मौलटन तल: Difference between revisions

From Vigyanwiki
m (4 revisions imported from alpha:मौलटन_प्लेन)
No edit summary
Line 33: Line 33:
*रिचर्ड एस. मिलमैन, जॉर्ज डी. पार्कर: ज्यामिति: मॉडल के साथ एक मीट्रिक दृष्टिकोण. स्प्रिंगर 1991, {{isbn|9780387974125}}, pp. [https://books.google.com/books?id=KpQ49uySA-EC&pg=PA97 97-104]
*रिचर्ड एस. मिलमैन, जॉर्ज डी. पार्कर: ज्यामिति: मॉडल के साथ एक मीट्रिक दृष्टिकोण. स्प्रिंगर 1991, {{isbn|9780387974125}}, pp. [https://books.google.com/books?id=KpQ49uySA-EC&pg=PA97 97-104]


{{DEFAULTSORT:Moulton Plane}}[[Category: घटना ज्यामिति]]
{{DEFAULTSORT:Moulton Plane}}


 
[[Category:CS1 errors|Moulton Plane]]
 
[[Category:Created On 01/05/2023|Moulton Plane]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Moulton Plane]]
[[Category:Created On 01/05/2023]]
[[Category:Pages with script errors|Moulton Plane]]
[[Category:Vigyan Ready]]
[[Category:Templates Vigyan Ready|Moulton Plane]]
[[Category:घटना ज्यामिति|Moulton Plane]]

Revision as of 17:12, 16 May 2023

मौलटन तल। नीचे और दाईं ओर झुकी हुई रेखाएँ मुड़ी हुई होती हैं जहाँ वे y-अक्ष को पार करती हैं।

आपतन ज्यामिति में, मौलटन तल एक एफाइन तल (आपतन ज्यामिति) का एक उदाहरण है जिसमें डेसार्गेस के प्रमेय का पालन नहीं होता है। इसका नाम अमेरिकी खगोलशास्त्री वन रे मौलटन के नाम पर रखा गया है। मौलटन तल के बिंदु केवल वास्तविक तल R2 के बिंदु हैं और रेखाएँ नियमित रेखाएँ भी हैं, इस अपवाद के साथ कि ऋणात्मक ढलान वाली रेखाओं के लिए, जब वे y-अक्ष को पार करती हैं तो ढलान दोगुनी हो जाती है।

औपचारिक परिभाषा

मौलटन तल एक आपतन संरचना है, जहाँ बिंदुओं के समूह को दर्शाता है, रेखाओं के सम्मुच्चय और आपतन संबंध निहित है:

एक तत्व के लिए सिर्फ एक औपचारिक प्रतीक है। इसका उपयोग लंबवत रेखाओं का वर्णन करने के लिए किया जाता है, जिन्हें आप असीम रूप से बड़ी ढलान वाली रेखाओं के रूप में सोच सकते हैं।

आपतन संबंध को इस प्रकार परिभाषित किया गया है:

और के लिए हमारे पास निम्न है


आवेदन

मौलटन तल एक सजातीय तल है जिसमें देसार्गेस प्रमेय धारण नहीं करता है।[1] संबंधित प्रक्षेपी तल फलस्वरूप गैर-डिसार्गेसियन भी है। इसका मतलब है कि किसी भी (तिरछा) क्षेत्र F के लिए के लिए समरूपी नहीं होने वाले प्रक्षेपी तल हैं। यहाँ प्रक्षेपी समतल है जो (तिरछा) क्षेत्र F पर 3-आयामी सदिश स्थान द्वारा निर्धारित किया गया है।

टिप्पणियाँ


संदर्भ

  • Beutelspacher, अल्ब्रेक्ट; Rosenbaum, Ute (1998), प्रक्षेपी ज्यामिति: नींव से अनुप्रयोगों तक, कैम्ब्रिज यूनिवर्सिटी प्रेस, pp. 76–78, ISBN 978-0-521-48364-3
  • Moulton, फॉरेस्ट रे (1902), "एक साधारण गैर-Desarguesian विमान ज्यामिति", अमेरिकन मैथमेटिकल सोसायटी के लेन-देन, Providence, R.I.: अमेरिकी गणितीय सोसायटी, 3 (2): 192–195, doi:10.2307/1986419, ISSN 0002-9947, JSTOR 1986419 {{citation}}: Invalid |doi-access=मुक्त (help)
  • रिचर्ड एस. मिलमैन, जॉर्ज डी. पार्कर: ज्यामिति: मॉडल के साथ एक मीट्रिक दृष्टिकोण. स्प्रिंगर 1991, ISBN 9780387974125, pp. 97-104