को पुनर्प्राप्त करने मे सक्षम हो सकता है अधिक उन्नत डेटा पुनर्प्राप्त तकनीकों का सामना करने के प्रयास में, विशिष्ट ओवरराइट पैटर्न और कई पास प्रायः निर्धारित किए गए हैं ये किसी भी नियंत्रित संकेत को मिटाने के उद्देश्य से सामान्य पैटर्न मे हो सकते हैं उदाहरण के लिए, सात-पास पैटर्न 0xF6, 0x00, 0xFF, 0x00, 0xFF, यादृच्छिक रूप से कभी-कभी गलत तरीके से अमेरिकी मानक डीओडी 5220.22-एम को उत्तरदायी माना जाता है।
अधिलेखन के साथ एक चुनौती यह है कि डिस्क के कुछ क्षेत्र मीडिया की कमी या अन्य त्रुटियों के कारण अप्राप्य हो सकते हैं सॉफ़्टवेयर ओवरराइट उच्च-सुरक्षा वातावरण में भी समस्याग्रस्त हो सकता है जिसके लिए उपयोग किए जा रहे सॉफ़्टवेयर द्वारा प्रदान किए जाने वाले डेटा पर अधिक नियंत्रण की आवश्यकता होती है। उन्नत भंडारण तकनीकों का उपयोग भी फ़ाइल-आधारित ओवरराइट को अप्रभावी बना सकता है। अधिलेखन के अंतर्गत नीचे की चर्चा देखें।
ऐसी विशेष मशीनें और सॉफ्टवेयर हैं जो अधिलेखन करने में सक्षम हैं सॉफ़्टवेयर कभी-कभी एक स्टैंडअलोन ऑपरेटिंग सिस्टम हो सकता है जिसे विशेष रूप से डेटा नष्ट करने के लिए डिज़ाइन किया गया है सुरक्षा विभाग के डीओडी 5220.22-एम के लिए हार्ड ड्राइव को रिक्त करने के लिए विशेष रूप से डिजाइन की गई मशीनें भी हैं।[3]
ओवरराइट किए गए डेटा को पुनर्प्राप्त करने की व्यवहार्यता
पीटर गुटमैन (कंप्यूटर वैज्ञानिक) ने 1990 के दशक के मध्य में नाममात्र के अधिलेखित मीडिया से डेटा पुनर्प्राप्ति का परीक्षण किया था और उन्होंने सुझाव दिया कि चुंबकीय बल माइक्रोस्कोपी इस प्रकार के डेटा को पुनर्प्राप्त करने में सक्षम हो सकती है और विशिष्ट ड्राइव तकनीकों के लिए विशिष्ट पैटर्न को विकसित किया जा सकता है जिसे इस प्रकार का सामना करने के लिए डिज़ाइन किया गया है[4] तब से इन पैटर्नों को गुटमैन पद्धति के रूप में जाना जाने लगा है।
निजी राष्ट्रीय आर्थिक ब्यूरो शोध के एक अर्थशास्त्री डैनियल फीनबर्ग का कथन है कि आधुनिक हार्ड ड्राइव से अधिलेखित डेटा की संभावना अर्बन-लीजेंड है[5] उन्होंने वाटरगेट ब्रेक-इन पर चर्चा करते हुए रिचर्ड निक्सन के एक टेप पर बनाए गए " 18+1⁄2 मिनट के अंतराल" रोज मैरी वुड्स की ओर भी संकेत किया और इस अंतराल में मिटाई गई जानकारी को पुनर्प्राप्त नहीं किया गया है फेनबर्ग का कथन है कि ऐसा करना आधुनिक उच्च सघनता वाले डिजिटल संकेत को पुनर्प्राप्त की तुलना में एक आसान कार्य हो सकता है नवंबर 2007 तक, संयुक्त राज्य अमेरिका का रक्षा विभाग एक ही सुरक्षा क्षेत्र के भीतर चुंबकीय मीडिया को रिक्त करने के लिए अधिलेखन को स्वीकार्य मानता है लेकिन स्वच्छता पद्धति के रूप में बाद के लिए केवल चुंबकीय विक्षेपण या भौतिक विनाश स्वीकार्य माना जाता है।[6]
