इलेक्ट्रोवैक्यूम समाधान: Difference between revisions

From Vigyanwiki
(Created page with "सामान्य सापेक्षता में, एक इलेक्ट्रोवैक्यूम समाधान (इलेक्ट्रोवै...")
 
No edit summary
Line 1: Line 1:
[[सामान्य सापेक्षता]] में, एक इलेक्ट्रोवैक्यूम समाधान (इलेक्ट्रोवैक्यूम) [[आइंस्टीन क्षेत्र समीकरण]] के सामान्य सापेक्षता में एक सटीक समाधान है जिसमें मौजूद एकमात्र गैर-गुरुत्वाकर्षण द्रव्यमान-ऊर्जा एक [[विद्युत चुम्बकीय]] क्षेत्र की क्षेत्र ऊर्जा है, जिसे (घुमावदार-अंतरिक्ष-समय) को संतुष्ट करना चाहिए। 'स्रोत-मुक्त'' [[मैक्सवेल समीकरण]] दी गई ज्यामिति के लिए उपयुक्त हैं। इस कारण से, इलेक्ट्रोवैक्यूम को कभी-कभी (स्रोत-मुक्त) ''आइंस्टीन-मैक्सवेल समाधान'' कहा जाता है।
[[सामान्य सापेक्षता]] में, इलेक्ट्रोवैक्यूम समाधान (इलेक्ट्रोवैक्यूम) [[आइंस्टीन क्षेत्र समीकरण]] के सामान्य सापेक्षता में सटीक समाधान है जिसमें मौजूद एकमात्र गैर-गुरुत्वाकर्षण द्रव्यमान-ऊर्जा [[विद्युत चुम्बकीय]] क्षेत्र की क्षेत्र ऊर्जा है, जिसे (घुमावदार-अंतरिक्ष-समय) को संतुष्ट करना चाहिए। 'स्रोत-मुक्त'' [[मैक्सवेल समीकरण]] दी गई ज्यामिति के लिए उपयुक्त हैं। इस कारण से, इलेक्ट्रोवैक्यूम को कभी-कभी (स्रोत-मुक्त) ''आइंस्टीन-मैक्सवेल समाधान'' कहा जाता है।


== परिभाषा ==
== परिभाषा ==


सामान्य सापेक्षता में, भौतिक घटनाओं के लिए ज्यामितीय सेटिंग एक [[लोरेंट्ज़ियन कई गुना]] है, जिसे घुमावदार स्पेसटाइम के रूप में व्याख्या किया जाता है, और जो एक [[मीट्रिक टेंसर]] को परिभाषित करके निर्दिष्ट किया जाता है। <math>g_{ab}</math> (या सामान्य सापेक्षता में फ्रेम फ़ील्ड्स को परिभाषित करके)। [[रीमैन टेंसर]] <math>R_{abcd}</math> इस कई गुना और संबंधित मात्रा जैसे [[आइंस्टीन टेंसर]] <math>G^{ab}</math>, सुपरिभाषित हैं। सामान्य सापेक्षता में, उन्हें [[गुरुत्वाकर्षण क्षेत्र]] के ज्यामितीय अभिव्यक्तियों (वक्रता और बल) के रूप में व्याख्या किया जा सकता है।
सामान्य सापेक्षता में, भौतिक घटनाओं के लिए ज्यामितीय सेटिंग [[लोरेंट्ज़ियन कई गुना]] है, जिसे घुमावदार स्पेसटाइम के रूप में व्याख्या किया जाता है, और जो [[मीट्रिक टेंसर]] को परिभाषित करके निर्दिष्ट किया जाता है। <math>g_{ab}</math> (या सामान्य सापेक्षता में फ्रेम फ़ील्ड्स को परिभाषित करके)। [[रीमैन टेंसर]] <math>R_{abcd}</math> इस कई गुना और संबंधित मात्रा जैसे [[आइंस्टीन टेंसर]] <math>G^{ab}</math>, सुपरिभाषित हैं। सामान्य सापेक्षता में, उन्हें [[गुरुत्वाकर्षण क्षेत्र]] के ज्यामितीय अभिव्यक्तियों (वक्रता और बल) के रूप में व्याख्या किया जा सकता है।


हमें [[विद्युत चुम्बकीय टेंसर]] को परिभाषित करके विद्युत चुम्बकीय क्षेत्र को भी निर्दिष्ट करने की आवश्यकता है <math>F_{ab}</math> हमारे लोरेंट्ज़ियन मैनिफोल्ड पर। इलेक्ट्रोवैक्यूम समाधान के रूप में वर्गीकृत होने के लिए, इन दो टेंसरों को निम्नलिखित दो शर्तों को पूरा करने की आवश्यकता होती है
हमें [[विद्युत चुम्बकीय टेंसर]] को परिभाषित करके विद्युत चुम्बकीय क्षेत्र को भी निर्दिष्ट करने की आवश्यकता है <math>F_{ab}</math> हमारे लोरेंट्ज़ियन मैनिफोल्ड पर। इलेक्ट्रोवैक्यूम समाधान के रूप में वर्गीकृत होने के लिए, इन दो टेंसरों को निम्नलिखित दो शर्तों को पूरा करने की आवश्यकता होती है
Line 9: Line 9:
# आइंस्टीन टेंसर को इलेक्ट्रोमैग्नेटिक स्ट्रेस-एनर्जी टेंसर से मेल खाना चाहिए, <math>G^{ab}= 2 \, \left( F^{a}{}_{j}F^{bj}-\frac{1}{4}g^{ab} \, F^{mn} \, F_{mn} \right )</math>.
# आइंस्टीन टेंसर को इलेक्ट्रोमैग्नेटिक स्ट्रेस-एनर्जी टेंसर से मेल खाना चाहिए, <math>G^{ab}= 2 \, \left( F^{a}{}_{j}F^{bj}-\frac{1}{4}g^{ab} \, F^{mn} \, F_{mn} \right )</math>.


