औसत प्रवास समय: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
किसी सिस्टम में किसी वस्तु के लिए | किसी सिस्टम में किसी वस्तु के लिए माध्य विराम अवधि (या कभी-कभी प्रतीक्षा अवधि) वह अवधि होता है जब किसी वस्तु को सिस्टम को अच्छे से छोड़ने से पहले सिस्टम में खर्च करने की उम्मीद की जाती है। | ||
== गणना == | == गणना == | ||
कल्पना कीजिए कि आप काउंटर पर टिकट खरीदने के लिए लाइन में खड़े हैं। यदि आप, एक मिनट के बाद, अपने पीछे आने वाले ग्राहकों की संख्या का निरीक्षण करते हैं, तो इसे प्रति यूनिट | कल्पना कीजिए कि आप काउंटर पर टिकट खरीदने के लिए लाइन में खड़े हैं। यदि आप, एक मिनट के बाद, अपने पीछे आने वाले ग्राहकों की संख्या का निरीक्षण करते हैं, तो इसे प्रति यूनिट अवधि (यहां, मिनट) में सिस्टम में प्रवेश करने वाले ग्राहकों की संख्या (यहां, प्रतीक्षा लाइन) के अनुमान के रूप में देखा जा सकता है। यदि आप ग्राहकों के इस "प्रवाह" के साथ आपके सामने ग्राहकों की संख्या को विभाजित करते हैं, तो आपने केवल उस प्रतीक्षा अवधि का अनुमान लगाया है जिसकी आपको अपेक्षा करनी चाहिए; यानी आपको काउंटर तक पहुंचने में कितना अवधि लगेगा, और वास्तव में यह एक मोटा अनुमान है। | ||
इसे औपचारिक रूप देने के लिए कुछ हद तक वेटिंग लाइन को सिस्टम S के रूप में माना जाता है जिसमें कणों (ग्राहकों) का प्रवाह होता है और जहाँ "टिकट खरीदने" की प्रक्रिया का अर्थ है कि कण सिस्टम को छोड़ देता है। जिस प्रतीक्षा | इसे औपचारिक रूप देने के लिए कुछ हद तक वेटिंग लाइन को सिस्टम S के रूप में माना जाता है जिसमें कणों (ग्राहकों) का प्रवाह होता है और जहाँ "टिकट खरीदने" की प्रक्रिया का अर्थ है कि कण सिस्टम को छोड़ देता है। जिस प्रतीक्षा अवधि पर हमने ऊपर विचार किया है उसे आमतौर पर पारगमन अवधि के रूप में जाना जाता है, और जिस प्रमेय को हमने लागू किया है उसे कभी-कभी लिटिल प्रमेय कहा जाता है, जिसे इस प्रकार तैयार किया जा सकता है: सिस्टम एस में कणों की अपेक्षित स्थिर स्थिति कणों के प्रवाह के बराबर होती है माध्य पारगमन अवधि के S गुना में। इसी तरह के प्रमेय अन्य क्षेत्रों में खोजे गए हैं, और शरीर विज्ञान में इसे पहले स्टीवर्ट-हैमिल्टन समीकरणों में से एक के रूप में जाना जाता था (उदाहरण के लिए अंगों के रक्त की मात्रा का अनुमान लगाने के लिए उपयोग किया जाता है)। | ||
यह सिद्धांत (या, प्रमेय) सामान्यीकृत किया जा सकता है। इस प्रकार, [[यूक्लिडियन अंतरिक्ष]] में परिमित आयतन के एक बंद डोमेन के रूप में एक प्रणाली एस पर विचार करें। और आगे हम उस स्थिति पर विचार करते हैं जहां एस में "समतुल्य" कणों की एक धारा होती है (प्रति | यह सिद्धांत (या, प्रमेय) सामान्यीकृत किया जा सकता है। इस प्रकार, [[यूक्लिडियन अंतरिक्ष]] में परिमित आयतन के एक बंद डोमेन के रूप में एक प्रणाली एस पर विचार करें। और आगे हम उस स्थिति पर विचार करते हैं जहां एस में "समतुल्य" कणों की एक धारा होती है (प्रति अवधि इकाई में कणों की संख्या) जहां प्रत्येक कण एस में रहते हुए अपनी पहचान बनाए रखता है और अंततः - एक सीमित अवधि के बाद - अपरिवर्तनीय रूप से सिस्टम छोड़ देता है ( यानी इन कणों के लिए सिस्टम "ओपन" है)। आंकड़ा | ||