दूसरी ओर 2014 एनआईएसटी विशेष प्रकाशन 800-88 रेव. 1 (पी. 7) के अनुसार चुंबकीय मीडिया वाले भंडारण उपकरणों के लिए बाइनरी शून्य जैसे निश्चित पैटर्न के साथ एक एकल ओवरराइट पास सामान्यतः डेटा की पुनर्प्राप्ति में भी अवरोध को उत्पन्न करता है यदि डेटा को पुनः प्राप्त करने के प्रयास के लिए अत्याधुनिक प्रयोगशाला तकनीकों को प्रयुक्त किया जाता है[7] तो उदाहरण के लिए ओवरराइट द्वारा एक विश्लेष चुंबकीय बल माइक्रोस्कोपी सहित पुनर्प्राप्ति तकनीकों का यह भी निष्कर्ष है कि आधुनिक ड्राइव के लिए केवल एक वाइप ही आवश्यक है वे बताते हैं कि कई वाइप्स के लिए आवश्यक लंबे समय ने "एक ऐसी स्थिति उत्पन्न कर दी है जहां कई संगठन इस विषय को अस्वीकृत कर देते हैं जिसके परिणामस्वरूप डेटा रिसाव और डेटा त्रुटि होती है।" [8]
चुंबकीय विक्षेपण
चुंबकीय विक्षेपण एक डिस्क या ड्राइव के चुंबकीय क्षेत्र को हटाने या कम करने के लिए एक चुंबकीय विक्षेपण नामक डिवाइस का उपयोग कर रहा है जिसे मीडिया को मिटाने के लिए डिज़ाइन किया गया है चुंबकीय भंडारण के लिए प्रयुक्त चुंबकीय विक्षेपण पूरे मीडिया तत्व को शीघ्र और प्रभावी रूप से शुद्ध कर सकता है।
चुंबकीय विक्षेपण प्रायः हार्ड डिस्क को निष्क्रिय कर देता है क्योंकि यह निम्न-स्तरीय डिस्क प्रारूप को मिटा देता है जो केवल निर्माण के समय उद्योग में किया जाता है कुछ स्थितियों मे निर्माता के यहां सुरक्षित ड्राइव को कार्यात्मक स्थिति में लौटाना संभव है हालांकि, कुछ आधुनिक चुंबकीय विक्षेपण इतनी जटिल चुंबकीय स्पंदन का उपयोग करते हैं कि मोटर जो प्लेट्स को घूर्ण करती है चुंबकीय विक्षेपण प्रक्रिया में नष्ट हो सकती है और सर्विसिंग लागत प्रभावी नहीं हो सकती है डीगॉस्ड कंप्यूटर टेप जैसे डीएलटी को सामान्यतः मानक उपभोक्ता हार्डवेयर के साथ सुधारा और पुन: उपयोग किया जा सकता है।
कुछ उच्च-सुरक्षा परिवेशों में, किसी को एक डीगॉसर का उपयोग करने की आवश्यकता हो सकती है जिसे कार्य के लिए अनुमोदित किया गया है उदाहरण के लिए, अमेरिकी सरकार और सैन्य अधिकार क्षेत्र में राष्ट्रीय सुरक्षा संस्था के "मूल्यांकित उत्पादों की सूची" से एक डीगॉसर का उपयोग करने की आवश्यकता हो सकती है।[9]
कूटलेखन
मीडिया पर संग्रहीत होने से पहले डेटा को एन्क्रिप्ट करना डेटा अवशिष्टता के विषय में चिंताओं को कम कर सकता है यदि डिक्रिप्शन कुंजी (क्रिप्टोग्राफी) जटिल और सावधानीपूर्वक नियंत्रित है तो यह प्रभावी रूप से मीडिया पर किसी भी डेटा को अप्राप्य बना सकता है यहां तक कि यदि कुंजी मीडिया पर संग्रहीत है तो पूरी डिस्क की तुलना में केवल कुंजी को अधिलेखित करना आसान या तीव्र सिद्ध हो सकता है इस प्रक्रिया को क्रिप्टो-श्रेडिंग कहा जाता है।