यदि हम क्षेत्र टेंसर को चार-विभव के रूप में परिभाषित करते हैं तो पहला मैक्सवेल समीकरण स्वचालित रूप से संतुष्ट हो जाता है <math>\vec{A}</math>. दोहरे [[covector]] (या संभावित एक-रूप) और विद्युत चुम्बकीय दो-रूप के संदर्भ में, हम इसे सेट करके कर सकते हैं <math>F = dA</math>. तब हमें केवल यह सुनिश्चित करने की आवश्यकता है कि डायवर्जेंस गायब हो जाए (यानी कि दूसरा मैक्सवेल समीकरण एक स्रोत-मुक्त क्षेत्र के लिए संतुष्ट है) और यह कि विद्युत चुम्बकीय तनाव-ऊर्जा आइंस्टीन टेंसर से मेल खाती है।
यदि हम क्षेत्र टेंसर को चार-विभव के रूप में परिभाषित करते हैं तो पहला मैक्सवेल समीकरण स्वचालित रूप से संतुष्ट हो जाता है <math>\vec{A}</math>. दोहरे [[covector]] (या संभावित एक-रूप) और विद्युत चुम्बकीय दो-रूप के संदर्भ में, हम इसे सेट करके कर सकते हैं <math>F = dA</math>. तब हमें केवल यह सुनिश्चित करने की आवश्यकता है कि डायवर्जेंस गायब हो जाए (यानी कि दूसरा मैक्सवेल समीकरण स्रोत-मुक्त क्षेत्र के लिए संतुष्ट है) और यह कि विद्युत चुम्बकीय तनाव-ऊर्जा आइंस्टीन टेंसर से मेल खाती है।


== अपरिवर्तनीय ==
== अपरिवर्तनीय ==
Line 19: Line 19:


इनका उपयोग करके, हम संभावित विद्युत चुम्बकीय क्षेत्रों को निम्नानुसार वर्गीकृत कर सकते हैं:
इनका उपयोग करके, हम संभावित विद्युत चुम्बकीय क्षेत्रों को निम्नानुसार वर्गीकृत कर सकते हैं:
# अगर <math>I < 0</math> लेकिन <math>J = 0</math>, हमारे पास एक इलेक्ट्रोस्टैटिक क्षेत्र है, जिसका अर्थ है कि कुछ पर्यवेक्षक एक स्थिर विद्युत क्षेत्र को मापेंगे, और कोई चुंबकीय क्षेत्र नहीं।
# अगर <math>I < 0</math> लेकिन <math>J = 0</math>, हमारे पास इलेक्ट्रोस्टैटिक क्षेत्र है, जिसका अर्थ है कि कुछ पर्यवेक्षक स्थिर विद्युत क्षेत्र को मापेंगे, और कोई चुंबकीय क्षेत्र नहीं।
# अगर <math>I > 0</math> लेकिन <math>J = 0</math>, हमारे पास एक मैग्नेटोस्टैटिक क्षेत्र है, जिसका अर्थ है कि कुछ पर्यवेक्षक एक स्थिर चुंबकीय क्षेत्र को मापेंगे, और कोई विद्युत क्षेत्र नहीं।
# अगर <math>I > 0</math> लेकिन <math>J = 0</math>, हमारे पास मैग्नेटोस्टैटिक क्षेत्र है, जिसका अर्थ है कि कुछ पर्यवेक्षक स्थिर चुंबकीय क्षेत्र को मापेंगे, और कोई विद्युत क्षेत्र नहीं।
# अगर <math>I = J = 0</math>, विद्युत चुम्बकीय क्षेत्र को अशक्त कहा जाता है, और हमारे पास एक 'अशक्त इलेक्ट्रोवैक्यूम' होता है।
# अगर <math>I = J = 0</math>, विद्युत चुम्बकीय क्षेत्र को अशक्त कहा जाता है, और हमारे पास 'अशक्त इलेक्ट्रोवैक्यूम' होता है।
अशक्त इलेक्ट्रोवैक्यूम विद्युत चुम्बकीय विकिरण से जुड़े होते हैं। एक विद्युत चुम्बकीय क्षेत्र जो अशक्त नहीं है, गैर-शून्य कहलाता है, और फिर हमारे पास एक 'गैर-शून्य इलेक्ट्रोवैक्यूम' होता है।
अशक्त इलेक्ट्रोवैक्यूम विद्युत चुम्बकीय विकिरण से जुड़े होते हैं। विद्युत चुम्बकीय क्षेत्र जो अशक्त नहीं है, गैर-शून्य कहलाता है, और फिर हमारे पास 'गैर-शून्य इलेक्ट्रोवैक्यूम' होता है।


== आइंस्टीन टेंसर ==
== आइंस्टीन टेंसर ==


समन्वय आधार के बजाय सामान्य सापेक्षता में एक फ्रेम फ़ील्ड के संबंध में गणना किए गए टेन्सर के घटकों को अक्सर भौतिक घटक कहा जाता है, क्योंकि ये घटक हैं जो (सिद्धांत रूप में) एक पर्यवेक्षक द्वारा मापा जा सकता है।
समन्वय आधार के बजाय सामान्य सापेक्षता में फ्रेम फ़ील्ड के संबंध में गणना किए गए टेन्सर के घटकों को अक्सर भौतिक घटक कहा जाता है, क्योंकि ये घटक हैं जो (सिद्धांत रूप में) पर्यवेक्षक द्वारा मापा जा सकता है।


एक इलेक्ट्रोवैक्यूम समाधान के मामले में, एक अनुकूलित फ्रेम
एक इलेक्ट्रोवैक्यूम समाधान के मामले में, अनुकूलित फ्रेम
:<math> \vec{e}_0, \; \vec{e}_1, \; \vec{e}_2,  \; \vec{e}_3 </math>
:<math> \vec{e}_0, \; \vec{e}_1, \; \vec{e}_2,  \; \vec{e}_3 </math>
हमेशा पाया जा सकता है जिसमें आइंस्टीन टेंसर का विशेष रूप से सरल रूप है।
हमेशा पाया जा सकता है जिसमें आइंस्टीन टेंसर का विशेष रूप से सरल रूप है।
यहाँ, पहले वेक्टर को टाइमलाइक यूनिट वेक्टर फ़ील्ड के रूप में समझा जाता है; यह हर जगह अनुकूलित पर्यवेक्षकों के संबंधित परिवार की विश्व रेखाओं के लिए स्पर्शरेखा है, जिनकी गति विद्युत चुम्बकीय क्षेत्र के साथ संरेखित होती है। अंतिम तीन स्पेसलाइक यूनिट वेक्टर फ़ील्ड हैं।
यहाँ, पहले वेक्टर को टाइमलाइक यूनिट वेक्टर फ़ील्ड के रूप में समझा जाता है; यह हर जगह अनुकूलित पर्यवेक्षकों के संबंधित परिवार की विश्व रेखाओं के लिए स्पर्शरेखा है, जिनकी गति विद्युत चुम्बकीय क्षेत्र के साथ संरेखित होती है। अंतिम तीन स्पेसलाइक यूनिट वेक्टर फ़ील्ड हैं।


