क्लेन स्टार: Difference between revisions
No edit summary |
|||
Line 41: | Line 41: | ||
रिक्त समूह पर क्रियान्वित क्लेन स्टार का उदाहरण: | रिक्त समूह पर क्रियान्वित क्लेन स्टार का उदाहरण: | ||
:∅<sup>* | :∅<sup>* = {ε}. | ||
रिक्त समूह पर क्रियान्वित क्लेन प्लस का उदाहरण: | रिक्त समूह पर क्रियान्वित क्लेन प्लस का उदाहरण: | ||
:∅<sup>+</sup> = ∅ ∅<sup>*</sup> = { } = ∅, | :∅<sup>+</sup> = ∅ ∅<sup>*</sup> = { } = ∅, | ||
जहां संयोजन साहचर्य और | जहां संयोजन साहचर्य और अनुवर्ती उत्पाद है। | ||
रिक्त श्रृंखला वाले एकल समुच्चय पर क्रियान्वित क्लेन प्लस और क्लेन स्टार का उदाहरण: | रिक्त श्रृंखला वाले एकल समुच्चय पर क्रियान्वित क्लेन प्लस और क्लेन स्टार का उदाहरण: | ||
Line 52: | Line 52: | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
श्रंखला बाइनरी संचालन के रूप में संयोजन के साथ एक [[मोनोइड]] और ε तत्समक अवयव बनाते हैं। क्लेन स्टार न कि सिर्फ श्रंखला, अपितु किसी भी मोनोइड के लिए परिभाषित किया गया है, अत्यधिक सही प्रकार से, (M, ⋅) और S ⊆ M को मोनोइड होने देता है। फिर S<sup>*</sup> M युक्त S का सबसे छोटा उपमोनाइड है; अर्थात S<sup>*</sup> में M, समुच्चय S का तटस्थ तत्व सम्मिलित है, और यदि x,y ∈ S<sup>*</sup>, तो x⋅y ∈ S<sup>* | श्रंखला बाइनरी संचालन के रूप में संयोजन के साथ एक [[मोनोइड]] और ε तत्समक अवयव बनाते हैं। क्लेन स्टार न कि सिर्फ श्रंखला, अपितु किसी भी मोनोइड के लिए परिभाषित किया गया है, अत्यधिक सही प्रकार से, (M, ⋅) और S ⊆ M को मोनोइड होने देता है। फिर S<sup>*</sup> M युक्त S का सबसे छोटा उपमोनाइड है; अर्थात S<sup>*</sup> में M, समुच्चय S का तटस्थ तत्व सम्मिलित है, और यदि x,y ∈ S<sup>*</sup>, तो x⋅y ∈ S<sup>* ऐसा होता है | | ||
इसके अतिरिक्त, क्लेन स्टार को [[बीजगणितीय संरचना]] में *- संचालन (और संघ) को सम्मिलित करके [[पूर्ण स्टार सेमिरिंग]] की धारणा से सामान्यीकृत किया जाता है।<ref name="droste">{{cite book |last1=Droste |first1=M. |last2=Kuich |first2=W. |date=2009 |title=भारित ऑटोमेटा की पुस्तिका|url=https://archive.org/details/handbookweighted00dros |url-access=limited |chapter=Chapter 1: Semirings and Formal Power Series |series=Monographs in Theoretical Computer Science |publisher=Springer |doi=10.1007/978-3-642-01492-5_1 |isbn=978-3-642-01491-8 |page=[https://archive.org/details/handbookweighted00dros/page/n23 9]}}</ref> | इसके अतिरिक्त, क्लेन स्टार को [[बीजगणितीय संरचना]] में *- संचालन (और संघ) को सम्मिलित करके [[पूर्ण स्टार सेमिरिंग]] की धारणा से सामान्यीकृत किया जाता है।<ref name="droste">{{cite book |last1=Droste |first1=M. |last2=Kuich |first2=W. |date=2009 |title=भारित ऑटोमेटा की पुस्तिका|url=https://archive.org/details/handbookweighted00dros |url-access=limited |chapter=Chapter 1: Semirings and Formal Power Series |series=Monographs in Theoretical Computer Science |publisher=Springer |doi=10.1007/978-3-642-01492-5_1 |isbn=978-3-642-01491-8 |page=[https://archive.org/details/handbookweighted00dros/page/n23 9]}}</ref> |
Revision as of 15:13, 12 May 2023
गणितीय साक्ष्य और कंप्यूटर विज्ञान में, क्लेन स्टार (या क्लेन संचालक या क्लेन क्लोजर) या यूनरी संचालन है, या तो श्रृंखला (कंप्यूटर विज्ञान) के गणित) पर या प्रतीकों या वर्णों के समूह पर होता है। गणित में,इसे सामान्यतौर पर स्वतंत्र एकाभ निर्माण के रूप में जाना जाता है। समूह पर क्लेन स्टार का अनुप्रयोग के रूप में लिखा गया है| यह नियमित अभिव्यक्तियों के लिए व्यापक रूप से उपयोग किया जाता है, जो संदर्भ है जिसमें स्टीफन क्लेन द्वारा इसे कुछ ऑटोमेटा सिद्धांत की विशेषता के लिए प्रस्तुत किया गया था, जहां इसका अर्थ शून्य या अत्यधिक पुनरावृति है।
- यदि श्रंखला का समुच्चय है, फिर के सबसे छोटे अधिसमुच्चय के रूप में परिभाषित किया गया है जिसमें रिक्त श्रृंखला है और संयोजन के अंतर्गत समापन (गणित) है।
- यदि प्रतीकों या वर्णों का समूह है, तो रिक्त श्रंखला सहित , में प्रतीकों पर सभी श्रृंखला का समुच्चय है |
समूह रिक्त श्रंखला और सभी परिमित-लंबाई वाले श्रंखला के समूह के रूप में भी वर्णित किया जा सकता है, जो अपने ढंग से तत्वों को जोड़कर उत्पन्न किया जा सकता है, एक ही तत्व को कई बार उपयोग करने की अनुमति देता है। यदि या तो रिक्त श्रंखला ∅ या एकल समुच्चय है, तब है; यदि तब कोई अन्य परिमित समुच्चय या गणनीय रूप से अपरिमित समुच्चय है, गणनीय अपरिमित समुच्चय है।[1] परिणामस्वरूप, प्रत्येक औपचारिक भाषा एक परिमित या गणनीय रूप से अनंत वर्णमाला पर गणनीय है, क्योंकि यह गणनीय अपरिमित समुच्चय का उपसमुच्चय है |
संचालकों का उपयोग प्रजनक व्याकरण के पुनर्लेखन नियमों में किया जाता है।
परिभाषा और संकेतन
दिए गए समूह को परिभाषित करना है।
- (सिर्फ रिक्त श्रृंखला वाली भाषा),
और पुनरावर्ती रूप से समुच्चय को परिभाषित करें
- प्रत्येक के लिए .