एन्क्रिप्शन फ़ाइल दर फ़ाइल के आधार पर या संपूर्ण डिस्क पर किया जा सकता है कोल्ड बूट अटैक एक पूर्ण-डिस्क एन्क्रिप्शन विधि को नष्ट करने के कुछ संभावित तरीकों में से एक है क्योंकि माध्यम के अन-एन्क्रिप्टेड अनुभाग में प्लेन टेक्स्ट कुंजी को स्थित करने की कोई संभावना नहीं है आगे की चर्चा के लिए रैम में अधिलेखन डेटा अनुभाग देखें।
अन्य चैनल अटैक (जैसे कीलॉगर्स, डिक्रिप्शन कुंजी वाले लिखित नोट का अधिग्रहण या रबर-होज़ क्रिप्टैनालिसिस) सफलता की अधिक संभावना प्रदान कर सकते हैं लेकिन नियोजित क्रिप्टोग्राफ़िक पद्धति में कमजोरियों पर विश्वास नहीं करते हैं इस प्रकार, इस लेख के लिए उनकी प्रासंगिकता नगण्य होती है।
मीडिया विनाश
अंतर्निहित भंडारण मीडिया का पूरी तरह से नष्ट डेटा अवशिष्टता का सामना करने का सबसे निश्चित तरीका है हालाँकि यह प्रक्रिया सामान्यतः जटिल होती है, और इसके लिए अत्यधिक विस्तृत तरीकों की आवश्यकता हो सकती है क्योंकि मीडिया के एक छोटे से भाग में भी बड़ी मात्रा में डेटा हो सकता है।
विशिष्ट विनाश तकनीकों में सम्मिलित हैं:
- मीडिया का भौतिक रूप से परिवर्तन (उदाहरण के लिए, ग्राइंडिंग)
- रासायनिक मीडिया को एक गैर-पठनीय, गैर-विपरीत-रचनात्मक स्थिति में परिवर्तित कर देता है (उदाहरण के लिए, क्षारक या संक्षारक रसायनों के संपर्क में आने के माध्यम से)
- प्रावस्था संक्रमण (उदाहरण के लिए, एक ठोस डिस्क का द्रवीकरण या वाष्पीकरण)
- चुंबकीय मीडिया के लिए, इसके तापमान को क्यूरी तापांक से ऊपर करना
- कई इलेक्ट्रिक या इलेक्ट्रॉनिक वाष्पशील और गैर-वाष्पशील भंडारण मीडिया के लिए विद्युत चुम्बकीय क्षेत्रों के संपर्क में सुरक्षित परिचालन विनिर्देशों (जैसे, उच्च-वोल्टेज विद्युत प्रवाह या उच्च-आयाम वाले सूक्ष्म तरंग या आयनीकरण विकिरण) से बहुत अधिक है।[citation needed]
संवृति
अप्राप्य मीडिया क्षेत्र
भंडारण मीडिया में ऐसे क्षेत्र हो सकते हैं जो सामान्य साधनों से अप्राप्य हो जाते हैं उदाहरण के लिए, डेटा लिखे जाने के बाद चुंबकीय डिस्क अप्राप्य नए क्षेत्रों को विकसित कर सकती हैं और टेपों को अंतर-रिकॉर्ड अंतराल की आवश्यकता होती है आधुनिक हार्ड डिस्क में प्रायः सीमांत क्षेत्रों या अनुभाग मे पुनर्आवंटन की सुविधा होती है जो इस प्रकार से स्वचालित होती है कि ऑपरेटिंग सिस्टम को इसके साथ कार्य करने की आवश्यकता नहीं होती है समस्या एसएसडीएस में विशेष रूप से महत्वपूर्ण है जो अपेक्षाकृत बड़ी स्थानांतरित अयोग्य ब्लॉक तालिकाओं पर निर्भर करती है अधिलेखन द्वारा डेटा अवशिष्टता का सामना करने का प्रयास ऐसी स्थितियों में सफल नहीं हो सकता है क्योंकि डेटा अवशिष्टता ऐसे नाममात्र अप्राप्य क्षेत्रों में स्थित रह सकते हैं।
उन्नत भंडारण प्रणाली
