अनंत पर अतिसमतल: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Bespredellnitsa}} | {{Short description|Bespredellnitsa}} | ||
[[ज्यामिति]] में, प्रक्षेपी स्थान P के किसी भी [[ hyperplane | हाइपरप्लेन]] H को 'अनंत पर हाइपरप्लेन' के रूप में | [[ज्यामिति]] में, प्रक्षेपी स्थान P के किसी भी [[ hyperplane | हाइपरप्लेन]] H को 'अनंत पर हाइपरप्लेन' के रूप में जाना जाता है। [[सेट पूरक|समुच्चय पूरक]] {{nowrap|''P'' ∖ ''H''}} को [[affine अंतरिक्ष|सजातीय स्थान]] कहा जाता है। उदाहरण के लिए, यदि {{nowrap|(''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>, ''x''<sub>''n''+1</sub>)}} n-डायमेंशनल प्रक्षेपी स्थान के लिए [[सजातीय निर्देशांक]] हैं, तो समीकरण {{nowrap|1=''x''<sub>''n''+1</sub> = 0}} निर्देशांक {{nowrap|(''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>)}} के साथ n-डायमेंशनल सजातीय स्थान के लिए अनंत पर हाइपरप्लेन को परिभाषित करता है| H को 'आदर्श हाइपरप्लेन' भी कहा जाता है। | ||
इसी प्रकार सजातीय स्थान A से प्रारम्भ करते हुए, [[समानांतर (ज्यामिति)]] रेखाओं के प्रत्येक वर्ग को अनंत पर बिंदु से जोड़ा जा सकता है। समानता के सभी वर्गों पर [[संघ (सेट सिद्धांत)]] अनंत पर हाइपरप्लेन के बिंदुओं का गठन करता है। इन हाइपरप्लेन (जिसे 'आदर्श बिंदु' कहा जाता है) के बिंदुओं को A से जोड़ने पर यह वास्तविक प्रक्षेपी स्थान '''R'''P<sup>''n''</sup> जैसे n-डायमेंशनल प्रक्षेपी स्थान में परिवर्तित हो जाता है। | इसी प्रकार सजातीय स्थान A से प्रारम्भ करते हुए, [[समानांतर (ज्यामिति)]] रेखाओं के प्रत्येक वर्ग को अनंत पर बिंदु से जोड़ा जा सकता है। समानता के सभी वर्गों पर [[संघ (सेट सिद्धांत)]] अनंत पर हाइपरप्लेन के बिंदुओं का गठन करता है। इन हाइपरप्लेन (जिसे 'आदर्श बिंदु' कहा जाता है) के बिंदुओं को A से जोड़ने पर यह वास्तविक प्रक्षेपी स्थान '''R'''P<sup>''n''</sup> जैसे n-डायमेंशनल प्रक्षेपी स्थान में परिवर्तित हो जाता है। | ||
इन आदर्श बिंदुओं को जोड़कर, संपूर्ण | इन आदर्श बिंदुओं को जोड़कर, संपूर्ण संबंधित स्थान A को प्रक्षेपी स्थान P तक पूर्ण किया जाता है, जिसे A का 'प्रक्षेपी समापन' कहा जा सकता है। S में समाहित रेखाओं की दिशा के अनुरूप सभी आदर्श बिंदुओं को S में जोड़कर A के प्रत्येक सजातीय उपस्थान S को P के प्रक्षेपी उपस्थान में पूर्ण किया जाता है। परिणामी प्रक्षेपी उपस्थानों को प्रायः प्रक्षेपी स्थान P के परिशोधित उपस्थान कहा जाता है, जैसा कि अनंत या आदर्श उपस्थानों के विपरीत होता है, जो अनंत पर हाइपरप्लेन के उपस्थान हैं (चूँकि, वे प्रक्षेपी स्थान हैं, [[affine उपक्षेत्र|सजातीय स्थान]] नहीं हैं)। | ||
प्रक्षेपी स्थान में, आयाम k का प्रत्येक प्रक्षेपी उपस्थान आदर्श हाइपरप्लेन को अनंत पर | प्रक्षेपी स्थान में, आयाम k का प्रत्येक प्रक्षेपी उपस्थान आदर्श हाइपरप्लेन को अनंत पर प्रतिच्छेदित करता है, जिसका आयाम {{nowrap|''k'' − 1}} है| | ||
