फास्टराड: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 12: Line 12:
}}
}}


फास्टराड इलेक्ट्रॉनिक्स पर [[विकिरण]] प्रभाव (मात्रा और विस्थापन क्षति) की गणना के लिए प्रतिबद्ध उपकरण है। उपकरण में किसी भी सिस्टम के प्रतिनिधित्व के लिए आवश्यक सभी क्षमताओं के साथ 3डी मॉडलिंग अंतरापृष्ठ शामिल है। आवेदन क्षेत्रों में उच्च ऊर्जा भौतिकी और परमाणु प्रयोग, चिकित्सा, त्वरक और [[अंतरिक्ष भौतिकी]] अध्ययन शामिल हैं। सॉफ्टवेयर का उपयोग दुनिया भर के विकिरण इंजीनियरों द्वारा किया जाता है।
फास्टराड इलेक्ट्रॉनिक्स पर [[विकिरण]] प्रभाव (मात्रा और विस्थापन क्षति) की गणना के लिए प्रतिबद्ध उपकरण है। उपकरण में किसी भी प्रणाली के प्रतिनिधित्व के लिए आवश्यक सभी क्षमताओं के साथ 3डी मॉडलिंग अंतरापृष्ठ सम्मिलित है। आवेदन क्षेत्रों में उच्च ऊर्जा भौतिकी और परमाणु प्रयोग, चिकित्सा, त्वरक और [[अंतरिक्ष भौतिकी]] अध्ययन सम्मिलित हैं। सॉफ्टवेयर का उपयोग दुनिया भर के विकिरण इंजीनियरों द्वारा किया जाता है।


'''यह सॉफ्टवेयर उन इंजीनियरों को प्रतिबद्ध है जिनके पास सीएडी अनुप्रयोगों में व्यापक अनुभव नहीं है। यह उपयोगकर्ता के अनुकूल'''
'''यह सॉफ्टवेयर उन इंजीनियरों को प्रतिबद्ध है जिनके पास सीएडी अनुप्रयोगों में व्यापक अनुभव नहीं है। यह उपयोगकर्ता के अनुकूल'''
Line 19: Line 19:
फास्टराड विकिरण संवेदनशील प्रणालियों के विश्लेषण और रचना के लिए प्रतिबद्ध  विकिरण उपकरण है। परियोजना 1999 में बनाई गई थी और तब से इसमें लगातार सुधार किया जा रहा है। इस सॉफ्टवेयर को किसी भी विकिरण संबंधी क्षेत्र में लागू किया जा सकता है।
फास्टराड विकिरण संवेदनशील प्रणालियों के विश्लेषण और रचना के लिए प्रतिबद्ध  विकिरण उपकरण है। परियोजना 1999 में बनाई गई थी और तब से इसमें लगातार सुधार किया जा रहा है। इस सॉफ्टवेयर को किसी भी विकिरण संबंधी क्षेत्र में लागू किया जा सकता है।


पिछले एक दशक में उपग्रह निर्माताओं के [[विकिरण सख्त]] आश्वासन में लगातार सुधार हुआ है। अनुपात बल/द्रव्यमान को बढ़ाने के लिए या तो यांत्रिक रचना के संदर्भ में अंतरिक्ष प्रणालियों का अनुकूलन, या इलेक्ट्रॉनिक उपकरणों का लघुकरण उन प्रणालियों की संवेदनशीलता को अंतरिक्ष विकिरण पर्यावरण में बढ़ाता है। विकिरण कठोरता प्रक्रिया पर प्रभाव को कम करने के लिए, सिस्टम पर वास्तविक विकिरण  सटीक अनुमान द्वारा किसी न किसी परिरक्षण विश्लेषण को बदलने के लिए पहला समाधान है। यह  निक्षिप्त मात्रा अनुमान के लिए फास्टराड द्वारा प्रदान किए गए समाधान के अनुरूप है।
पिछले एक दशक में उपग्रह निर्माताओं के [[विकिरण सख्त]] आश्वासन में लगातार सुधार हुआ है। अनुपात बल/द्रव्यमान को बढ़ाने के लिए या तो यांत्रिक रचना के संदर्भ में अंतरिक्ष प्रणालियों का अनुकूलन, या इलेक्ट्रॉनिक उपकरणों का लघुकरण उन प्रणालियों की संवेदनशीलता को अंतरिक्ष विकिरण पर्यावरण में बढ़ाता है। विकिरण कठोरता प्रक्रिया पर प्रभाव को कम करने के लिए, प्रणाली पर वास्तविक विकिरण  सटीक अनुमान द्वारा किसी न किसी परिरक्षण विश्लेषण को बदलने के लिए पहला समाधान है। यह  निक्षिप्त मात्रा अनुमान के लिए फास्टराड द्वारा प्रदान किए गए समाधान के अनुरूप है।


सॉफ्टवेयर का मुख्य लक्ष्य परिरक्षण अनुकूलन के लिए यांत्रिक रचना परिवर्तनों के चक्र समय को कम करते हुए, विकिरण विश्लेषण के आकलन के रूढ़िवादी दृष्टिकोण से उपजी मार्जिन को कम करना है। कुछ मामलों में, इसका उपयोग गैर-रेड-हार्ड भागों के उपयोग को सही ठहराने और अंतरिक्ष कार्यक्रम उपकरण के लिए लागत और योजना को बचाने के लिए किया जा सकता है। इसकी विशेषताएं सीएडी आयात फाइलों, 3डी देखने और ज्यामिति निर्माण के उपयोग की अनुमति देती हैं।
सॉफ्टवेयर का मुख्य लक्ष्य परिरक्षण अनुकूलन के लिए यांत्रिक रचना परिवर्तनों के चक्र समय को कम करते हुए, विकिरण विश्लेषण के आकलन के रूढ़िवादी दृष्टिकोण से उपजी मार्जिन को कम करना है। कुछ स्थितियों में, इसका उपयोग गैर-रेड-हार्ड भागों के उपयोग को सही ठहराने और अंतरिक्ष कार्यक्रम उपकरण के लिए लागत और योजना को बचाने के लिए किया जा सकता है। इसकी विशेषताएं सीएडी आयात फाइलों, 3डी देखने और ज्यामिति निर्माण के उपयोग की अनुमति देती हैं।