एक गैर-शून्य इलेक्ट्रोवैक्यूम के लिए, एक अनुकूलित फ्रेम पाया जा सकता है जिसमें आइंस्टीन टेंसर फॉर्म लेता है
एक गैर-शून्य इलेक्ट्रोवैक्यूम के लिए, अनुकूलित फ्रेम पाया जा सकता है जिसमें आइंस्टीन टेंसर फॉर्म लेता है
:<math> G^{\hat{a}\hat{b}} = 8 \pi \epsilon \, \left[ \begin{matrix} 1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1\end{matrix} \right] </math>
:<math> G^{\hat{a}\hat{b}} = 8 \pi \epsilon \, \left[ \begin{matrix} 1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1\end{matrix} \right] </math>
कहाँ <math>\epsilon</math> विद्युत चुम्बकीय क्षेत्र का ऊर्जा घनत्व है, जैसा कि किसी अनुकूलित पर्यवेक्षक द्वारा मापा जाता है। इस अभिव्यक्ति से, यह देखना आसान है कि हमारे गैर-शून्य इलेक्ट्रोवैक्यूम का [[आइसोट्रॉपी समूह]] में बूस्ट द्वारा उत्पन्न होता है <math>\vec{e}_3</math> दिशा और घुमाव के बारे में <math>\vec{e}_3</math> एक्सिस। दूसरे शब्दों में, किसी भी गैर-शून्य इलेक्ट्रोवैक्यूम का आइसोट्रॉपी समूह SO(1,1) x SO(2) के लिए एक द्वि-आयामी एबेलियन लाइ समूह आइसोमॉर्फिक है।
कहाँ <math>\epsilon</math> विद्युत चुम्बकीय क्षेत्र का ऊर्जा घनत्व है, जैसा कि किसी अनुकूलित पर्यवेक्षक द्वारा मापा जाता है। इस अभिव्यक्ति से, यह देखना आसान है कि हमारे गैर-शून्य इलेक्ट्रोवैक्यूम का [[आइसोट्रॉपी समूह]] में बूस्ट द्वारा उत्पन्न होता है <math>\vec{e}_3</math> दिशा और घुमाव के बारे में <math>\vec{e}_3</math> एक्सिस। दूसरे शब्दों में, किसी भी गैर-शून्य इलेक्ट्रोवैक्यूम का आइसोट्रॉपी समूह SO(1,1) x SO(2) के लिए द्वि-आयामी एबेलियन लाइ समूह आइसोमॉर्फिक है।


एक अशक्त इलेक्ट्रोवैक्यूम के लिए, एक अनुकूलित फ्रेम पाया जा सकता है जिसमें आइंस्टीन टेंसर रूप लेता है
एक अशक्त इलेक्ट्रोवैक्यूम के लिए, अनुकूलित फ्रेम पाया जा सकता है जिसमें आइंस्टीन टेंसर रूप लेता है
:<math> G^{\hat{a}\hat{b}} = 8 \pi \epsilon \, \left[ \begin{matrix} 1&0&0&\pm 1\\ 0&0&0&0\\0&0&0&0\\ \pm 1 &0&0&1\end{matrix} \right] </math>
:<math> G^{\hat{a}\hat{b}} = 8 \pi \epsilon \, \left[ \begin{matrix} 1&0&0&\pm 1\\ 0&0&0&0\\0&0&0&0\\ \pm 1 &0&0&1\end{matrix} \right] </math>
इससे यह देखना आसान है कि हमारे अशक्त इलेक्ट्रोवैक्यूम के आइसोट्रॉपी समूह में इसके बारे में घुमाव शामिल हैं <math>\vec{e}_3</math> एक्सिस; दो और जनरेटर दो परवलयिक लोरेंत्ज़ रूपांतरण हैं जो इसके साथ संरेखित हैं <math>\vec{e}_3</math> [[लोरेंत्ज़ समूह]] पर लेख में दी गई दिशा। दूसरे शब्दों में, किसी भी अशक्त इलेक्ट्रोवैक्यूम का आइसोट्रॉपी समूह यूक्लिडियन विमान के आइसोमेट्री समूह ई (2) के लिए एक त्रि-आयामी लाइ समूह आइसोमोर्फिक है।
इससे यह देखना आसान है कि हमारे अशक्त इलेक्ट्रोवैक्यूम के आइसोट्रॉपी समूह में इसके बारे में घुमाव शामिल हैं <math>\vec{e}_3</math> एक्सिस; दो और जनरेटर दो परवलयिक लोरेंत्ज़ रूपांतरण हैं जो इसके साथ संरेखित हैं <math>\vec{e}_3</math> [[लोरेंत्ज़ समूह]] पर लेख में दी गई दिशा। दूसरे शब्दों में, किसी भी अशक्त इलेक्ट्रोवैक्यूम का आइसोट्रॉपी समूह यूक्लिडियन विमान के आइसोमेट्री समूह ई (2) के लिए त्रि-आयामी लाइ समूह आइसोमोर्फिक है।


तथ्य यह है कि ये परिणाम घुमावदार अंतरिक्ष-समय में ठीक वैसे ही हैं जैसे फ्लैट मिंकोस्की अंतरिक्ष-समय में विद्युतगतिकी के लिए तुल्यता सिद्धांत की एक अभिव्यक्ति है।
तथ्य यह है कि ये परिणाम घुमावदार अंतरिक्ष-समय में ठीक वैसे ही हैं जैसे फ्लैट मिंकोस्की अंतरिक्ष-समय में विद्युतगतिकी के लिए तुल्यता सिद्धांत की अभिव्यक्ति है।


== ईजेनवेल्यूज ==
== ईजेनवेल्यूज ==
Line 51: Line 51:
कहाँ
कहाँ
:<math> t_1 = {G^a}_a, \; t_2 = {G^a}_b \, {G^b}_a, \; t_3 = {G^a}_b \, {G^b}_c \, {G^c}_a, \; t_4 = {G^a}_b \, {G^b}_c \, {G^c}_d \, {G^d}_a</math>
:<math> t_1 = {G^a}_a, \; t_2 = {G^a}_b \, {G^b}_a, \; t_3 = {G^a}_b \, {G^b}_c \, {G^c}_a, \; t_4 = {G^a}_b \, {G^b}_c \, {G^c}_d \, {G^d}_a</math>
यह आवश्यक मानदंड यह जांचने के लिए उपयोगी हो सकता है कि एक पुटीय गैर-शून्य इलेक्ट्रोवैक्यूम समाधान प्रशंसनीय है, और कभी-कभी गैर-शून्य इलेक्ट्रोवैक्यूम समाधान खोजने के लिए उपयोगी होता है।
यह आवश्यक मानदंड यह जांचने के लिए उपयोगी हो सकता है कि पुटीय गैर-शून्य इलेक्ट्रोवैक्यूम समाधान प्रशंसनीय है, और कभी-कभी गैर-शून्य इलेक्ट्रोवैक्यूम समाधान खोजने के लिए उपयोगी होता है।