अधिक परिष्कृत विशेषताओं वाली डेटा भंडारण प्रणालियाँ विशेष रूप से प्रति-फ़ाइल के आधार पर ओवरराइट को अप्रभावी बना सकती हैं उदाहरण के लिए, जर्नलिंग फाइल सिस्टम कई स्थानों में लेखन संचालन रिकॉर्ड करके और लेनदेन-जैसे शब्दार्थों को प्रयुक्त करके डेटा की अखंडता को बढ़ाता है ऐसी प्रणालियों पर डेटा अवशिष्टता नाममात्र फ़ाइल संग्रहण स्थान के बाहरी स्थानों में सम्मिलित हो सकते हैं कुछ फाइल सिस्टम कॉपीराइट या निर्मित संशोधन नियंत्रण को भी प्रयुक्त करते हैं इस प्रयास के साथ कि फाइल में लिखना कभी भी डेटा को इन-प्लेस ओवरराइट नहीं करता है। इसके अतिरिक्त आरएआईडी और फ़ाइल सिस्टम विखंडन तकनीकों जैसी तकनीकों के परिणामस्वरूप फ़ाइल डेटा को कई स्थानों पर या तो डिज़ाइन द्वारा (दोष सहिष्णुता के लिए) या डेटा अवशिष्टता के रूप में लिखा जा सकता है।
जब वे मूल रूप से लिखे और ओवरराइट किए गए थे उस समय के बीच ब्लॉक को स्थानांतरित करके डेटा वियर स्तरीकरण भी डेटा इरेज़र को कम कर सकता है इस कारण से, ऑपरेटिंग सिस्टम या स्वचालित वेयर स्तरीकरण की विशेषता वाले अन्य सॉफ़्टवेयर के अनुरूप कुछ सुरक्षा प्रोटोकॉल किसी दिए गए ड्राइव के मुक्त-स्पेस वाइप का संचालन करने का सुझाव देते हैं और फिर कई छोटी आसानी से पहचानी जाने वाली जंक फ़ाइलों या फ़ाइलों को भरने के लिए अन्य गैर-संवेदनशील डेटा वाली फ़ाइलों की प्रतिलिपि बनाते हैं जितना संभव हो उतना ड्राइव, सिस्टम हार्डवेयर और सॉफ्टवेयर के संतोषजनक संचालन के लिए आवश्यक रिक्त स्थान की मात्रा को छोड़कर जैसे-जैसे भंडारण और सिस्टम की मांग बढ़ती है "जंक डेटा" फ़ाइलों को स्थान खाली करने के लिए आवश्यक रूप से हटाया जा सकता है यहां तक कि यदि जंक डेटा फ़ाइलों को हटाना सुरक्षित नहीं है तो उनकी प्रारंभिक गैर-संवेदनशीलता उनसे शेष डेटा की पुनर्प्राप्ति के परिणामों को लगभग शून्य कर देती है।[citation needed]
प्रकाशीय मीडिया
चूंकि प्रकाशीय डिस्क चुंबकीय नहीं होते हैं वे पारंपरिक चुंबकीय विक्षेपण द्वारा मिटाए नहीं जाते हैं ऑप्टिकल (प्रकाशीय) मीडिया (सीडी-आर, डीवीडी-आर, आदि) को भी अधिलेखन द्वारा शुद्ध नहीं किया जा सकता है पुनर्लेखन योग्य ऑप्टिकल मीडिया, जैसे सीडी-आरडब्ल्यू और डीवीडी-आरडब्ल्यू अधिलेखन के लिए ग्रहणशील हो सकते हैं ऑप्टिकल डिस्क को सफलतापूर्वक रिक्त करने के तरीकों में धात्विक डेटा परत को हटाना या नष्ट करना, श्रेडिंग, भस्मीकरण, विनाशकारी विद्युत आर्किंग (जैसे सूक्ष्मतरंग ऊर्जा के संपर्क में) और एक पॉलीकार्बोनेट विलायक (जैसे, एसीटोन) में डूबना सम्मिलित होता है।
सॉलिड-स्टेट ड्राइव (एसएसडी) डेटा
चुंबकीय केंद्र रिकॉर्डिंग और शोध कैलिफोर्निया विश्वविद्यालय, सैन डिएगो के शोध ने ठोस-राज्य ड्राइव (एसएसडी) पर संग्रहीत डेटा को मिटाने में निहित समस्याओं को प्रकाशित किया है शोधकर्ताओं ने एसएसडी पर फाइल भंडारण के साथ तीन समस्याओं की खोज की है:[10]