गैर-समानांतर (ज्यामिति) सजातीय हाइपरप्लेन की जोड़ी {{nowrap|''n'' − 2}} आयाम के सजातीय उपस्थान पर प्रतिच्छेद करती है किन्तु सजातीय हाइपरप्लेन की समानांतर जोड़ी आदर्श हाइपरप्लेन के प्रक्षेपी उपस्थान पर प्रतिच्छेद करती है (आदर्श हाइपरप्लेन पर प्रतिच्छेदन स्थित है)। इस प्रकार समानांतर हाइपरप्लेन, जो सजातीय स्थान में नहीं होते हैं, अनंत पर हाइपरप्लेन के अतिरिक्त होने के कारण प्रक्षेपी पूर्णता में प्रतिच्छेद करते हैं। | गैर-समानांतर (ज्यामिति) सजातीय हाइपरप्लेन की जोड़ी {{nowrap|''n'' − 2}} आयाम के सजातीय उपस्थान पर प्रतिच्छेद करती है किन्तु सजातीय हाइपरप्लेन की समानांतर जोड़ी आदर्श हाइपरप्लेन के प्रक्षेपी उपस्थान पर प्रतिच्छेद करती है (आदर्श हाइपरप्लेन पर प्रतिच्छेदन स्थित है)। इस प्रकार समानांतर हाइपरप्लेन, जो सजातीय स्थान में नहीं होते हैं, अनंत पर हाइपरप्लेन के अतिरिक्त होने के कारण प्रक्षेपी पूर्णता में प्रतिच्छेद करते हैं। |
Revision as of 13:27, 16 April 2023
ज्यामिति में, प्रक्षेपी स्थान P के किसी भी हाइपरप्लेन H को 'अनंत पर हाइपरप्लेन' के रूप में जाना जाता है। समुच्चय पूरक P ∖ H को सजातीय स्थान कहा जाता है। उदाहरण के लिए, यदि (x1, ..., xn, xn+1) n-डायमेंशनल प्रक्षेपी स्थान के लिए सजातीय निर्देशांक हैं, तो समीकरण xn+1 = 0 निर्देशांक (x1, ..., xn) के साथ n-डायमेंशनल सजातीय स्थान के लिए अनंत पर हाइपरप्लेन को परिभाषित करता है| H को 'आदर्श हाइपरप्लेन' भी कहा जाता है।
इसी प्रकार सजातीय स्थान A से प्रारम्भ करते हुए, समानांतर (ज्यामिति) रेखाओं के प्रत्येक वर्ग को अनंत पर बिंदु से जोड़ा जा सकता है। समानता के सभी वर्गों पर संघ (सेट सिद्धांत) अनंत पर हाइपरप्लेन के बिंदुओं का गठन करता है। इन हाइपरप्लेन (जिसे 'आदर्श बिंदु' कहा जाता है) के बिंदुओं को A से जोड़ने पर यह वास्तविक प्रक्षेपी स्थान RPn जैसे n-डायमेंशनल प्रक्षेपी स्थान में परिवर्तित हो जाता है।
इन आदर्श बिंदुओं को जोड़कर, संपूर्ण संबंधित स्थान A को प्रक्षेपी स्थान P तक पूर्ण किया जाता है, जिसे A का 'प्रक्षेपी समापन' कहा जा सकता है। S में समाहित रेखाओं की दिशा के अनुरूप सभी आदर्श बिंदुओं को S में जोड़कर A के प्रत्येक सजातीय उपस्थान S को P के प्रक्षेपी उपस्थान में पूर्ण किया जाता है। परिणामी प्रक्षेपी उपस्थानों को प्रायः प्रक्षेपी स्थान P के परिशोधित उपस्थान कहा जाता है, जैसा कि अनंत या आदर्श उपस्थानों के विपरीत होता है, जो अनंत पर हाइपरप्लेन के उपस्थान हैं (चूँकि, वे प्रक्षेपी स्थान हैं, सजातीय स्थान नहीं हैं)।
प्रक्षेपी स्थान में, आयाम k का प्रत्येक प्रक्षेपी उपस्थान आदर्श हाइपरप्लेन को अनंत पर प्रतिच्छेदित करता है, जिसका आयाम k − 1 है|
गैर-समानांतर (ज्यामिति) सजातीय हाइपरप्लेन की जोड़ी n − 2 आयाम के सजातीय उपस्थान पर प्रतिच्छेद करती है किन्तु सजातीय हाइपरप्लेन की समानांतर जोड़ी आदर्श हाइपरप्लेन के प्रक्षेपी उपस्थान पर प्रतिच्छेद करती है (आदर्श हाइपरप्लेन पर प्रतिच्छेदन स्थित है)। इस प्रकार समानांतर हाइपरप्लेन, जो सजातीय स्थान में नहीं होते हैं, अनंत पर हाइपरप्लेन के अतिरिक्त होने के कारण प्रक्षेपी पूर्णता में प्रतिच्छेद करते हैं।
यह भी देखें
संदर्भ
- Albrecht Beutelspacher & Ute Rosenbaum (1998) Projective Geometry: From Foundations to Applications, p 27, Cambridge University Press ISBN 0-521-48277-1 .