एक अशक्त इलेक्ट्रोवैक्यूम की विशेषता बहुपद समान रूप से गायब हो जाती है, भले ही ऊर्जा घनत्व अशून्य हो। यह संभावना सर्वविदित का एक टेन्सर एनालॉग है कि एक अशक्त वेक्टर (मिन्कोव्स्की स्पेस) में हमेशा गायब होने वाली लंबाई होती है, भले ही वह शून्य वेक्टर न हो। इस प्रकार, प्रत्येक अशक्त इलेक्ट्रोवैक्यूम का एक चौगुना आइगेनमान होता है, अर्थात शून्य।
एक अशक्त इलेक्ट्रोवैक्यूम की विशेषता बहुपद समान रूप से गायब हो जाती है, भले ही ऊर्जा घनत्व अशून्य हो। यह संभावना सर्वविदित का टेन्सर एनालॉग है कि अशक्त वेक्टर (मिन्कोव्स्की स्पेस) में हमेशा गायब होने वाली लंबाई होती है, भले ही वह शून्य वेक्टर न हो। इस प्रकार, प्रत्येक अशक्त इलेक्ट्रोवैक्यूम का चौगुना आइगेनमान होता है, अर्थात शून्य।


== रेनिच की स्थिति ==
== रेनिच की स्थिति ==


1925 में, [[जॉर्ज यूरी रेनिच]] ने विशुद्ध रूप से गणितीय स्थितियां प्रस्तुत कीं, जो सामान्य सापेक्षता में एक गैर-शून्य इलेक्ट्रोवैक्यूम के रूप में एक व्याख्या को स्वीकार करने के लिए लोरेंट्ज़ियन मैनिफोल्ड के लिए आवश्यक और पर्याप्त दोनों हैं। इनमें तीन बीजगणितीय स्थितियाँ और एक विभेदक स्थितियाँ शामिल हैं। स्थितियाँ कभी-कभी यह जाँचने के लिए उपयोगी होती हैं कि एक ख्यात गैर-शून्य इलेक्ट्रोवैक्यूम वास्तव में वही है जो यह दावा करता है, या ऐसे समाधान खोजने के लिए भी।
1925 में, [[जॉर्ज यूरी रेनिच]] ने विशुद्ध रूप से गणितीय स्थितियां प्रस्तुत कीं, जो सामान्य सापेक्षता में गैर-शून्य इलेक्ट्रोवैक्यूम के रूप में व्याख्या को स्वीकार करने के लिए लोरेंट्ज़ियन मैनिफोल्ड के लिए आवश्यक और पर्याप्त दोनों हैं। इनमें तीन बीजगणितीय स्थितियाँ और विभेदक स्थितियाँ शामिल हैं। स्थितियाँ कभी-कभी यह जाँचने के लिए उपयोगी होती हैं कि ख्यात गैर-शून्य इलेक्ट्रोवैक्यूम वास्तव में वही है जो यह दावा करता है, या ऐसे समाधान खोजने के लिए भी।


चार्ल्स टोरे द्वारा अशक्त इलेक्ट्रोवैक्यूम के लिए समान आवश्यक और पर्याप्त स्थितियाँ पाई गई हैं।<ref>{{cite journal|last=Torre|first=Charles|title=शून्य विद्युत चुम्बकीय क्षेत्र की स्पेसटाइम ज्यामिति|journal=Classical and Quantum Gravity|date=2014|volume=31|issue=4 |page=045022|doi=10.1088/0264-9381/31/4/045022|arxiv = 1308.2323 |bibcode = 2014CQGra..31d5022T |s2cid=22243824 }}</ref>
चार्ल्स टोरे द्वारा अशक्त इलेक्ट्रोवैक्यूम के लिए समान आवश्यक और पर्याप्त स्थितियाँ पाई गई हैं।<ref>{{cite journal|last=Torre|first=Charles|title=शून्य विद्युत चुम्बकीय क्षेत्र की स्पेसटाइम ज्यामिति|journal=Classical and Quantum Gravity|date=2014|volume=31|issue=4 |page=045022|doi=10.1088/0264-9381/31/4/045022|arxiv = 1308.2323 |bibcode = 2014CQGra..31d5022T |s2cid=22243824 }}</ref>
Line 64: Line 64:
== परीक्षण क्षेत्र ==
== परीक्षण क्षेत्र ==


कभी-कभी कोई यह मान सकता है कि किसी विद्युत चुम्बकीय क्षेत्र की क्षेत्र ऊर्जा इतनी कम है कि इसके गुरुत्वाकर्षण प्रभाव की उपेक्षा की जा सकती है। फिर, एक अनुमानित इलेक्ट्रोवैक्यूम समाधान प्राप्त करने के लिए, हमें केवल दिए गए वैक्यूम समाधान (सामान्य सापेक्षता) पर मैक्सवेल समीकरणों को हल करने की आवश्यकता है। इस मामले में, विद्युत चुम्बकीय क्षेत्र को अक्सर परीक्षण क्षेत्र कहा जाता है, शब्द [[परीक्षण कण]] के अनुरूप (एक छोटी वस्तु को दर्शाता है जिसका द्रव्यमान परिवेशी गुरुत्वाकर्षण क्षेत्र में सराहनीय योगदान देने के लिए बहुत छोटा है)।
कभी-कभी कोई यह मान सकता है कि किसी विद्युत चुम्बकीय क्षेत्र की क्षेत्र ऊर्जा इतनी कम है कि इसके गुरुत्वाकर्षण प्रभाव की उपेक्षा की जा सकती है। फिर, अनुमानित इलेक्ट्रोवैक्यूम समाधान प्राप्त करने के लिए, हमें केवल दिए गए वैक्यूम समाधान (सामान्य सापेक्षता) पर मैक्सवेल समीकरणों को हल करने की आवश्यकता है। इस मामले में, विद्युत चुम्बकीय क्षेत्र को अक्सर परीक्षण क्षेत्र कहा जाता है, शब्द [[परीक्षण कण]] के अनुरूप (एक छोटी वस्तु को दर्शाता है जिसका द्रव्यमान परिवेशी गुरुत्वाकर्षण क्षेत्र में सराहनीय योगदान देने के लिए बहुत छोटा है)।