यदि एक औपचारिक भाषा है, तो , -समुच्चय की शक्ति, संयोजन के लिए एक कड़ी है | वह, सभी श्रंखला (कंप्यूटर साइंस) के समुच्चय के रूप में समझा जा सकता है जिसे में श्रंखला के संयोजन के रूप में दर्शाया जा सकता है |
पर क्लेन स्टार की परिभाषा है |[2]
इसका अर्थ यह है कि क्लेन स्टार संचालक एक वर्गसम यूनरी ऑपरेटर है: किसी भी समूह के लिए श्रृंखला या वर्णों की, जैसा सभी के लिए है।
क्लीन प्लस
कुछ औपचारिक भाषा अध्ययनों में, (उदाहरण के लिए भाषाओं का सार समूह) क्लेन स्टार संचालन पर भिन्नता जिसे क्लेन प्लस कहा जाता है, का उपयोग किया जाता है। उपरोक्त समूह में क्लेन प्लस छोड़ देता है | दूसरे शब्दों में, क्लेन प्लस है
या
उदाहरण
श्रंखला के समूह पर क्रियान्वित क्लेन स्टार का उदाहरण:
- {ab, c}* = { ε, ab, c, abab, abc, cab, cc, ababab, ababc, abcab, abcc, cabab, cabc, ccab, ccc, ...}।
क्लेन प्लस का उदाहरण वर्णों के समूहों पर क्रियान्वित होता है:
- {a, b, c}+ = {a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, ...}।
क्लेन स्टार समान वर्ण समूह पर क्रियान्वित होता है:
- {a, b, c}* = { ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, ...}।
रिक्त समूह पर क्रियान्वित क्लेन स्टार का उदाहरण:
- ∅* = {ε}.
रिक्त समूह पर क्रियान्वित क्लेन प्लस का उदाहरण:
- ∅+ = ∅ ∅* = { } = ∅,
जहां संयोजन साहचर्य और अनुवर्ती उत्पाद है।
रिक्त श्रृंखला वाले एकल समुच्चय पर क्रियान्वित क्लेन प्लस और क्लेन स्टार का उदाहरण:
- यदि , तब भी प्रत्येक के लिए , इस प्रकार है।
सामान्यीकरण
श्रंखला बाइनरी संचालन के रूप में संयोजन के साथ एक मोनोइड और ε तत्समक अवयव बनाते हैं। क्लेन स्टार न कि सिर्फ श्रंखला, अपितु किसी भी मोनोइड के लिए परिभाषित किया गया है, अत्यधिक सही प्रकार से, (M, ⋅) और S ⊆ M को मोनोइड होने देता है। फिर S* M युक्त S का सबसे छोटा उपमोनाइड है; अर्थात S* में M, समुच्चय S का तटस्थ तत्व सम्मिलित है, और यदि x,y ∈ S*, तो x⋅y ∈ S* ऐसा होता है |
इसके अतिरिक्त, क्लेन स्टार को बीजगणितीय संरचना में *- संचालन (और संघ) को सम्मिलित करके पूर्ण स्टार सेमिरिंग की धारणा से सामान्यीकृत किया जाता है।[4]
यह भी देखें
संदर्भ
- ↑ Nayuki Minase (10 May 2011). "गणनीय सेट और क्लेन स्टार". Project Nayuki. Retrieved 11 January 2012.
- ↑ Fletcher, Peter; Hoyle, Hughes; Patty, C. Wayne (1991). असतत गणित की नींव. Brooks/Cole. p. 656. ISBN 0534923739.
The Kleene closure L* of L is defined to be .
- ↑ This equation holds because every element of V+ must either be composed from one element of V and finitely many non-empty terms in V or is just an element of V (where V itself is retrieved by taking V concatenated with ε).
- ↑ Droste, M.; Kuich, W. (2009). "Chapter 1: Semirings and Formal Power Series". भारित ऑटोमेटा की पुस्तिका. Monographs in Theoretical Computer Science. Springer. p. 9. doi:10.1007/978-3-642-01492-5_1. ISBN 978-3-642-01491-8.