अंतरिक्ष अनुप्रयोगों के लिए, यह सॉफ़्टवेयर प्लेटफ़ॉर्म संरचना से लेकर इलेक्ट्रॉनिक घटकों तक एक पूर्ण उपग्रह मॉडल पर विचार कर सकता है।
अंतरिक्ष अनुप्रयोगों के लिए, यह सॉफ़्टवेयर प्लेटफ़ॉर्म संरचना से लेकर इलेक्ट्रॉनिक घटकों तक एक पूर्ण उपग्रह मॉडल पर विचार कर सकता है।
Line 31: Line 31:
* बॉक्स, गोले, बेलन, शंकु और त्रिकोणीय प्रिज्म का निर्माण |
* बॉक्स, गोले, बेलन, शंकु और त्रिकोणीय प्रिज्म का निर्माण |
* [[आईएसओ 10303]] या [[आईजीईएस]] प्रारूप फाइलों से आने वाली जटिल 3डी ज्यामिति का सम्मिलन |
* [[आईएसओ 10303]] या [[आईजीईएस]] प्रारूप फाइलों से आने वाली जटिल 3डी ज्यामिति का सम्मिलन |
* मॉडलिंग उपकरण सेट ([[ कतरन विमान |क्लिपिंग प्लेन]] , 2डी प्रोजेक्शन, मेजरमेंट उपकरण, कलर्स, व्यू शॉट) |
* मॉडलिंग उपकरण समुच्चय ([[ कतरन विमान |क्लिपिंग प्लेन]] , 2डी प्रोजेक्शन, मेजरमेंट उपकरण, कलर्स, व्यू शॉट) |


सॉफ्टवेयर का मूल विकिरण 3डी मॉडलर है। इंजन का लक्ष्य भौतिक गुणों सहित किसी भी यांत्रिक रचना का यथार्थवादी मॉडल बनाना है। अंतरापृष्ठ का मुख्य भाग डिस्प्ले विंडो के लिए प्रतिबद्ध है जहां उपयोगकर्ता ज्यामिति में अस्तव्यस्तता कर सकता है।
सॉफ्टवेयर का मूल विकिरण 3डी मॉडलर है। इंजन का लक्ष्य भौतिक गुणों सहित किसी भी यांत्रिक रचना का यथार्थवादी मॉडल बनाना है। अंतरापृष्ठ का मुख्य भाग डिस्प्ले विंडो के लिए प्रतिबद्ध है जहां उपयोगकर्ता ज्यामिति में अस्तव्यस्तता कर सकता है।


3D ठोस को या तो घटक उपकरण का उपयोग करके या मानक स्टेप या आईजीईएस प्रारूप के साथ अन्य तृतीय पक्ष सॉफ़्टवेयर ([[CATIA|केटिया]], प्रो / इंजीनियर) से आयात करके परिभाषित किया जा सकता है। फास्टराड में शामिल [[कैस्केड खोलें]] लाइब्रेरी कट ऑपरेशंस, कॉम्प्लेक्स शेप मैनेजमेंट और स्टेप और आईजीईएस एक्सचेंज फॉर्मेट मॉड्यूल जैसी उन्नत विज़ुअलाइज़ेशन क्षमताएं प्रदान करती है। उन्नत स्टेप मॉड्यूल आपको पदानुक्रम, नाम और रंग की जानकारी आयात करने की अनुमति देता है। पूर्ण 3D डिज़ाइनर मॉडल को तब फास्टराड (विज़ुअलाइज़ेशन, विकिरण गणना, पोस्ट-प्रोसेसिंग) द्वारा प्रबंधित किया जाता है। यह सॉफ्टवेयर आसानी से जटिल ज्यामिति को संभालता है और एक ही मॉडल में नैनोमीटर से 10<sup>24</sup>km तक  विभिन्न लंबाई के पैमानों का प्रबंधन करता है.  [[File:Fastrad-material definition module-Image1.png|thumb|चित्र 1) सामग्री परिभाषा मॉड्यूल के संवाद बॉक्स। एक इंटरैक्टिव आवधिक तत्व तालिका सामग्री निर्माण को आसान बनाती है।]]विकिरण अनुप्रयोगों से संबंधित प्रमुख तत्व सामग्री प्रबंधन है।  प्रतिबद्ध उपयोगकर्ता-अनुकूल अंतरापृष्ठ आपको 3डी मॉडल के प्रत्येक ठोस के भौतिक गुणों को सेट करने की अनुमति देता है, जैसे कि इसकी रासायनिक संरचना का निर्धारण करके (यौगिक) सामग्री के प्रत्येक तत्व का घनत्व और द्रव्यमान अनुपात (चित्र 1 देखें) पूर्वनिर्धारित सामग्रियों की सूची उपयोगकर्ता द्वारा आसानी से बढ़ाई जा सकती है।
3D ठोस को या तो घटक उपकरण का उपयोग करके या मानक स्टेप या आईजीईएस प्रारूप के साथ अन्य तृतीय पक्ष सॉफ़्टवेयर ([[CATIA|केटिया]], प्रो / इंजीनियर) से आयात करके परिभाषित किया जा सकता है। फास्टराड में सम्मिलित [[कैस्केड खोलें]] लाइब्रेरी कट ऑपरेशंस, कॉम्प्लेक्स शेप मैनेजमेंट और स्टेप और आईजीईएस एक्सचेंज फॉर्मेट मॉड्यूल जैसी उन्नत विज़ुअलाइज़ेशन क्षमताएं प्रदान करती है। उन्नत स्टेप मॉड्यूल आपको पदानुक्रम, नाम और रंग की जानकारी आयात करने की अनुमति देता है। पूर्ण 3D डिज़ाइनर मॉडल को तब फास्टराड (विज़ुअलाइज़ेशन, विकिरण गणना, पोस्ट-प्रोसेसिंग) द्वारा प्रबंधित किया जाता है। यह सॉफ्टवेयर आसानी से जटिल ज्यामिति को संभालता है और एक ही मॉडल में नैनोमीटर से 10<sup>24</sup>km तक  विभिन्न लंबाई के मापदंड का प्रबंधन करता है.  [[File:Fastrad-material definition module-Image1.png|thumb|चित्र 1) सामग्री परिभाषा मॉड्यूल के संवाद बॉक्स। एक इंटरैक्टिव आवधिक तत्व तालिका सामग्री निर्माण को आसान बनाती है।]]विकिरण अनुप्रयोगों से संबंधित प्रमुख तत्व सामग्री प्रबंधन है।  प्रतिबद्ध उपयोगकर्ता-अनुकूल अंतरापृष्ठ आपको 3डी मॉडल के प्रत्येक ठोस के भौतिक गुणों को समुच्चय करने की अनुमति देता है, जैसे कि इसकी रासायनिक संरचना का निर्धारण करके (यौगिक) सामग्री के प्रत्येक तत्व का घनत्व और द्रव्यमान अनुपात (चित्र 1 देखें) पूर्वनिर्धारित सामग्रियों की सूची उपयोगकर्ता द्वारा आसानी से बढ़ाई जा सकती है।