[[Image:Mean sojourn time.JPG]]एक ऐसे कण के विचार गति इतिहास को दर्शाता है, जो इस प्रकार तीन बार सबसिस्टम में अंदर और बाहर चलता है, जिनमें से प्रत्येक का परिणाम पारगमन | [[Image:Mean sojourn time.JPG]]एक ऐसे कण के विचार गति इतिहास को दर्शाता है, जो इस प्रकार तीन बार सबसिस्टम में अंदर और बाहर चलता है, जिनमें से प्रत्येक का परिणाम पारगमन अवधि होता है, अर्थात् प्रवेश और निकास के बीच सबसिस्टम में बिताया गया अवधि। इन पारगमन अवधिों का योग उस विशेष कण के लिए s का विराम अवधि है। यदि कणों की गति को एक और एक ही स्टोकेस्टिक प्रक्रिया की प्राप्ति के रूप में देखा जाता है, तो इस प्रवास के अवधि के माध्य मूल्य की बात करना सार्थक है। अर्थात्, एक सबसिस्टम का माध्य विराम अवधि कुल अवधि है जब एक कण को सिस्टम एस को अच्छे के लिए छोड़ने से पहले सबसिस्टम में खर्च करने की उम्मीद की जाती है। | ||
इस मात्रा के व्यावहारिक महत्व को देखने के लिए हमें भौतिकी के एक नियम के रूप में स्वीकार करना चाहिए कि, यदि S में कणों की धारा स्थिर है और अन्य सभी प्रासंगिक कारकों को स्थिर रखा जाता है, तो S अंततः स्थिर अवस्था में पहुंच जाएगा (अर्थात कणों की संख्या और वितरण) S में हर जगह स्थिर है)। तब यह प्रदर्शित किया जा सकता है कि सबसिस्टम s में कणों की स्थिर अवस्था संख्या सिस्टम में कणों की धारा के बराबर होती है, जो सबसिस्टम के | इस मात्रा के व्यावहारिक महत्व को देखने के लिए हमें भौतिकी के एक नियम के रूप में स्वीकार करना चाहिए कि, यदि S में कणों की धारा स्थिर है और अन्य सभी प्रासंगिक कारकों को स्थिर रखा जाता है, तो S अंततः स्थिर अवस्था में पहुंच जाएगा (अर्थात कणों की संख्या और वितरण) S में हर जगह स्थिर है)। तब यह प्रदर्शित किया जा सकता है कि सबसिस्टम s में कणों की स्थिर अवस्था संख्या सिस्टम में कणों की धारा के बराबर होती है, जो सबसिस्टम के माध्य प्रवास अवधि के S गुना होती है। यह इस प्रकार एक अधिक सामान्य रूप है जिसे ऊपर लिटिल के प्रमेय के रूप में संदर्भित किया गया था, और इसे मास-टाइम समकक्ष कहा जा सकता है: | ||
: (एस में अपेक्षित स्थिर स्थिति राशि) = (एस में प्रवाह) (एस के प्रवास का | : (एस में अपेक्षित स्थिर स्थिति राशि) = (एस में प्रवाह) (एस के प्रवास का अवधि) | ||
जिसे कभी-कभी ऑक्यूपेंसी सिद्धांत कहा जाता है (जिसे यहां | जिसे कभी-कभी ऑक्यूपेंसी सिद्धांत कहा जाता है (जिसे यहां माध्य प्रवास अवधि कहा जाता है, उसे ऑक्यूपेंसी कहा जाता है; शायद यह सब भाग्यशाली शब्द नहीं है, क्योंकि यह सिस्टम एस में "साइटों" की एक निश्चित संख्या की उपस्थिति का सुझाव देता है)। सामूहिक अवधि की इस तुल्यता का उपयोग व्यक्तिगत अंगों के [[उपापचय]] के अध्ययन के लिए औषधियों में किया जाता है। | ||