सबसे पहले, अंतर्निहित क्रम प्रभावी होते हैं लेकिन निर्माता कभी-कभी उन्हें गलत तरीके से कार्यान्वित करते हैं दूसरा, एसएसडी के पूरे दृश्य एड्रेस को दो बार ओवरराइट करना संभव है लेकिन सदैव नहीं, यह ड्राइव को रिक्त करने के लिए पर्याप्त होता है। तीसरा, व्यक्तिगत फ़ाइल स्वच्छता के लिए सम्मिलित हार्ड ड्राइव-उन्मुख तकनीकों में से कोई भी एसएसडी पर प्रभावी नहीं है।[10]: 1
सॉलिड-स्टेट ड्राइव (एसएसडी) जो फ्लैश-आधारित हैं, हार्ड-डिस्क ड्राइव (एचडीडी) से दो प्रकार से भिन्न हैं: पहला, जिस प्रकार से डेटा संग्रहीत किया जाता है और दूसरा, जिस प्रकार से उस डेटा को प्रबंधित और नियंत्रित करने के लिए एल्गोरिदम का उपयोग किया जाता है पहले मिटाए गए डेटा को पुनर्प्राप्त करने के लिए इन अंतरों का लाभ प्राप्त किया जा सकता है एसएसडी डेटा तक अभिगम्य के लिए कंप्यूटर सिस्टम द्वारा उपयोग किए जाने वाले तार्किक एड्रेसों और भौतिक भंडारण की पहचान करने वाले आंतरिक एड्रेसों के बीच अप्रत्यक्ष परत को बनाए रखते हैं अप्रत्यक्षता की यह परत विशेष मीडिया इंटरफेस को अदृश्य रखती है और एसएसडी प्रदर्शन, विश्वसनीयता और जीवन काल (वियर स्तरीकरण देखें) को बढ़ाती है लेकिन यह उन डेटा की प्रतियां भी बना सकती है जो उपयोगकर्ता के लिए अदृश्य हैं और एक परिष्कृत अटैक को पुनर्प्राप्त कर सकता है संपूर्ण डिस्क को रिक्त करने के लिए उपयुक्त रूप से प्रयुक्त किए जाने पर एसएसडी हार्डवेयर में निर्मित सेनिटाइज कमांड प्रभावी पाए गए हैं और पूरे डिस्क को रिक्त करने के लिए केवल सॉफ्टवेयर तकनीकों को सबसे अधिक कार्य करने के लिए पाया जा सकता है लेकिन इसको प्रत्येक समय में नहीं उपयोग कर सकते है[10]: section 5 परीक्षण में, कोई भी सॉफ़्टवेयर तकनीक व्यक्तिगत फ़ाइलों को साफ करने के लिए प्रभावी नहीं थी इनमें गाटमान प्रक्रम,यूएस डीओडी 5220.22-एम, आरसीएमपी टीएसएसआईटी ओपीएस-II, श्रायर-7 पीएएस और मैकओएस पर सुरक्षित रिक्त ट्रैश (ओएस एक्स 10.3-10.9 संस्करणों में सम्मिलित एक सुविधा) जैसे प्रसिद्ध एल्गोरिदम सम्मिलित हैं।[10]: section 5
कई एसएसडी उपकरणों में टीआरआईएम सुविधा, यदि ठीक से प्रयुक्त की जाती है तो इसे हटाए जाने के बाद अंततः डेटा मिटा दिया जाता है [11][citation needed] लेकिन इस प्रक्रिया में कुछ समय अर्थात कई मिनट लग सकते है सामान्यतः कई पुराने ऑपरेटिंग सिस्टम इस सुविधा का समर्थन नहीं करते हैं अर्थात ड्राइव और ऑपरेटिंग सिस्टम के सभी संयोजन कार्य नहीं करते हैं।[12]
रैम में डेटा
स्थिर रैंडम-एक्सेस मेमोरी (एसआरएएम) में डेटा अवशिष्टता को देखा गया है जिसे सामान्यतः अस्थिर माना जाता है अर्थात, डेटा बाहरी ऊर्जा की त्रुटि के साथ एक अध्ययन में कमरे के तापमान पर भी डेटा प्रतिधारण को देखा गया था।[13]