यहां, यह जानना उपयोगी है कि कोई भी किलिंग वैक्टर जो मौजूद हो सकता है (वैक्यूम समाधान के मामले में) घुमावदार स्पेसटाइम में मैक्सवेल के समीकरणों को स्वचालित रूप से संतुष्ट करेगा।<ref name=papa66>{{cite journal|last=Papapetrou|first=A|title=Champs gravitationnels stationnaires à symétrie axiale|journal=[[Annales de l'Institut Henri Poincaré A]] |year=1966|volume=4|issue=2|pages=83–105|url=http://www.numdam.org/item?id=AIHPA_1966__4_2_83_0|accessdate=19 December 2011|language=French|bibcode = 1966AIHPA...4...83P }}</ref>
यहां, यह जानना उपयोगी है कि कोई भी किलिंग वैक्टर जो मौजूद हो सकता है (वैक्यूम समाधान के मामले में) घुमावदार स्पेसटाइम में मैक्सवेल के समीकरणों को स्वचालित रूप से संतुष्ट करेगा।<ref name=papa66>{{cite journal|last=Papapetrou|first=A|title=Champs gravitationnels stationnaires à symétrie axiale|journal=[[Annales de l'Institut Henri Poincaré A]] |year=1966|volume=4|issue=2|pages=83–105|url=http://www.numdam.org/item?id=AIHPA_1966__4_2_83_0|accessdate=19 December 2011|language=French|bibcode = 1966AIHPA...4...83P }}</ref>
Line 74: Line 74:
*Reissner-Nordstrom metric|Reissner-Nordström इलेक्ट्रोवैक्यूम (जो आवेशित गोलाकार द्रव्यमान के चारों ओर ज्यामिति का वर्णन करता है),
*Reissner-Nordstrom metric|Reissner-Nordström इलेक्ट्रोवैक्यूम (जो आवेशित गोलाकार द्रव्यमान के चारों ओर ज्यामिति का वर्णन करता है),
*केर-न्यूमैन मेट्रिक|केर-न्यूमैन इलेक्ट्रोवैक्यूम (जो आवेशित, घूमती हुई वस्तु के चारों ओर ज्यामिति का वर्णन करता है),
*केर-न्यूमैन मेट्रिक|केर-न्यूमैन इलेक्ट्रोवैक्यूम (जो आवेशित, घूमती हुई वस्तु के चारों ओर ज्यामिति का वर्णन करता है),
* मेल्विन इलेक्ट्रोवैक्यूम (बेलनाकार सममित मैग्नेटोस्टैटिक क्षेत्र का एक मॉडल),
* मेल्विन इलेक्ट्रोवैक्यूम (बेलनाकार सममित मैग्नेटोस्टैटिक क्षेत्र का मॉडल),
* गारफिंकल-मेल्विन इलेक्ट्रोवैक्यूम (पिछले की तरह, लेकिन समरूपता के अक्ष के साथ यात्रा करने वाली एक गुरुत्वाकर्षण तरंग सहित),
* गारफिंकल-मेल्विन इलेक्ट्रोवैक्यूम (पिछले की तरह, लेकिन समरूपता के अक्ष के साथ यात्रा करने वाली गुरुत्वाकर्षण तरंग सहित),
*बर्टोटी-रॉबिन्सन इलेक्ट्रोवैक्यूम: यह एक उल्लेखनीय उत्पाद संरचना वाला एक साधारण स्पेसटाइम है; यह रीस्नर-नॉर्डस्ट्रॉम इलेक्ट्रोवैक्यूम के क्षितिज के एक प्रकार के विस्फोट से उत्पन्न होता है,
*बर्टोटी-रॉबिन्सन इलेक्ट्रोवैक्यूम: यह उल्लेखनीय उत्पाद संरचना वाला साधारण स्पेसटाइम है; यह रीस्नर-नॉर्डस्ट्रॉम इलेक्ट्रोवैक्यूम के क्षितिज के प्रकार के विस्फोट से उत्पन्न होता है,
* विटन इलेक्ट्रोवैक्यूम ([[एडवर्ड विटन]] के पिता [[लुइस विटन]] द्वारा खोजा गया)।
* विटन इलेक्ट्रोवैक्यूम ([[एडवर्ड विटन]] के पिता [[लुइस विटन]] द्वारा खोजा गया)।


उल्लेखनीय व्यक्तिगत अशक्त इलेक्ट्रोवैक्यूम समाधानों में शामिल हैं:
उल्लेखनीय व्यक्तिगत अशक्त इलेक्ट्रोवैक्यूम समाधानों में शामिल हैं:
*[[मोनोक्रोमैटिक इलेक्ट्रोमैग्नेटिक प्लेन वेव]], एक सटीक समाधान जो क्लासिकल इलेक्ट्रोमैग्नेटिज्म में प्लेन वेव्स का सामान्य सापेक्षतावादी एनालॉग है,
*[[मोनोक्रोमैटिक इलेक्ट्रोमैग्नेटिक प्लेन वेव]], सटीक समाधान जो क्लासिकल इलेक्ट्रोमैग्नेटिज्म में प्लेन वेव्स का सामान्य सापेक्षतावादी एनालॉग है,
*बेल-ज़ेकेरेस इलेक्ट्रोवैक्यूम (एक कोलाइडिंग प्लेन वेव मॉडल)।
*बेल-ज़ेकेरेस इलेक्ट्रोवैक्यूम (एक कोलाइडिंग प्लेन वेव मॉडल)।