एक अन्य कार्यक्षमता [[डिटेक्टरों|संसूचको]] की स्थिति है। इन संसूचको को मॉडल में किसी भी स्थान पर रखा जा सकता है। इस तरह, 3डी मॉडल के किसी भी बिंदु पर कण-पदार्थ परस्पर क्रिया द्वारा ऊर्जा जमाव की ठीक गणना के लिए [[मोंटे कार्लो एल्गोरिथ्म]] का उपयोग करके विकिरण प्रभाव का अनुमान लगाया जा सकता है (नीचे "मात्रा गणना और परिरक्षण" देखें), या किरण-अनुरेखण के लिए दृष्टिकोण देखे।
एक अन्य कार्यक्षमता [[डिटेक्टरों|संसूचको]] की स्थिति है। इन संसूचको को मॉडल में किसी भी स्थान पर रखा जा सकता है। इस तरह, 3डी मॉडल के किसी भी बिंदु पर कण-पदार्थ परस्पर क्रिया द्वारा ऊर्जा जमाव की ठीक गणना के लिए [[मोंटे कार्लो एल्गोरिथ्म]] का उपयोग करके विकिरण प्रभाव का अनुमान लगाया जा सकता है (नीचे "मात्रा गणना और परिरक्षण" देखें), या किरण-अनुरेखण के लिए दृष्टिकोण देखे।


इसके अलावा, इस सॉफ़्टवेयर का उपयोग देर से डिज़ाइन परिवर्तन उपकरण पुन: उपयोग के अनुरूप है। रचना में बदलाव के लिए, केवल नई फाइलों को फास्टराड में आयात संशोधित किया जा सकता है। तब क्षेत्रीय विश्लेषण की प्रक्रिया हो सकती है। उपयोगकर्ता के अनुकूल ग्राफिकल अंतरापृष्ठ का उपयोग करके परिरक्षण दक्षता की प्रत्यक्ष गणना की जा सकती है और विभिन्न भागों के द्रव्यमान तक सीधी पहुंच संभव है ताकि परिरक्षण/द्रव्यमान वृद्धि व्यापार-बंद प्राप्त किया जा सके। उपकरण के पुन: उपयोग के लिए, निक्षिप्त मात्रा गणना के लिए प्रदान किए गए विकिरण पर्यावरण डेटा को केवल बदलना होता है।
इसके अलावा, इस सॉफ़्टवेयर का उपयोग देर से रचना परिवर्तन उपकरण पुन: उपयोग के अनुरूप है। रचना में बदलाव के लिए, केवल नई फाइलों को फास्टराड में आयात संशोधित किया जा सकता है। तब क्षेत्रीय विश्लेषण की प्रक्रिया हो सकती है। उपयोगकर्ता के अनुकूल ग्राफिकल अंतरापृष्ठ का उपयोग करके परिरक्षण दक्षता की प्रत्यक्ष गणना की जा सकती है और विभिन्न भागों के द्रव्यमान तक सीधी पहुंच संभव है ताकि परिरक्षण/द्रव्यमान वृद्धि व्यापार-बंद प्राप्त किया जा सके। उपकरण के पुन: उपयोग के लिए, निक्षिप्त मात्रा गणना के लिए प्रदान किए गए विकिरण पर्यावरण डेटा को केवल बदलना होता है।


3डी मॉडलिंग के किसी भी समय, उपयोगकर्ता वर्तमान सत्र के दौरान परिभाषित सभी सूचनाओं (ज्यामिति, सामग्री, संसूचको) के साथ अपने मॉडल को सहेज सकता है।
3डी मॉडलिंग के किसी भी समय, उपयोगकर्ता वर्तमान सत्र के समय परिभाषित सभी सूचनाओं (ज्यामिति, सामग्री, संसूचको) के साथ अपने मॉडल को सहेज सकता है।


अंतरापृष्ठ में कई और सहायक सुविधाएँ (स्थानीय फ़्रेम डिस्प्ले, इंटरएक्टिव माप उपकरण, संदर्भ मेनू) शामिल हैं। लक्ष्य सीएडी सॉफ्टवेयर प्रदान करना है जिसका उपयोग इंजीनियरों द्वारा किया जा सकता है जो विकिरण विश्लेषण पर अधिक समय बिताने के लिए मॉडलिंग समय को कम करना चाहते हैं।
अंतरापृष्ठ में कई और सहायक सुविधाएँ (स्थानीय फ़्रेम डिस्प्ले, इंटरएक्टिव माप उपकरण, संदर्भ मेनू) सम्मिलित हैं। लक्ष्य सीएडी सॉफ्टवेयर प्रदान करना है जिसका उपयोग इंजीनियरों द्वारा किया जा सकता है जो विकिरण विश्लेषण पर अधिक समय बिताने के लिए मॉडलिंग समय को कम करना चाहते हैं।


== मात्रा की गणना और परिरक्षण ==
== मात्रा की गणना और परिरक्षण ==
एक बार 3डी रेडिएशन मॉडल हो जाने के बाद, उपयोगकर्ता सॉफ्टवेयर के सेक्टर विश्लेषण मॉड्यूल का उपयोग करके  निक्षिप्त मात्रा का अनुमान लगा सकता है। यह किरण-अनुरेखण मॉड्यूल मात्रा गहराई वक्र का उपयोग करके विकिरण पर्यावरण की जानकारी के साथ विकिरण मॉडल से आने वाली जानकारी को जोड़ता है। यह मात्रा गहराई वक्र एल्यूमीनियम गोलाकार ढाल मोटाई के पीछे  लक्ष्य सामग्री (मुख्य रूप से इलेक्ट्रॉनिक उपकरणों के लिए सिलिकॉन) में  निक्षिप्त मात्रा देता है। यह गणना 3डी मॉडल में रखे गए प्रत्येक [[डिटेक्टर]] के लिए की जाती है। यहां तक ​​कि जटिल ज्यामितियों के लिए भी उत्तम और त्वरित गणना दो प्रकार की जानकारी प्रदान करती है:
एक बार 3डी रेडिएशन मॉडल हो जाने के बाद, उपयोगकर्ता सॉफ्टवेयर के सेक्टर विश्लेषण मॉड्यूल का उपयोग करके  निक्षिप्त मात्रा का अनुमान लगा सकता है। यह किरण-अनुरेखण मॉड्यूल मात्रा गहराई वक्र का उपयोग करके विकिरण पर्यावरण की जानकारी के साथ विकिरण मॉडल से आने वाली जानकारी को जोड़ता है। यह मात्रा गहराई वक्र एल्यूमीनियम गोलाकार ढाल मोटाई के पीछे  लक्ष्य सामग्री (मुख्य रूप से इलेक्ट्रॉनिक उपकरणों के लिए सिलिकॉन) में  निक्षिप्त मात्रा देता है। यह गणना 3डी मॉडल में रखे गए प्रत्येक [[डिटेक्टर|संसूचक]] के लिए की जाती है। यहां तक ​​कि जटिल ज्यामितियों के लिए भी उत्तम और त्वरित गणना दो प्रकार की जानकारी प्रदान करती है:


* प्रत्येक डिटेक्टर के चारों ओर 3डी वितरण द्रव्यमान |
* प्रत्येक संसूचक के चारों ओर 3डी वितरण द्रव्यमान |
*आइसोट्रोपिक विकिरण वातावरण में अनुमानित  निक्षिप्त मात्रा है |
*आइसोट्रोपिक विकिरण वातावरण में अनुमानित  निक्षिप्त मात्रा है |


