टोपोलॉजिकल कॉम्बिनेटरिक्स: Difference between revisions

From Vigyanwiki
No edit summary
Line 78: Line 78:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/05/2023]]
[[Category:Created On 01/05/2023]]
[[Category:Vigyan Ready]]

Revision as of 16:33, 15 May 2023

टोपोलॉजिकल साहचर्य का गणित अनुशासन टोपोलॉजी और बीजगणितीय टोपोलॉजी का अनुप्रयोग है। साहचर्य में समस्याओं को हल करने के लिए बीजगणित-टोपोलॉजिकल विधियां।

इतिहास

मिश्रित टोपोलॉजी के अनुशासन ने टोपोलॉजी में सांयोगिक अवधारणाओं का प्रयोग किया, और 20 वीं शताब्दी के प्रारंभ में यह बीजगणितीय टोपोलॉजी के क्षेत्र में परिवर्तित हो गया।

1978 में स्थिति विपरीत हो गई थी - बीजगणितीय टोपोलॉजी से विधियों का उपयोग साहचर्य में एक समस्या को हल करने के लिए किया गया था - जब लेज़्लो लोवाज़ ने केसर ग्राफ को प्रमाणित किया, इस प्रकार टोपोलॉजिकल साहचर्य के नए क्षेत्र का आरम्भ हुआ । लोवाज़ के प्रमाण ने बोरसुक-उलाम प्रमेय का उपयोग किया, और इस प्रमेय ने इस नए क्षेत्र में एक प्रमुख भूमिका निभाई। इस प्रमेय के कई समकक्ष संस्करण और अनुरूप हैं, और इसका उपयोग उचित विभाजन समस्याओं के अध्ययन में किया गया है।

ग्राफ सिद्धांत के लिए होमोलॉजी (गणित) विधियों के एक अन्य अनुप्रयोग में, लोवाज़ ने एंड्रस फ्रैंक के एक अनुमान के अप्रत्यक्ष और निर्देशित दोनों संस्करणों को प्रमाणित किया: एक के-सम्बद्ध ग्राफ दिया गया।के-सम्बद्ध ग्राफ जी, ' 'के' अंक , और k धनात्मक पूर्णांक वह योग तक , एक विभाजन उपलब्ध है, का ऐसा है कि , , और एक जुड़ा हुआ सबग्राफ विस्तारित करता है।

1987 में बोरसुक-उलाम सिद्धांत का उपयोग करके अकेले नोगा द्वारा हार के विभाजन की समस्या को हल किया गया था। इसका उपयोग रेखीय निर्णय ट्री एल्गोरिदम और आंडेरा-कार्प-रोसेनबर्ग अनुमान में जटिलता की समस्याओं का अध्ययन करने के लिए भी किया गया है। अन्य क्षेत्रों में आंशिक रूप से आदेशित किए गए समुच्चय और ब्रुहट आदेश की टोपोलॉजी सम्मिलित हैं।

इसके अतिरिक्त, अंतर टोपोलॉजी के विधियों में अब असतत मोर्स सिद्धांत में एक सांयोगिक अनुरूप है।

यह भी देखें

संदर्भ

  • de Longueville, Mark (2004), "25 years proof of the Kneser conjecture - The advent of topological combinatorics" (PDF), EMS Newsletter, Southampton, Hampshire: European Mathematical Society, pp. 16–19, retrieved 2008-07-29.


अग्रिम पठन