Line 90: Line 90:
* ज़ेकेरेस इलेक्ट्रोवैक्यूम: टकराने वाली समतल तरंगों के सभी जोड़े, जहाँ प्रत्येक तरंग में गुरुत्वाकर्षण और विद्युत चुम्बकीय विकिरण दोनों हो सकते हैं; ये समाधान इंटरेक्शन ज़ोन के बाहर अशक्त इलेक्ट्रोवैक्यूम हैं, लेकिन आम तौर पर इंटरेक्शन ज़ोन के अंदर गैर-शून्य इलेक्ट्रोवैक्यूम होते हैं, क्योंकि वे टकराने के बाद दो तरंगों के गैर-रैखिक संपर्क के कारण होते हैं।
* ज़ेकेरेस इलेक्ट्रोवैक्यूम: टकराने वाली समतल तरंगों के सभी जोड़े, जहाँ प्रत्येक तरंग में गुरुत्वाकर्षण और विद्युत चुम्बकीय विकिरण दोनों हो सकते हैं; ये समाधान इंटरेक्शन ज़ोन के बाहर अशक्त इलेक्ट्रोवैक्यूम हैं, लेकिन आम तौर पर इंटरेक्शन ज़ोन के अंदर गैर-शून्य इलेक्ट्रोवैक्यूम होते हैं, क्योंकि वे टकराने के बाद दो तरंगों के गैर-रैखिक संपर्क के कारण होते हैं।


कई [[पीपी-वेव स्पेसटाइम]] एक विद्युत चुम्बकीय क्षेत्र टेंसर को स्वीकार करते हैं जो उन्हें सटीक अशक्त इलेक्ट्रोवैक्यूम समाधान में बदल देता है।
कई [[पीपी-वेव स्पेसटाइम]] विद्युत चुम्बकीय क्षेत्र टेंसर को स्वीकार करते हैं जो उन्हें सटीक अशक्त इलेक्ट्रोवैक्यूम समाधान में बदल देता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 23:22, 14 April 2023

सामान्य सापेक्षता में, इलेक्ट्रोवैक्यूम समाधान (इलेक्ट्रोवैक्यूम) आइंस्टीन क्षेत्र समीकरण के सामान्य सापेक्षता में सटीक समाधान है जिसमें मौजूद एकमात्र गैर-गुरुत्वाकर्षण द्रव्यमान-ऊर्जा विद्युत चुम्बकीय क्षेत्र की क्षेत्र ऊर्जा है, जिसे (घुमावदार-अंतरिक्ष-समय) को संतुष्ट करना चाहिए। 'स्रोत-मुक्त मैक्सवेल समीकरण दी गई ज्यामिति के लिए उपयुक्त हैं। इस कारण से, इलेक्ट्रोवैक्यूम को कभी-कभी (स्रोत-मुक्त) आइंस्टीन-मैक्सवेल समाधान कहा जाता है।

परिभाषा

सामान्य सापेक्षता में, भौतिक घटनाओं के लिए ज्यामितीय सेटिंग लोरेंट्ज़ियन कई गुना है, जिसे घुमावदार स्पेसटाइम के रूप में व्याख्या किया जाता है, और जो मीट्रिक टेंसर को परिभाषित करके निर्दिष्ट किया जाता है। (या सामान्य सापेक्षता में फ्रेम फ़ील्ड्स को परिभाषित करके)। रीमैन टेंसर इस कई गुना और संबंधित मात्रा जैसे आइंस्टीन टेंसर , सुपरिभाषित हैं। सामान्य सापेक्षता में, उन्हें गुरुत्वाकर्षण क्षेत्र के ज्यामितीय अभिव्यक्तियों (वक्रता और बल) के रूप में व्याख्या किया जा सकता है।

हमें विद्युत चुम्बकीय टेंसर को परिभाषित करके विद्युत चुम्बकीय क्षेत्र को भी निर्दिष्ट करने की आवश्यकता है हमारे लोरेंट्ज़ियन मैनिफोल्ड पर। इलेक्ट्रोवैक्यूम समाधान के रूप में वर्गीकृत होने के लिए, इन दो टेंसरों को निम्नलिखित दो शर्तों को पूरा करने की आवश्यकता होती है

  1. विद्युत चुम्बकीय क्षेत्र टेंसर को स्रोत-मुक्त घुमावदार स्पेसटाइम मैक्सवेल फ़ील्ड समीकरणों को पूरा करना चाहिए और
  2. आइंस्टीन टेंसर को इलेक्ट्रोमैग्नेटिक स्ट्रेस-एनर्जी टेंसर से मेल खाना चाहिए, .

यदि हम क्षेत्र टेंसर को चार-विभव के रूप में परिभाषित करते हैं तो पहला मैक्सवेल समीकरण स्वचालित रूप से संतुष्ट हो जाता है . दोहरे covector (या संभावित एक-रूप) और विद्युत चुम्बकीय दो-रूप के संदर्भ में, हम इसे सेट करके कर सकते हैं . तब हमें केवल यह सुनिश्चित करने की आवश्यकता है कि डायवर्जेंस गायब हो जाए (यानी कि दूसरा मैक्सवेल समीकरण स्रोत-मुक्त क्षेत्र के लिए संतुष्ट है) और यह कि विद्युत चुम्बकीय तनाव-ऊर्जा आइंस्टीन टेंसर से मेल खाती है।

अपरिवर्तनीय

इलेक्ट्रोमैग्नेटिक फील्ड टेंसर एंटीसिमेट्रिक है, जिसमें केवल दो बीजगणितीय रूप से स्वतंत्र स्केलर इनवेरिएंट हैं,

यहाँ, तारा हॉज तारा है।

इनका उपयोग करके, हम संभावित विद्युत चुम्बकीय क्षेत्रों को निम्नानुसार वर्गीकृत कर सकते हैं:

  1. अगर लेकिन , हमारे पास इलेक्ट्रोस्टैटिक क्षेत्र है, जिसका अर्थ है कि कुछ पर्यवेक्षक स्थिर विद्युत क्षेत्र को मापेंगे, और कोई चुंबकीय क्षेत्र नहीं।
  2. अगर लेकिन , हमारे पास मैग्नेटोस्टैटिक क्षेत्र है, जिसका अर्थ है कि कुछ पर्यवेक्षक स्थिर चुंबकीय क्षेत्र को मापेंगे, और कोई विद्युत क्षेत्र नहीं।
  3. अगर , विद्युत चुम्बकीय क्षेत्र को अशक्त कहा जाता है, और हमारे पास 'अशक्त इलेक्ट्रोवैक्यूम' होता है।

अशक्त इलेक्ट्रोवैक्यूम विद्युत चुम्बकीय विकिरण से जुड़े होते हैं। विद्युत चुम्बकीय क्षेत्र जो अशक्त नहीं है, गैर-शून्य कहलाता है, और फिर हमारे पास 'गैर-शून्य इलेक्ट्रोवैक्यूम' होता है।

आइंस्टीन टेंसर

समन्वय आधार के बजाय सामान्य सापेक्षता में फ्रेम फ़ील्ड के संबंध में गणना किए गए टेन्सर के घटकों को अक्सर भौतिक घटक कहा जाता है, क्योंकि ये घटक हैं जो (सिद्धांत रूप में) पर्यवेक्षक द्वारा मापा जा सकता है।