[[File:Fastrad-satellite analysis-Image2.png|thumb|चित्र 2) संपूर्ण उपग्रह विश्लेषण के दौरान फास्टराड उपकरण का स्क्रीनशॉट (सीएनईएस सौजन्य)]]उन परिणामों के पोस्ट-प्रोसेसिंग का उपयोग करते हुए, फास्टराड कई देखने वाले प्रतिनिधित्व प्रकारों का उपयोग करके इष्टतम परिरक्षण स्थान के बारे में जानकारी प्रदान करता है। चित्र 2. एक इलेक्ट्रॉनिक बोर्ड के  घटक द्वारा देखे गए बड़े पैमाने पर वितरण का मानचित्रण प्रस्तुत करता है। लाल क्षेत्र परिरक्षण मोटाई के संदर्भ में महत्वपूर्ण दिशाओं को इंगित करता है।
[[File:Fastrad-satellite analysis-Image2.png|thumb|चित्र 2) संपूर्ण उपग्रह विश्लेषण के समय फास्टराड उपकरण का स्क्रीनशॉट (सीएनईएस सौजन्य)]]उन परिणामों के पोस्ट-प्रोसेसिंग का उपयोग करते हुए, फास्टराड कई देखने वाले प्रतिनिधित्व प्रकारों का उपयोग करके इष्टतम परिरक्षण स्थान के बारे में जानकारी प्रदान करता है। चित्र 2. एक इलेक्ट्रॉनिक बोर्ड के  घटक द्वारा देखे गए बड़े मापदंड पर वितरण का मानचित्रण प्रस्तुत करता है। लाल क्षेत्र परिरक्षण मोटाई के संदर्भ में महत्वपूर्ण दिशाओं को संकेत करता है।


उपयोगकर्ता अतिरिक्त परिरक्षण के आकार को अनुकूलित करने में सक्षम है जिसका उपयोग अध्ययन किए गए डिटेक्टर पर प्राप्त मात्रा को कम करने के लिए किया जा सकता है।
उपयोगकर्ता अतिरिक्त परिरक्षण के आकार को अनुकूलित करने में सक्षम है जिसका उपयोग अध्ययन किए गए संसूचक पर प्राप्त मात्रा को कम करने के लिए किया जा सकता है।


इस प्रक्रिया का मुख्य लाभ इस कार्य को पूरा करने के लिए आवश्यक कम समय और क्षेत्र विश्लेषण पोस्ट-प्रोसेसिंग द्वारा प्रदान किए गए अच्छी तरह से परिभाषित यांत्रिक परिरक्षण समाधान है।
इस प्रक्रिया का मुख्य लाभ इस कार्य को पूरा करने के लिए आवश्यक कम समय और क्षेत्र विश्लेषण पोस्ट-प्रोसेसिंग द्वारा प्रदान किए गए अच्छी तरह से परिभाषित यांत्रिक परिरक्षण समाधान है।


== मोंटे कार्लो एल्गोरिथम ==
== मोंटे कार्लो एल्गोरिथम ==
सॉफ्टवेयर में मात्रा की गणना विशेष रूप से मोंटे कार्लो मॉड्यूल ([[सीएनईएस]] के साथ साझेदारी के माध्यम से विकसित) के साथ उत्तम है। इस एल्गोरिदम का उपयोग या तो आगे की प्रक्रिया में या प्रतिवर्ती में किया जा सकता है। पहले मामले में, सॉफ्टवेयर 3डी मॉडल में 1keV से 10 MeV तक [[इलेक्ट्रॉनों]] और [[फोटॉनों]] (द्वितीयक कणों सहित) के परिवहन का प्रबंधन करता है। द्वितीयक फोटॉनों और इलेक्ट्रॉनों के निर्माण को ध्यान में रखा जाता है। किसी भी प्रकार के [[ऊर्जा स्पेक्ट्रम]] और स्रोत ज्यामिति को परिभाषित किया जा सकता है। संवेदनशील मात्रा (SV) उपयोगकर्ता द्वारा चुनी जाती है और फास्टराड SV के अंदर  निक्षिप्त ऊर्जा की गणना करता है। प्रतिवर्ती मोंटे कार्लो मॉड्यूल एक जटिल और बहु-स्तरीय ज्यामिति में इलेक्ट्रॉनों के  आइसोट्रोपिक विकिरण के कारण मात्रा की गणना के लिए प्रतिबद्ध है, और इसके परिणामस्वरूप, आगे के एल्गोरिथ्म में विशाल कम्प्यूटेशनल समय हो सकता है। प्रतिवर्ती विधि का सिद्धांत उपयोग करना है:
सॉफ्टवेयर में मात्रा की गणना विशेष रूप से मोंटे कार्लो मॉड्यूल ([[सीएनईएस]] के साथ साझेदारी के माध्यम से विकसित) के साथ उत्तम है। इस एल्गोरिदम का उपयोग या तो आगे की प्रक्रिया में या प्रतिवर्ती में किया जा सकता है। पहली स्थिति में, सॉफ्टवेयर 3डी मॉडल में 1keV से 10 MeV तक [[इलेक्ट्रॉनों]] और [[फोटॉनों]] (द्वितीयक कणों सहित) के परिवहन का प्रबंधन करता है। द्वितीयक फोटॉनों और इलेक्ट्रॉनों के निर्माण को ध्यान में रखा जाता है। किसी भी प्रकार के [[ऊर्जा स्पेक्ट्रम]] और स्रोत ज्यामिति को परिभाषित किया जा सकता है। संवेदनशील मात्रा (SV) उपयोगकर्ता द्वारा चुनी जाती है और फास्टराड SV के अंदर  निक्षिप्त ऊर्जा की गणना करता है। प्रतिवर्ती मोंटे कार्लो मॉड्यूल एक जटिल और बहु-स्तरीय ज्यामिति में इलेक्ट्रॉनों के  आइसोट्रोपिक विकिरण के कारण मात्रा की गणना के लिए प्रतिबद्ध है, और इसके परिणामस्वरूप, आगे के एल्गोरिथ्म में विशाल कम्प्यूटेशनल समय हो सकता है। प्रतिवर्ती विधि का सिद्धांत उपयोग करना है:


# एसवी के आसपास के क्षेत्र में एक आगे कण ट्रैकिंग विधि |
# एसवी के आसपास के क्षेत्र में एक आगे कण ट्रैकिंग विधि |
# एसवी से बाहरी स्रोत तक एक बैकवर्ड कण ट्रैकिंग विधि।
# एसवी से बाहरी स्रोत तक एक बैकवर्ड कण ट्रैकिंग विधि।