फिर से, हम यहाँ एक सामान्यीकरण से निपटते हैं, जिसे क्यूइंग थ्योरी में कभी-कभी लिटिल के प्रमेय के रूप में संदर्भित किया जाता है, और यह महत्वपूर्ण है, केवल पूरे सिस्टम S पर लागू होता है (मास-टाइम समकक्ष के रूप में मनमाने ढंग से सबसिस्टम के लिए नहीं); लिटिल के प्रमेय में | फिर से, हम यहाँ एक सामान्यीकरण से निपटते हैं, जिसे क्यूइंग थ्योरी में कभी-कभी लिटिल के प्रमेय के रूप में संदर्भित किया जाता है, और यह महत्वपूर्ण है, केवल पूरे सिस्टम S पर लागू होता है (मास-टाइम समकक्ष के रूप में मनमाने ढंग से सबसिस्टम के लिए नहीं); लिटिल के प्रमेय में माध्य प्रवास अवधि को माध्य पारगमन अवधि के रूप में व्याख्या किया जा सकता है। | ||
जैसा कि ऊपर दिए गए आंकड़े की चर्चा से स्पष्ट होना चाहिए, दो मात्राओं के अर्थ के बीच एक मौलिक अंतर है, | जैसा कि ऊपर दिए गए आंकड़े की चर्चा से स्पष्ट होना चाहिए, दो मात्राओं के अर्थ के बीच एक मौलिक अंतर है, अवधि और पारगमन अवधि: जन-अवधि की समानता की धारणा के विशेष अर्थ के कारण बहुत अधिक है ठहरने का अवधि। जब पूरी प्रणाली पर विचार किया जाता है (जैसा कि लिटिल के प्रमेय में है) क्या यह सच है कि प्रवास का अवधि हमेशा पारगमन अवधि के बराबर होता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 14:45, 29 March 2023
किसी सिस्टम में किसी वस्तु के लिए माध्य विराम अवधि (या कभी-कभी प्रतीक्षा अवधि) वह अवधि होता है जब किसी वस्तु को सिस्टम को अच्छे से छोड़ने से पहले सिस्टम में खर्च करने की उम्मीद की जाती है।
गणना
कल्पना कीजिए कि आप काउंटर पर टिकट खरीदने के लिए लाइन में खड़े हैं। यदि आप, एक मिनट के बाद, अपने पीछे आने वाले ग्राहकों की संख्या का निरीक्षण करते हैं, तो इसे प्रति यूनिट अवधि (यहां, मिनट) में सिस्टम में प्रवेश करने वाले ग्राहकों की संख्या (यहां, प्रतीक्षा लाइन) के अनुमान के रूप में देखा जा सकता है। यदि आप ग्राहकों के इस "प्रवाह" के साथ आपके सामने ग्राहकों की संख्या को विभाजित करते हैं, तो आपने केवल उस प्रतीक्षा अवधि का अनुमान लगाया है जिसकी आपको अपेक्षा करनी चाहिए; यानी आपको काउंटर तक पहुंचने में कितना अवधि लगेगा, और वास्तव में यह एक मोटा अनुमान है।
इसे औपचारिक रूप देने के लिए कुछ हद तक वेटिंग लाइन को सिस्टम S के रूप में माना जाता है जिसमें कणों (ग्राहकों) का प्रवाह होता है और जहाँ "टिकट खरीदने" की प्रक्रिया का अर्थ है कि कण सिस्टम को छोड़ देता है। जिस प्रतीक्षा अवधि पर हमने ऊपर विचार किया है उसे आमतौर पर पारगमन अवधि के रूप में जाना जाता है, और जिस प्रमेय को हमने लागू किया है उसे कभी-कभी लिटिल प्रमेय कहा जाता है, जिसे इस प्रकार तैयार किया जा सकता है: सिस्टम एस में कणों की अपेक्षित स्थिर स्थिति कणों के प्रवाह के बराबर होती है माध्य पारगमन अवधि के S गुना में। इसी तरह के प्रमेय अन्य क्षेत्रों में खोजे गए हैं, और शरीर विज्ञान में इसे पहले स्टीवर्ट-हैमिल्टन समीकरणों में से एक के रूप में जाना जाता था (उदाहरण के लिए अंगों के रक्त की मात्रा का अनुमान लगाने के लिए उपयोग किया जाता है)।