एक इलेक्ट्रोवैक्यूम समाधान के मामले में, अनुकूलित फ्रेम

हमेशा पाया जा सकता है जिसमें आइंस्टीन टेंसर का विशेष रूप से सरल रूप है। यहाँ, पहले वेक्टर को टाइमलाइक यूनिट वेक्टर फ़ील्ड के रूप में समझा जाता है; यह हर जगह अनुकूलित पर्यवेक्षकों के संबंधित परिवार की विश्व रेखाओं के लिए स्पर्शरेखा है, जिनकी गति विद्युत चुम्बकीय क्षेत्र के साथ संरेखित होती है। अंतिम तीन स्पेसलाइक यूनिट वेक्टर फ़ील्ड हैं।

एक गैर-शून्य इलेक्ट्रोवैक्यूम के लिए, अनुकूलित फ्रेम पाया जा सकता है जिसमें आइंस्टीन टेंसर फॉर्म लेता है

कहाँ विद्युत चुम्बकीय क्षेत्र का ऊर्जा घनत्व है, जैसा कि किसी अनुकूलित पर्यवेक्षक द्वारा मापा जाता है। इस अभिव्यक्ति से, यह देखना आसान है कि हमारे गैर-शून्य इलेक्ट्रोवैक्यूम का आइसोट्रॉपी समूह में बूस्ट द्वारा उत्पन्न होता है दिशा और घुमाव के बारे में एक्सिस। दूसरे शब्दों में, किसी भी गैर-शून्य इलेक्ट्रोवैक्यूम का आइसोट्रॉपी समूह SO(1,1) x SO(2) के लिए द्वि-आयामी एबेलियन लाइ समूह आइसोमॉर्फिक है।

एक अशक्त इलेक्ट्रोवैक्यूम के लिए, अनुकूलित फ्रेम पाया जा सकता है जिसमें आइंस्टीन टेंसर रूप लेता है

इससे यह देखना आसान है कि हमारे अशक्त इलेक्ट्रोवैक्यूम के आइसोट्रॉपी समूह में इसके बारे में घुमाव शामिल हैं एक्सिस; दो और जनरेटर दो परवलयिक लोरेंत्ज़ रूपांतरण हैं जो इसके साथ संरेखित हैं लोरेंत्ज़ समूह पर लेख में दी गई दिशा। दूसरे शब्दों में, किसी भी अशक्त इलेक्ट्रोवैक्यूम का आइसोट्रॉपी समूह यूक्लिडियन विमान के आइसोमेट्री समूह ई (2) के लिए त्रि-आयामी लाइ समूह आइसोमोर्फिक है।

तथ्य यह है कि ये परिणाम घुमावदार अंतरिक्ष-समय में ठीक वैसे ही हैं जैसे फ्लैट मिंकोस्की अंतरिक्ष-समय में विद्युतगतिकी के लिए तुल्यता सिद्धांत की अभिव्यक्ति है।

ईजेनवेल्यूज

एक गैर-शून्य इलेक्ट्रोवैक्यूम के आइंस्टीन टेंसर की विशेषता बहुपद का रूप होना चाहिए

न्यूटन की सर्वसमिकाओं का उपयोग करते हुए, इस स्थिति को आइंस्टीन टेंसर की शक्तियों के ट्रेस (रैखिक बीजगणित) के रूप में फिर से व्यक्त किया जा सकता है

कहाँ

यह आवश्यक मानदंड यह जांचने के लिए उपयोगी हो सकता है कि पुटीय गैर-शून्य इलेक्ट्रोवैक्यूम समाधान प्रशंसनीय है, और कभी-कभी गैर-शून्य इलेक्ट्रोवैक्यूम समाधान खोजने के लिए उपयोगी होता है।

एक अशक्त इलेक्ट्रोवैक्यूम की विशेषता बहुपद समान रूप से गायब हो जाती है, भले ही ऊर्जा घनत्व अशून्य हो। यह संभावना सर्वविदित का टेन्सर एनालॉग है कि अशक्त वेक्टर (मिन्कोव्स्की स्पेस) में हमेशा गायब होने वाली लंबाई होती है, भले ही वह शून्य वेक्टर न हो। इस प्रकार, प्रत्येक अशक्त इलेक्ट्रोवैक्यूम का चौगुना आइगेनमान होता है, अर्थात शून्य।

रेनिच की स्थिति

1925 में, जॉर्ज यूरी रेनिच ने विशुद्ध रूप से गणितीय स्थितियां प्रस्तुत कीं, जो सामान्य सापेक्षता में गैर-शून्य इलेक्ट्रोवैक्यूम के रूप में व्याख्या को स्वीकार करने के लिए लोरेंट्ज़ियन मैनिफोल्ड के लिए आवश्यक और पर्याप्त दोनों हैं। इनमें तीन बीजगणितीय स्थितियाँ और विभेदक स्थितियाँ शामिल हैं। स्थितियाँ कभी-कभी यह जाँचने के लिए उपयोगी होती हैं कि ख्यात गैर-शून्य इलेक्ट्रोवैक्यूम वास्तव में वही है जो यह दावा करता है, या ऐसे समाधान खोजने के लिए भी।

चार्ल्स टोरे द्वारा अशक्त इलेक्ट्रोवैक्यूम के लिए समान आवश्यक और पर्याप्त स्थितियाँ पाई गई हैं।[1]


परीक्षण क्षेत्र

कभी-कभी कोई यह मान सकता है कि किसी विद्युत चुम्बकीय क्षेत्र की क्षेत्र ऊर्जा इतनी कम है कि इसके गुरुत्वाकर्षण प्रभाव की उपेक्षा की जा सकती है। फिर, अनुमानित इलेक्ट्रोवैक्यूम समाधान प्राप्त करने के लिए, हमें केवल दिए गए वैक्यूम समाधान (सामान्य सापेक्षता) पर मैक्सवेल समीकरणों को हल करने की आवश्यकता है। इस मामले में, विद्युत चुम्बकीय क्षेत्र को अक्सर परीक्षण क्षेत्र कहा जाता है, शब्द परीक्षण कण के अनुरूप (एक छोटी वस्तु को दर्शाता है जिसका द्रव्यमान परिवेशी गुरुत्वाकर्षण क्षेत्र में सराहनीय योगदान देने के लिए बहुत छोटा है)।