[[File:Fastrad-reverse MC-Image3.png|thumb|चित्र 3) इलेक्ट्रॉनिक उपकरण पर प्रतिवर्ती मोंटे कार्लो गणना के दौरान इलेक्ट्रॉन ट्रैक का स्क्रीन शॉट।]]इलेक्ट्रॉन परिवहन के लिए प्रतिवर्ती मोंटे कार्लो विधि प्राथमिक इलेक्ट्रॉनों और द्वितीयक फोटॉनों के कारण ऊर्जा जमाव को ध्यान में रखती है।
[[File:Fastrad-reverse MC-Image3.png|thumb|चित्र 3) इलेक्ट्रॉनिक उपकरण पर प्रतिवर्ती मोंटे कार्लो गणना के समय इलेक्ट्रॉन ट्रैक का स्क्रीन शॉट।]]इलेक्ट्रॉन परिवहन के लिए प्रतिवर्ती मोंटे कार्लो विधि प्राथमिक इलेक्ट्रॉनों और द्वितीयक फोटॉनों के कारण ऊर्जा जमाव को ध्यान में रखती है।


मोंटे कार्लो मॉड्यूल को आगे के एल्गोरिदम के लिए [[GEANT4|जीईएनटी4]] परिणामों और प्रतिवर्ती विधि के लिए यूएस प्रारूप के साथ तुलना करके सफलतापूर्वक सत्यापित किया गया था।  उदाहरण एक उपग्रह संरचना में इलेक्ट्रॉनिक उपकरण के एक टुकड़े का मामला है। विकिरण वातावरण एक भूस्थैतिक मिशन (10 keV से 5 MeV तक) के इलेक्ट्रॉन ऊर्जा स्पेक्ट्रम से मेल खाता है।
मोंटे कार्लो मॉड्यूल को आगे के एल्गोरिदम के लिए [[GEANT4|जीईएनटी4]] परिणामों और प्रतिवर्ती विधि के लिए यूएस प्रारूप के साथ तुलना करके सफलतापूर्वक सत्यापित किया गया था।  उदाहरण एक उपग्रह संरचना में इलेक्ट्रॉनिक उपकरण के एक टुकड़े का स्थिति है। विकिरण वातावरण एक भूस्थैतिक मिशन (10 keV से 5 MeV तक) के इलेक्ट्रॉन ऊर्जा स्पेक्ट्रम से मेल खाता है।


भविष्य में, मोंटे कार्लो मॉड्यूल प्रोटॉन और पॉज़िट्रॉन का प्रबंधन करने में सक्षम होता है।
भविष्य में, मोंटे कार्लो मॉड्यूल प्रोटॉन और पॉज़िट्रॉन का प्रबंधन करने में सक्षम होता है।
Line 71: Line 71:
[[Geant4|जीईएनटी4]]  के लिए अंतरापृष्ठ
[[Geant4|जीईएनटी4]]  के लिए अंतरापृष्ठ


जीईएनटी4 वैज्ञानिकों और सॉफ्टवेयर इंजीनियरों के विश्वव्यापी सहयोग द्वारा बनाए रखा गया एक कण-पदार्थ इंटरैक्शन टूलकिट है। इस [[C++]] लाइब्रेरी में 3D ज्योमेट्री के माध्यम से कणों के ट्रैकिंग इंजन के साथ इंटरेक्शन क्रॉस सेक्शन डेटा और मॉडल की  विस्तृत श्रृंखला है।
जीईएनटी4 वैज्ञानिकों और सॉफ्टवेयर इंजीनियरों के विश्वव्यापी सहयोग द्वारा बनाए रखा गया एक कण-पदार्थ परस्पर क्रिया टूलकिट है। इस [[C++]] लाइब्रेरी में 3D ज्योमेट्री के माध्यम से कणों के ट्रैकिंग इंजन के साथ इंटरेक्शन क्रॉस सेक्शन डेटा और मॉडल की  विस्तृत श्रृंखला है।


फास्टराड सॉफ़्टवेयर में लागू किया गया जीईएनटी4 अंतरापृष्ठ 3D ज्यामिति बनाने, कण स्रोत को परिभाषित करने, भौतिकी सूची सेट करने और तैयार-से-संकलन जीईएनटी4 प्रोजेक्ट में सभी परिणामी स्रोत फ़ाइलों को बनाने में सक्षम उपकरण प्रदान करता है। यह उपकरण उन युवा इंजीनियरों के लिए उपयोगी है जिन्हें जीईएनटी4 दुनिया में ले जाने की आवश्यकता है, और जो फास्टराड को एक ट्यूटोरियल उपकरण के रूप में उपयोग कर सकते हैं, या ऐसे विशेषज्ञों के लिए जो ज्यामिति, सामग्री, का वर्णन करने वाली C++ फ़ाइलों के निर्माण पर समय नहीं लगाना चाहते हैं और बुनियादी भौतिकी और कौन फास्टराड द्वारा बनाई गई जीईएनटी4 परियोजना को एक आधार के रूप में उपयोग कर सकता है जिसे उनके भौतिक अनुप्रयोग के सापेक्ष विशिष्ट विशेषताओं द्वारा बढ़ाया जा सकता है। जीईएनटी4 अंतरापृष्ठ सॉफ्टवेयर को विकिरण संबंधी क्षेत्रों की  विस्तृत श्रृंखला देता है, क्योंकि जीईएनटी4 पहले से ही अंतरिक्ष, चिकित्सा, परमाणु, वैमानिकी और सैन्य अनुप्रयोगों के लिए उपयोग किया जाता है। इसकी सहज और शक्तिशाली विकिरण सीएडी क्षमताएं किसी भी विकिरण संवेदनशील प्रणाली विश्लेषण के लिए इंजीनियरिंग प्रक्रिया को सुविधाजनक बनाती हैं।
फास्टराड सॉफ़्टवेयर में लागू किया गया जीईएनटी4 अंतरापृष्ठ 3D ज्यामिति बनाने, कण स्रोत को परिभाषित करने, भौतिकी सूची समुच्चय करने और तैयार-से-संकलन जीईएनटी4 प्रोजेक्ट में सभी परिणामी स्रोत फ़ाइलों को बनाने में सक्षम उपकरण प्रदान करता है। यह उपकरण उन युवा इंजीनियरों के लिए उपयोगी है जिन्हें जीईएनटी4 दुनिया में ले जाने की आवश्यकता है, और जो फास्टराड को एक ट्यूटोरियल उपकरण के रूप में उपयोग कर सकते हैं, या ऐसे विशेषज्ञों के लिए जो ज्यामिति, सामग्री, का वर्णन करने वाली C++ फ़ाइलों के निर्माण पर समय नहीं लगाना चाहते हैं और बुनियादी भौतिकी और कौन फास्टराड द्वारा बनाई गई जीईएनटी4 परियोजना को एक आधार के रूप में उपयोग कर सकता है जिसे उनके भौतिक अनुप्रयोग के सापेक्ष विशिष्ट विशेषताओं द्वारा बढ़ाया जा सकता है। जीईएनटी4 अंतरापृष्ठ सॉफ्टवेयर को विकिरण संबंधी क्षेत्रों की  विस्तृत श्रृंखला देता है, क्योंकि जीईएनटी4 पहले से ही अंतरिक्ष, चिकित्सा, परमाणु, वैमानिकी और सैन्य अनुप्रयोगों के लिए उपयोग किया जाता है। इसकी सहज और शक्तिशाली विकिरण सीएडी क्षमताएं किसी भी विकिरण संवेदनशील प्रणाली विश्लेषण के लिए इंजीनियरिंग प्रक्रिया को सुविधाजनक बनाती हैं।