गतिशील रैंडम-एक्सेस मेमोरी (डीरैम) में डेटा अवशिष्टता भी देखा गया है। आधुनिक डीरैम चिप में एक अंतर्निहित आवधिक आवर्ती मॉड्यूल होता है क्योंकि उन्हें न केवल डेटा को बनाए रखने के लिए विद्युत की आपूर्ति की आवश्यकता होती है बल्कि उनके डेटा को उनके एकीकृत परिपथों में संधारित्र से लुप्त होने से स्थगित करने के लिए समय-समय पर रिफ्रेश किया जाना आवश्यक होता है एक अध्ययन में कमरे के तापमान पर सेकंड से लेकर मिनट तक के डेटा अवधारण के साथ डीरैम में डेटा अवशिष्टता को पाया गया और तरल नाइट्रोजन के साथ ठंडा होने पर रिफ्रेश किए बिना एक पूरा सप्ताह रखा गया था[14] अध्ययन मे लेखक माइक्रोसॉफ्ट बिटलौकर ड्राइव एन्क्रिप्शन, एप्पल फाइलवॉल्ट, लिनक्स के लिए डीएम-क्रिप्ट और ट्रूक्रिप्ट सहित कई लोकप्रिय पूर्ण डिस्क एन्क्रिप्शन सिस्टम के लिए क्रिप्टोग्राफ़िक कुंजियों को पुनर्प्राप्त करने के लिए एक कोल्ड बूट अटैक का उपयोग करने में सक्षम थे।[14]: 12
कुछ मेमोरी मे कमी के अतिरिक्त ऊपर वर्णित अध्ययन मे लेखक कुंजियों को कुशल उपयोग के लिए विस्तारित किए जाने के बाद जिस प्रकार से कुंजियों को संग्रहीत किया जाता है जैसे कि कुंजी निर्धारण में अतिरेक का लाभ उठाने में सक्षम थे लेखक सुझाव देते हैं कि जब मालिक के भौतिक नियंत्रण में न हो, तो कंप्यूटर को "स्लीप मोड" स्थिति में छोड़ने के अतिरिक्त संचालित किया जाना चाहिए। कुछ स्थितियों में जैसे कि सॉफ्टवेयर प्रोग्राम बिटलॉकर के कुछ मोड की लेखक अनुशंसा करते हैं कि एक बूट पासवर्ड या रिमूवेबल यूएसबी डिवाइस पर एक कुंजी का उपयोग किया जाता है।[14] : 12 ट्रेसर लिनक्स के लिए एक कर्नेल (ऑपरेटिंग सिस्टम) पैच है जो विशेष रूप से कोल्ड बूट को स्थगित करने के लिए होता है यह सुनिश्चित करके रैम पर अटैक करता है कि एन्क्रिप्शन कुंजियाँ उपयोगकर्ता के स्थान से सुलभ नहीं हैं और जब भी संभव हो सिस्टम रैम के अतिरिक्त सीपीयू में संग्रहीत होती हैं डिस्क एन्क्रिप्शन सॉफ्टवेयर वेराक्रिप्ट के नए संस्करण 64-बिट विंडोज पर इन रैम कुंजियों और पासवर्ड को एन्क्रिप्ट कर सकते हैं।[15]
मानक
- ऑस्ट्रेलिया
- ऑस्ट्रेलियाई संकेत प्रबंध-विभाग आईएसएम 2014, ऑस्ट्रेलियाई सरकार सूचना सुरक्षा मैनुअल, 2014 [16]
- कनाडा
- रॉयल कैनेडियन माउंटेड पुलिस बी 2-002, सूचान प्रौद्योगिकी मीडिया ओवरराइट और सुरक्षित इरेज उत्पाद मई 2009 [17]
- संचार सुरक्षा संस्थान समाशोधन और इलेक्ट्रॉनिक डेटा संग्रहण उपकरणों को अवर्गीकृत करना, जुलाई 2006 [18]
- न्यूज़ीलैंड
- जीसीएसबी एनजेडआईएसएम 2016, न्यूज़ीलैंड सूचना सुरक्षा मैनुअल वी 2.5, जुलाई 2016 [19]
- न्यूजीलैंड सुरक्षा सूचना सेवा पीएसएम 2009, सुरक्षात्मक सुरक्षा मैनुअल।
- यूनाइटेड किंगडम
- संपत्ति अधिकार और सूचना सुरक्षा एलायंस (एडीआईएसए), एडीआईएसए सूचान प्रौद्योगिकी संपत्ति सूचना सुरक्षा मानक।[20]
- संयुक्त राज्य अमेरिका
- राष्ट्रीय मानक और प्रौद्योगिकी संस्थान विशेष प्रकाशन 800-88, मीडिया स्वच्छता के लिए दिशानिर्देश, सितंबर 2006 [1]* राष्ट्रीय औद्योगिक सुरक्षा कार्यक्रम|डीओडी 5220.22-एम, राष्ट्रीय औद्योगिक सुरक्षा कार्यक्रम संचालन मैनुअल (एनआईएसपीओएम), फरवरी 2006 [21]