यह सिद्धांत (या, प्रमेय) सामान्यीकृत किया जा सकता है। इस प्रकार, यूक्लिडियन अंतरिक्ष में परिमित आयतन के एक बंद डोमेन के रूप में एक प्रणाली एस पर विचार करें। और आगे हम उस स्थिति पर विचार करते हैं जहां एस में "समतुल्य" कणों की एक धारा होती है (प्रति अवधि इकाई में कणों की संख्या) जहां प्रत्येक कण एस में रहते हुए अपनी पहचान बनाए रखता है और अंततः - एक सीमित अवधि के बाद - अपरिवर्तनीय रूप से सिस्टम छोड़ देता है ( यानी इन कणों के लिए सिस्टम "ओपन" है)। आंकड़ा
File:Mean sojourn time.JPGएक ऐसे कण के विचार गति इतिहास को दर्शाता है, जो इस प्रकार तीन बार सबसिस्टम में अंदर और बाहर चलता है, जिनमें से प्रत्येक का परिणाम पारगमन अवधि होता है, अर्थात् प्रवेश और निकास के बीच सबसिस्टम में बिताया गया अवधि। इन पारगमन अवधिों का योग उस विशेष कण के लिए s का विराम अवधि है। यदि कणों की गति को एक और एक ही स्टोकेस्टिक प्रक्रिया की प्राप्ति के रूप में देखा जाता है, तो इस प्रवास के अवधि के माध्य मूल्य की बात करना सार्थक है। अर्थात्, एक सबसिस्टम का माध्य विराम अवधि कुल अवधि है जब एक कण को सिस्टम एस को अच्छे के लिए छोड़ने से पहले सबसिस्टम में खर्च करने की उम्मीद की जाती है।
इस मात्रा के व्यावहारिक महत्व को देखने के लिए हमें भौतिकी के एक नियम के रूप में स्वीकार करना चाहिए कि, यदि S में कणों की धारा स्थिर है और अन्य सभी प्रासंगिक कारकों को स्थिर रखा जाता है, तो S अंततः स्थिर अवस्था में पहुंच जाएगा (अर्थात कणों की संख्या और वितरण) S में हर जगह स्थिर है)। तब यह प्रदर्शित किया जा सकता है कि सबसिस्टम s में कणों की स्थिर अवस्था संख्या सिस्टम में कणों की धारा के बराबर होती है, जो सबसिस्टम के माध्य प्रवास अवधि के S गुना होती है। यह इस प्रकार एक अधिक सामान्य रूप है जिसे ऊपर लिटिल के प्रमेय के रूप में संदर्भित किया गया था, और इसे मास-टाइम समकक्ष कहा जा सकता है:
- (एस में अपेक्षित स्थिर स्थिति राशि) = (एस में प्रवाह) (एस के प्रवास का अवधि)
जिसे कभी-कभी ऑक्यूपेंसी सिद्धांत कहा जाता है (जिसे यहां माध्य प्रवास अवधि कहा जाता है, उसे ऑक्यूपेंसी कहा जाता है; शायद यह सब भाग्यशाली शब्द नहीं है, क्योंकि यह सिस्टम एस में "साइटों" की एक निश्चित संख्या की उपस्थिति का सुझाव देता है)। सामूहिक अवधि की इस तुल्यता का उपयोग व्यक्तिगत अंगों के उपापचय के अध्ययन के लिए औषधियों में किया जाता है।
फिर से, हम यहाँ एक सामान्यीकरण से निपटते हैं, जिसे क्यूइंग थ्योरी में कभी-कभी लिटिल के प्रमेय के रूप में संदर्भित किया जाता है, और यह महत्वपूर्ण है, केवल पूरे सिस्टम S पर लागू होता है (मास-टाइम समकक्ष के रूप में मनमाने ढंग से सबसिस्टम के लिए नहीं); लिटिल के प्रमेय में माध्य प्रवास अवधि को माध्य पारगमन अवधि के रूप में व्याख्या किया जा सकता है।
जैसा कि ऊपर दिए गए आंकड़े की चर्चा से स्पष्ट होना चाहिए, दो मात्राओं के अर्थ के बीच एक मौलिक अंतर है, अवधि और पारगमन अवधि: जन-अवधि की समानता की धारणा के विशेष अर्थ के कारण बहुत अधिक है ठहरने का अवधि। जब पूरी प्रणाली पर विचार किया जाता है (जैसा कि लिटिल के प्रमेय में है) क्या यह सच है कि प्रवास का अवधि हमेशा पारगमन अवधि के बराबर होता है।
यह भी देखें
- एर्गोडिक सिद्धांत
- कतारबद्ध सिद्धांत
- मुक्त पथ मतलब