== विकिरण उपकरण ==
== विकिरण उपकरण ==

Revision as of 17:04, 22 April 2023

फास्टराड
Developer(s)फास्टराड सहयोग
Stable release
3.4 / जून 2014
Operating systemमल्टी-प्लेटफ़ॉर्म
Typeसीएडी सॉफ्टवेयर - कम्प्यूटेशनल भौतिकी
Licenseस्वामित्व
Websitewww.fastrad.net

फास्टराड इलेक्ट्रॉनिक्स पर विकिरण प्रभाव (मात्रा और विस्थापन क्षति) की गणना के लिए प्रतिबद्ध उपकरण है। उपकरण में किसी भी प्रणाली के प्रतिनिधित्व के लिए आवश्यक सभी क्षमताओं के साथ 3डी मॉडलिंग अंतरापृष्ठ सम्मिलित है। आवेदन क्षेत्रों में उच्च ऊर्जा भौतिकी और परमाणु प्रयोग, चिकित्सा, त्वरक और अंतरिक्ष भौतिकी अध्ययन सम्मिलित हैं। सॉफ्टवेयर का उपयोग दुनिया भर के विकिरण इंजीनियरों द्वारा किया जाता है।

यह सॉफ्टवेयर उन इंजीनियरों को प्रतिबद्ध है जिनके पास सीएडी अनुप्रयोगों में व्यापक अनुभव नहीं है। यह उपयोगकर्ता के अनुकूल

इतिहास

फास्टराड विकिरण संवेदनशील प्रणालियों के विश्लेषण और रचना के लिए प्रतिबद्ध विकिरण उपकरण है। परियोजना 1999 में बनाई गई थी और तब से इसमें लगातार सुधार किया जा रहा है। इस सॉफ्टवेयर को किसी भी विकिरण संबंधी क्षेत्र में लागू किया जा सकता है।

पिछले एक दशक में उपग्रह निर्माताओं के विकिरण सख्त आश्वासन में लगातार सुधार हुआ है। अनुपात बल/द्रव्यमान को बढ़ाने के लिए या तो यांत्रिक रचना के संदर्भ में अंतरिक्ष प्रणालियों का अनुकूलन, या इलेक्ट्रॉनिक उपकरणों का लघुकरण उन प्रणालियों की संवेदनशीलता को अंतरिक्ष विकिरण पर्यावरण में बढ़ाता है। विकिरण कठोरता प्रक्रिया पर प्रभाव को कम करने के लिए, प्रणाली पर वास्तविक विकिरण सटीक अनुमान द्वारा किसी न किसी परिरक्षण विश्लेषण को बदलने के लिए पहला समाधान है। यह निक्षिप्त मात्रा अनुमान के लिए फास्टराड द्वारा प्रदान किए गए समाधान के अनुरूप है।

सॉफ्टवेयर का मुख्य लक्ष्य परिरक्षण अनुकूलन के लिए यांत्रिक रचना परिवर्तनों के चक्र समय को कम करते हुए, विकिरण विश्लेषण के आकलन के रूढ़िवादी दृष्टिकोण से उपजी मार्जिन को कम करना है। कुछ स्थितियों में, इसका उपयोग गैर-रेड-हार्ड भागों के उपयोग को सही ठहराने और अंतरिक्ष कार्यक्रम उपकरण के लिए लागत और योजना को बचाने के लिए किया जा सकता है। इसकी विशेषताएं सीएडी आयात फाइलों, 3डी देखने और ज्यामिति निर्माण के उपयोग की अनुमति देती हैं।

अंतरिक्ष अनुप्रयोगों के लिए, यह सॉफ़्टवेयर प्लेटफ़ॉर्म संरचना से लेकर इलेक्ट्रॉनिक घटकों तक एक पूर्ण उपग्रह मॉडल पर विचार कर सकता है।

विकिरण सीएडी अंतरापृष्ठ

यह सॉफ्टवेयर उन इंजीनियरों को प्रतिबद्ध है जिनके पास सीएडी अनुप्रयोगों में व्यापक अनुभव नहीं है। यह उपयोगकर्ता के अनुकूल अंतरापृष्ठ सरल कार्यों का उपयोग करके 3डी विकिरण मॉडल बनाने के लिए विकसित किया गया था।

उपकरण की मुख्य सीएडी क्षमताएं हैं:

  • बॉक्स, गोले, बेलन, शंकु और त्रिकोणीय प्रिज्म का निर्माण |
  • आईएसओ 10303 या आईजीईएस प्रारूप फाइलों से आने वाली जटिल 3डी ज्यामिति का सम्मिलन |
  • मॉडलिंग उपकरण समुच्चय (क्लिपिंग प्लेन , 2डी प्रोजेक्शन, मेजरमेंट उपकरण, कलर्स, व्यू शॉट) |

सॉफ्टवेयर का मूल विकिरण 3डी मॉडलर है। इंजन का लक्ष्य भौतिक गुणों सहित किसी भी यांत्रिक रचना का यथार्थवादी मॉडल बनाना है। अंतरापृष्ठ का मुख्य भाग डिस्प्ले विंडो के लिए प्रतिबद्ध है जहां उपयोगकर्ता ज्यामिति में अस्तव्यस्तता कर सकता है।

3D ठोस को या तो घटक उपकरण का उपयोग करके या मानक स्टेप या आईजीईएस प्रारूप के साथ अन्य तृतीय पक्ष सॉफ़्टवेयर (केटिया, प्रो / इंजीनियर) से आयात करके परिभाषित किया जा सकता है। फास्टराड में सम्मिलित कैस्केड खोलें लाइब्रेरी कट ऑपरेशंस, कॉम्प्लेक्स शेप मैनेजमेंट और स्टेप और आईजीईएस एक्सचेंज फॉर्मेट मॉड्यूल जैसी उन्नत विज़ुअलाइज़ेशन क्षमताएं प्रदान करती है। उन्नत स्टेप मॉड्यूल आपको पदानुक्रम, नाम और रंग की जानकारी आयात करने की अनुमति देता है। पूर्ण 3D डिज़ाइनर मॉडल को तब फास्टराड (विज़ुअलाइज़ेशन, विकिरण गणना, पोस्ट-प्रोसेसिंग) द्वारा प्रबंधित किया जाता है। यह सॉफ्टवेयर आसानी से जटिल ज्यामिति को संभालता है और एक ही मॉडल में नैनोमीटर से 1024km तक विभिन्न लंबाई के मापदंड का प्रबंधन करता है.