- हालांकि एनआईएसपीओएम पाठ ने कभी भी स्वच्छता के लिए किसी विशिष्ट तरीके का वर्णन नहीं किया, पिछले संस्करणों (1995 और 1997) में धारा 8-306 के बाद सम्मिलित रक्षा सुरक्षा सेवा (डीएसएस) समाशोधन और स्वच्छता मैट्रिक्स के भीतर स्पष्ट स्वच्छता विधियां सम्मिलित थीं।[22] DSS अभी भी यह मैट्रिक्स प्रदान करता है और यह विधियों को निर्दिष्ट करना जारी रखता है।[6] मैट्रिक्स के नवंबर 2007 के संस्करण के अनुसार, चुंबकीय मीडिया के स्वच्छताकरण के लिए अधिलेखन अब स्वीकार्य नहीं है। केवल चुंबकीय विक्षेपण (NSA अनुमोदित चुंबकीय विक्षेपण के साथ) या भौतिक विनाश स्वीकार्य है।[21]
- संयुक्त राज्य सेना AR380-19, सूचना प्रणाली सुरक्षा, फरवरी 1998 [23] AR 25-2 द्वारा प्रतिस्थापित https://armypubs.army.mil/epubs/DR_pubs/DR_a/pdf/web/ARN17503_AR25_2_Admin_FINAL.pdf (सेना प्रकाशन निदेशालय, 2009)
- संयुक्त राज्य वायु सेना AFSSI 8580, रेमनेंस सिक्योरिटी, 17 नवंबर 2008[24]
- संयुक्त राज्य नौसेना NAVSO P5239-26, रेमनेंस सिक्योरिटी, सितंबर 1993 [25]
- इलेक्ट्रिकल और इलेक्ट्रॉनिक इंजीनियर संस्थान भंडारण की सफाई के लिएइ लेक्ट्रिकल और इलेक्ट्रॉनिक इंजीनियर संस्थान मानक, अगस्त 2022 [26] [27] [28]
यह भी देखें
- कंप्यूटर फोरेंसिक्स
- क्रिप्टोग्राफी
- डेटा मिटाना
- डेटा पुनर्प्राप्ति
- इलेक्ट्रॉनिक अपव्यय
- कूटलेखन
- फ़ाइल विलोपन
- फोरेंसिक पहचान
- गुटमैन विधि
- मेमोरी विस्तारण
- हस्तलिपि
- पेपर कतरनी मशीन
- भौतिक सूचना सुरक्षा
- सादा पाठ (सुरक्षा चर्चा)
- अवशेष (चुंबकीय अवधारण)
- स्वच्छता (वर्गीकृत जानकारी)
- सुरक्षित यूएसबी ड्राइव
- शून्यकरण
संदर्भ
- ↑ 1.0 1.1 "Special Publication 800-88: Guidelines for Media Sanitization Rev. 1" (PDF). NIST. 6 September 2012. Retrieved 2014-06-23. (542 KB)
- ↑ क्रिप्टोग्राफी और सुरक्षा का विश्वकोश. Tilborg, Henk C. A. van, 1947-, Jajodia, Sushil. ([2nd ed.] ed.). New York: Springer. 2011. ISBN 978-1-4419-5906-5. OCLC 759924624.
{{cite book}}
: CS1 maint: others (link) - ↑ Manual reissues DoD 5220.22-M, "National Industrial Security Program Operating. 2006. CiteSeerX 10.1.1.180.8813.
- ↑ Peter Gutmann (July 1996). "मैग्नेटिक और सॉलिड-स्टेट मेमोरी से डेटा का सुरक्षित विलोपन". Retrieved 2007-12-10.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Daniel Feenberg. "Can Intelligence Agencies Recover Overwritten Data?". Retrieved 2007-12-10.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ 6.0 6.1 "डीएसएस समाशोधन और स्वच्छता मैट्रिक्स" (PDF). DSS. 2007-06-28. Retrieved 2010-11-04.