यहां, यह जानना उपयोगी है कि कोई भी किलिंग वैक्टर जो मौजूद हो सकता है (वैक्यूम समाधान के मामले में) घुमावदार स्पेसटाइम में मैक्सवेल के समीकरणों को स्वचालित रूप से संतुष्ट करेगा।[2] ध्यान दें कि यह प्रक्रिया यह मानने के बराबर है कि विद्युत चुम्बकीय क्षेत्र, लेकिन गुरुत्वाकर्षण क्षेत्र नहीं, कमजोर है। कभी-कभी हम और भी आगे जा सकते हैं; यदि गुरुत्वाकर्षण क्षेत्र को भी कमजोर माना जाता है, तो हम स्वतंत्र रूप से आइंस्टीन क्षेत्र समीकरणों और (फ्लैट स्पेसटाइम) मैक्सवेल समीकरणों को मिंकोव्स्की वैक्यूम पृष्ठभूमि पर स्वतंत्र रूप से हल कर सकते हैं। तब (कमजोर) मीट्रिक टेन्सर अनुमानित ज्यामिति देता है; मिन्कोव्स्की पृष्ठभूमि भौतिक साधनों से अप्राप्य है, लेकिन गणितीय रूप से काम करना बहुत सरल है, जब भी हम इस तरह की चालाकी से दूर हो सकते हैं।

उदाहरण

उल्लेखनीय व्यक्तिगत गैर-शून्य इलेक्ट्रोवैक्यूम समाधानों में शामिल हैं:

  • Reissner-Nordstrom metric|Reissner-Nordström इलेक्ट्रोवैक्यूम (जो आवेशित गोलाकार द्रव्यमान के चारों ओर ज्यामिति का वर्णन करता है),
  • केर-न्यूमैन मेट्रिक|केर-न्यूमैन इलेक्ट्रोवैक्यूम (जो आवेशित, घूमती हुई वस्तु के चारों ओर ज्यामिति का वर्णन करता है),
  • मेल्विन इलेक्ट्रोवैक्यूम (बेलनाकार सममित मैग्नेटोस्टैटिक क्षेत्र का मॉडल),
  • गारफिंकल-मेल्विन इलेक्ट्रोवैक्यूम (पिछले की तरह, लेकिन समरूपता के अक्ष के साथ यात्रा करने वाली गुरुत्वाकर्षण तरंग सहित),
  • बर्टोटी-रॉबिन्सन इलेक्ट्रोवैक्यूम: यह उल्लेखनीय उत्पाद संरचना वाला साधारण स्पेसटाइम है; यह रीस्नर-नॉर्डस्ट्रॉम इलेक्ट्रोवैक्यूम के क्षितिज के प्रकार के विस्फोट से उत्पन्न होता है,
  • विटन इलेक्ट्रोवैक्यूम (एडवर्ड विटन के पिता लुइस विटन द्वारा खोजा गया)।

उल्लेखनीय व्यक्तिगत अशक्त इलेक्ट्रोवैक्यूम समाधानों में शामिल हैं:

इलेक्ट्रोवैक्यूम के कुछ प्रसिद्ध परिवार हैं:

  • वेइल-मैक्सवेल इलेक्ट्रोवैक्यूम: यह सभी स्थैतिक अक्षीय इलेक्ट्रोवैक्यूम समाधानों का परिवार है; इसमें रीस्नर-नॉर्डस्ट्रॉम इलेक्ट्रोवैक्यूम शामिल है,
  • अर्नस्ट-मैक्सवेल इलेक्ट्रोवैक्यूम: यह सभी स्थिर अक्षीय इलेक्ट्रोवैक्यूम समाधानों का परिवार है; इसमें केर-न्यूमैन इलेक्ट्रोवैक्यूम शामिल है,
  • बेक-मैक्सवेल इलेक्ट्रोवैक्यूम: सभी गैर-घूर्णन बेलनाकार सममित इलेक्ट्रोवैक्यूम समाधान,
  • एहलर्स-मैक्सवेल इलेक्ट्रोवैक्यूम: सभी स्थिर बेलनाकार सममित इलेक्ट्रोवैक्यूम समाधान,
  • ज़ेकेरेस इलेक्ट्रोवैक्यूम: टकराने वाली समतल तरंगों के सभी जोड़े, जहाँ प्रत्येक तरंग में गुरुत्वाकर्षण और विद्युत चुम्बकीय विकिरण दोनों हो सकते हैं; ये समाधान इंटरेक्शन ज़ोन के बाहर अशक्त इलेक्ट्रोवैक्यूम हैं, लेकिन आम तौर पर इंटरेक्शन ज़ोन के अंदर गैर-शून्य इलेक्ट्रोवैक्यूम होते हैं, क्योंकि वे टकराने के बाद दो तरंगों के गैर-रैखिक संपर्क के कारण होते हैं।

कई पीपी-वेव स्पेसटाइम विद्युत चुम्बकीय क्षेत्र टेंसर को स्वीकार करते हैं जो उन्हें सटीक अशक्त इलेक्ट्रोवैक्यूम समाधान में बदल देता है।

यह भी देखें

संदर्भ

  1. Torre, Charles (2014). "शून्य विद्युत चुम्बकीय क्षेत्र की स्पेसटाइम ज्यामिति". Classical and Quantum Gravity. 31 (4): 045022. arXiv:1308.2323. Bibcode:2014CQGra..31d5022T. doi:10.1088/0264-9381/31/4/045022. S2CID 22243824.
  2. Papapetrou, A (1966). "Champs gravitationnels stationnaires à symétrie axiale". Annales de l'Institut Henri Poincaré A (in French). 4 (2): 83–105. Bibcode:1966AIHPA...4...83P. Retrieved 19 December 2011.{{cite journal}}: CS1 maint: unrecognized language (link)
  • Stephani, Hans; Kramer, Dietrich; MacCallum, Malcolm; Hoenselaers, Cornelius; Herlt, Eduard (2003). Exact Solutions of Einstein's Field Equations. Cambridge: Cambridge University Press. ISBN 0-521-46136-7. See section 5.4 for the Rainich conditions, section 19.4 for the Weyl–Maxwell electrovacuums, section 21.1 for the Ernst-Maxwell electrovacuums, section 24.5 for pp-waves, section 25.5 for Szekeres electrovacuums, etc.
  • Griffiths, J. B. (1991). Colliding Plane Waves in General Relativity. Oxford: Clarendon Press. ISBN 0-19-853209-1. The definitive resource on colliding plane waves, including the examples mentioned above.