चित्र 1) सामग्री परिभाषा मॉड्यूल के संवाद बॉक्स। एक इंटरैक्टिव आवधिक तत्व तालिका सामग्री निर्माण को आसान बनाती है।

विकिरण अनुप्रयोगों से संबंधित प्रमुख तत्व सामग्री प्रबंधन है। प्रतिबद्ध उपयोगकर्ता-अनुकूल अंतरापृष्ठ आपको 3डी मॉडल के प्रत्येक ठोस के भौतिक गुणों को समुच्चय करने की अनुमति देता है, जैसे कि इसकी रासायनिक संरचना का निर्धारण करके (यौगिक) सामग्री के प्रत्येक तत्व का घनत्व और द्रव्यमान अनुपात (चित्र 1 देखें) पूर्वनिर्धारित सामग्रियों की सूची उपयोगकर्ता द्वारा आसानी से बढ़ाई जा सकती है।

एक अन्य कार्यक्षमता संसूचको की स्थिति है। इन संसूचको को मॉडल में किसी भी स्थान पर रखा जा सकता है। इस तरह, 3डी मॉडल के किसी भी बिंदु पर कण-पदार्थ परस्पर क्रिया द्वारा ऊर्जा जमाव की ठीक गणना के लिए मोंटे कार्लो एल्गोरिथ्म का उपयोग करके विकिरण प्रभाव का अनुमान लगाया जा सकता है (नीचे "मात्रा गणना और परिरक्षण" देखें), या किरण-अनुरेखण के लिए दृष्टिकोण देखे।

इसके अलावा, इस सॉफ़्टवेयर का उपयोग देर से रचना परिवर्तन उपकरण पुन: उपयोग के अनुरूप है। रचना में बदलाव के लिए, केवल नई फाइलों को फास्टराड में आयात संशोधित किया जा सकता है। तब क्षेत्रीय विश्लेषण की प्रक्रिया हो सकती है। उपयोगकर्ता के अनुकूल ग्राफिकल अंतरापृष्ठ का उपयोग करके परिरक्षण दक्षता की प्रत्यक्ष गणना की जा सकती है और विभिन्न भागों के द्रव्यमान तक सीधी पहुंच संभव है ताकि परिरक्षण/द्रव्यमान वृद्धि व्यापार-बंद प्राप्त किया जा सके। उपकरण के पुन: उपयोग के लिए, निक्षिप्त मात्रा गणना के लिए प्रदान किए गए विकिरण पर्यावरण डेटा को केवल बदलना होता है।

3डी मॉडलिंग के किसी भी समय, उपयोगकर्ता वर्तमान सत्र के समय परिभाषित सभी सूचनाओं (ज्यामिति, सामग्री, संसूचको) के साथ अपने मॉडल को सहेज सकता है।

अंतरापृष्ठ में कई और सहायक सुविधाएँ (स्थानीय फ़्रेम डिस्प्ले, इंटरएक्टिव माप उपकरण, संदर्भ मेनू) सम्मिलित हैं। लक्ष्य सीएडी सॉफ्टवेयर प्रदान करना है जिसका उपयोग इंजीनियरों द्वारा किया जा सकता है जो विकिरण विश्लेषण पर अधिक समय बिताने के लिए मॉडलिंग समय को कम करना चाहते हैं।

मात्रा की गणना और परिरक्षण

एक बार 3डी रेडिएशन मॉडल हो जाने के बाद, उपयोगकर्ता सॉफ्टवेयर के सेक्टर विश्लेषण मॉड्यूल का उपयोग करके निक्षिप्त मात्रा का अनुमान लगा सकता है। यह किरण-अनुरेखण मॉड्यूल मात्रा गहराई वक्र का उपयोग करके विकिरण पर्यावरण की जानकारी के साथ विकिरण मॉडल से आने वाली जानकारी को जोड़ता है। यह मात्रा गहराई वक्र एल्यूमीनियम गोलाकार ढाल मोटाई के पीछे लक्ष्य सामग्री (मुख्य रूप से इलेक्ट्रॉनिक उपकरणों के लिए सिलिकॉन) में निक्षिप्त मात्रा देता है। यह गणना 3डी मॉडल में रखे गए प्रत्येक संसूचक के लिए की जाती है। यहां तक ​​कि जटिल ज्यामितियों के लिए भी उत्तम और त्वरित गणना दो प्रकार की जानकारी प्रदान करती है:

  • प्रत्येक संसूचक के चारों ओर 3डी वितरण द्रव्यमान |
  • आइसोट्रोपिक विकिरण वातावरण में अनुमानित निक्षिप्त मात्रा है |
चित्र 2) संपूर्ण उपग्रह विश्लेषण के समय फास्टराड उपकरण का स्क्रीनशॉट (सीएनईएस सौजन्य)

उन परिणामों के पोस्ट-प्रोसेसिंग का उपयोग करते हुए, फास्टराड कई देखने वाले प्रतिनिधित्व प्रकारों का उपयोग करके इष्टतम परिरक्षण स्थान के बारे में जानकारी प्रदान करता है। चित्र 2. एक इलेक्ट्रॉनिक बोर्ड के घटक द्वारा देखे गए बड़े मापदंड पर वितरण का मानचित्रण प्रस्तुत करता है। लाल क्षेत्र परिरक्षण मोटाई के संदर्भ में महत्वपूर्ण दिशाओं को संकेत करता है।

उपयोगकर्ता अतिरिक्त परिरक्षण के आकार को अनुकूलित करने में सक्षम है जिसका उपयोग अध्ययन किए गए संसूचक पर प्राप्त मात्रा को कम करने के लिए किया जा सकता है।

इस प्रक्रिया का मुख्य लाभ इस कार्य को पूरा करने के लिए आवश्यक कम समय और क्षेत्र विश्लेषण पोस्ट-प्रोसेसिंग द्वारा प्रदान किए गए अच्छी तरह से परिभाषित यांत्रिक परिरक्षण समाधान है।

मोंटे कार्लो एल्गोरिथम

सॉफ्टवेयर में मात्रा की गणना विशेष रूप से मोंटे कार्लो मॉड्यूल (सीएनईएस के साथ साझेदारी के माध्यम से विकसित) के साथ उत्तम है। इस एल्गोरिदम का उपयोग या तो आगे की प्रक्रिया में या प्रतिवर्ती में किया जा सकता है। पहली स्थिति में, सॉफ्टवेयर 3डी मॉडल में 1keV से 10 MeV तक इलेक्ट्रॉनों और फोटॉनों (द्वितीयक कणों सहित) के परिवहन का प्रबंधन करता है। द्वितीयक फोटॉनों और इलेक्ट्रॉनों के निर्माण को ध्यान में रखा जाता है। किसी भी प्रकार के ऊर्जा स्पेक्ट्रम और स्रोत ज्यामिति को परिभाषित किया जा सकता है। संवेदनशील मात्रा (SV) उपयोगकर्ता द्वारा चुनी जाती है और फास्टराड SV के अंदर निक्षिप्त ऊर्जा की गणना करता है। प्रतिवर्ती मोंटे कार्लो मॉड्यूल एक जटिल और बहु-स्तरीय ज्यामिति में इलेक्ट्रॉनों के आइसोट्रोपिक विकिरण के कारण मात्रा की गणना के लिए प्रतिबद्ध है, और इसके परिणामस्वरूप, आगे के एल्गोरिथ्म में विशाल कम्प्यूटेशनल समय हो सकता है। प्रतिवर्ती विधि का सिद्धांत उपयोग करना है:

  1. एसवी के आसपास के क्षेत्र में एक आगे कण ट्रैकिंग विधि |
  2. एसवी से बाहरी स्रोत तक एक बैकवर्ड कण ट्रैकिंग विधि।
चित्र 3) इलेक्ट्रॉनिक उपकरण पर प्रतिवर्ती मोंटे कार्लो गणना के समय इलेक्ट्रॉन ट्रैक का स्क्रीन शॉट।

इलेक्ट्रॉन परिवहन के लिए प्रतिवर्ती मोंटे कार्लो विधि प्राथमिक इलेक्ट्रॉनों और द्वितीयक फोटॉनों के कारण ऊर्जा जमाव को ध्यान में रखती है।

मोंटे कार्लो मॉड्यूल को आगे के एल्गोरिदम के लिए जीईएनटी4 परिणामों और प्रतिवर्ती विधि के लिए यूएस प्रारूप के साथ तुलना करके सफलतापूर्वक सत्यापित किया गया था। उदाहरण एक उपग्रह संरचना में इलेक्ट्रॉनिक उपकरण के एक टुकड़े का स्थिति है। विकिरण वातावरण एक भूस्थैतिक मिशन (10 keV से 5 MeV तक) के इलेक्ट्रॉन ऊर्जा स्पेक्ट्रम से मेल खाता है।

भविष्य में, मोंटे कार्लो मॉड्यूल प्रोटॉन और पॉज़िट्रॉन का प्रबंधन करने में सक्षम होता है।

जीईएनटी4 के लिए अंतरापृष्ठ

जीईएनटी4 वैज्ञानिकों और सॉफ्टवेयर इंजीनियरों के विश्वव्यापी सहयोग द्वारा बनाए रखा गया एक कण-पदार्थ परस्पर क्रिया टूलकिट है। इस C++ लाइब्रेरी में 3D ज्योमेट्री के माध्यम से कणों के ट्रैकिंग इंजन के साथ इंटरेक्शन क्रॉस सेक्शन डेटा और मॉडल की विस्तृत श्रृंखला है।

फास्टराड सॉफ़्टवेयर में लागू किया गया जीईएनटी4 अंतरापृष्ठ 3D ज्यामिति बनाने, कण स्रोत को परिभाषित करने, भौतिकी सूची समुच्चय करने और तैयार-से-संकलन जीईएनटी4 प्रोजेक्ट में सभी परिणामी स्रोत फ़ाइलों को बनाने में सक्षम उपकरण प्रदान करता है। यह उपकरण उन युवा इंजीनियरों के लिए उपयोगी है जिन्हें जीईएनटी4 दुनिया में ले जाने की आवश्यकता है, और जो फास्टराड को एक ट्यूटोरियल उपकरण के रूप में उपयोग कर सकते हैं, या ऐसे विशेषज्ञों के लिए जो ज्यामिति, सामग्री, का वर्णन करने वाली C++ फ़ाइलों के निर्माण पर समय नहीं लगाना चाहते हैं और बुनियादी भौतिकी और कौन फास्टराड द्वारा बनाई गई जीईएनटी4 परियोजना को एक आधार के रूप में उपयोग कर सकता है जिसे उनके भौतिक अनुप्रयोग के सापेक्ष विशिष्ट विशेषताओं द्वारा बढ़ाया जा सकता है। जीईएनटी4 अंतरापृष्ठ सॉफ्टवेयर को विकिरण संबंधी क्षेत्रों की विस्तृत श्रृंखला देता है, क्योंकि जीईएनटी4 पहले से ही अंतरिक्ष, चिकित्सा, परमाणु, वैमानिकी और सैन्य अनुप्रयोगों के लिए उपयोग किया जाता है। इसकी सहज और शक्तिशाली विकिरण सीएडी क्षमताएं किसी भी विकिरण संवेदनशील प्रणाली विश्लेषण के लिए इंजीनियरिंग प्रक्रिया को सुविधाजनक बनाती हैं।

विकिरण उपकरण

एक अन्य मॉड्यूल विकिरण डिज़ाइनर उपकरण है जो कमरे की ज्यामिति, स्रोत के प्रकार और गतिविधि और स्वीकार्य मात्रा दर पर विचार करके विकिरण कमरों की कंक्रीट की दीवार की मोटाई की गणना करता है।

तकनीकी विनिर्देश

फास्टराड को स्टेप आयात और बूलियन संचालन के लिए 3D और ओपेन कैस्केड लाइब्रेरी का प्रबंधन करने के लिए ओपनजीएल के साथ C++ का उपयोग करके विकसित किया गया था। ओएस एमुलेटर (पावरपीसी, वीएमवेयर) का उपयोग करके मैक और लिनक्स के तहत इसका परीक्षण किया गया था।

कंप्यूटर आवश्यकताएँ: कॉन्फ़िगरेशन: विंडोज विस्टा/एक्सपी/एनटी/2000 - 512 मो रैम - 50 मो एचडीडी।

यह भी देखें

  • नौसिखिया (ईएमपीसी) ([1])
  • जीईएनटी4 ज्यामिति और ट्रैकिंग
  • आईजीईएस "प्रारंभिक ग्राफिक्स एक्सचेंज विशिष्टता"
  • केटिया "कंप्यूटर एडेड त्रि-आयामी इंटरैक्टिव अनुप्रयोग"
  • अवरोधित हो जाना
  • रेएक्सपर्ट 3डी मॉडलाइजेशन सॉफ्टवेयर जो मोंटे कार्लो द्वारा गामा मात्रा दर की गणना करता है

संदर्भ

  • “फास्टराड V3.1: Radiation shielding tool with a new Monte Carlo module” by J.-C. THOMAS, P. POURROUQUET, P.-F. PEYRARD, D. LAVIELLE, R. ECOFFET(1), G. ROLLAND(1) - (1) CNES, 18 avenue Edouard Belin, 31401 TOULOUSE Cedex 9, France – April 2010
  • “फास्टराड: A 3D CAD Interface for radiation calculation and shielding“ by J.-C. THOMAS, T. BEUTIER, P. POURROUQUET, P.-F PEYRARD, D. LAVIELLE, C. CHATRY – April 2008


बाहरी संबंध