- ↑ Kissel, Richard; Regenscheid, Andrew; Scholl, Matthew; Stine, Kevin (December 2014). "Special Publication 800-88 Rev. 1: Guidelines for Media Sanitization". NIST. doi:10.6028/NIST.SP.800-88r1. Retrieved 2018-06-26.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Wright, Craig; Kleiman, Dave; Shyaam, Sundhar R.S. (December 2008). "Overwriting Hard Drive Data: The Great Wiping Controversy". Lecture Notes in Computer Science. Springer Berlin / Heidelberg. 5352: 243–257. doi:10.1007/978-3-540-89862-7_21. ISBN 978-3-540-89861-0.
- ↑ "Media Destruction Guidance". NSA. Retrieved 2009-03-01.
- ↑ 10.0 10.1 10.2 10.3 Michael Wei; Laura M. Grupp; Frederick E. Spada; Steven Swanson (February 2011). "फ्लैश-आधारित सॉलिड स्टेट ड्राइव से विश्वसनीय रूप से डेटा मिटाना" (PDF).
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Homaidi, Omar Al (2009). "Data Remanence: Secure Deletion of Data in SSDs".
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ "कंप्यूटर फोरेंसिक जांच के लिए डिजिटल साक्ष्य निष्कर्षण सॉफ्टवेयर". Forensic.belkasoft.com. October 2012. Retrieved 2014-04-01.
- ↑ Sergei Skorobogatov (June 2002). "स्थैतिक रैम में कम तापमान डेटा अवशेष". University of Cambridge, Computer Laboratory. doi:10.48456/tr-536.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ 14.0 14.1 14.2 J. Alex Halderman; et al. (July 2008). "Lest We Remember: Cold Boot Attacks on Encryption Keys" (PDF).
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ https://www.veracrypt.fr/en/Release%20Notes.html VeraCrypt release notes
- ↑ "Australia Government Information Security Manual" (PDF). Australian Signals Directorate. 2014. Archived from the original (PDF) on 2014-03-27.
- ↑ "IT Media Overwrite and Secure Erase Products" (PDF). Royal Canadian Mounted Police. May 2009. Archived from the original (PDF) on 2011-06-15.
- ↑ "इलेक्ट्रॉनिक डेटा संग्रहण उपकरणों की समाशोधन और अवर्गीकरण" (PDF). Communications Security Establishment. July 2006.
- ↑ "New Zealand Information Security Manual v2.5" (PDF). Government Communications Security Bureau. July 2016.
- ↑ "ADISA: ASSET DISPOSAL & INFORMATION SECURITY ALLIANCE". Archived from the original on 2010-11-01.
- ↑ 21.0 21.1 "राष्ट्रीय औद्योगिक सुरक्षा कार्यक्रम संचालन मैनुअल" (PDF). DSS. February 2006. Archived from the original (PDF) on 2011-05-24. Retrieved 2010-09-22.
- ↑ "एनआईएसपीएम के साथ अप्रचलित" (PDF). January 1995. Retrieved 2007-12-07. with the Defense Security Service (DSS) Clearing and Sanitization Matrix; includes Change 1, July 31, 1997.
- ↑ "सूचना प्रणाली सुरक्षा" (PDF). February 1998.
- ↑ AFI 33-106 Archived 2012-10-22 at the Wayback Machine
- ↑ "रेमनेंस सुरक्षा गाइडबुक". September 1993.
- ↑ "भंडारण कीटाणुशोधन के लिए IEEE मानक".
- ↑ "IEEE 2883 Standard On Data Sanitization Is A Path To Storage Reuse And Recycling as published on Forbes".
- ↑ "IEEE P2883™ Draft Standard for Sanitizing Storage on SNIA".
अग्रिम पठन
- A Guide to Understanding Data Remanence in Automated Information Systems. National Computer Security Center. September 1991. Retrieved 2007-12-10. (Rainbow Series "Forrest Green Book")
- Tutorial on Disk Drive Data Sanitization Gordon Hughes, UCSD Center for Magnetic Recording Research, Tom Coughlin, Coughlin Associates