बहुरेखीय रूप: Difference between revisions
No edit summary |
No edit summary |
||
Line 36: | Line 36: | ||
अतिरिक्त परिकल्पना के साथ कि [[विशेषता (फ़ील्ड)|विशेषता (क्षेत्र )]] <math>K</math> 2 नहीं है, सेटिंग <math>x_p=x_q=x </math> परिणाम के रूप में तात्पर्य है कि <math>f(x_1,\ldots, x,\ldots, x,\ldots, x_k) = 0 </math>; अर्थात, जब भी इसके दो तर्क सामान्य होते हैं, तो प्रपत्र का मान 0 होता है। चूँकि, ध्यान दें कि कुछ लेखक<ref>{{Cite book|title=परिमित-आयामी वेक्टर रिक्त स्थान|last=Halmos|first=Paul R.|publisher=Van Nostrand|year=1958|isbn=0-387-90093-4|edition=2nd |pages=50}}</ref> वैकल्पिक रूपों की परिभाषित संपत्ति के रूप में इस अंतिम स्थिति का उपयोग करें। इस परिभाषा का तात्पर्य खंड की शुरुआत में दी गई संपत्ति से है, किन्तु जैसा कि ऊपर उल्लेख किया गया है, विपरीत निहितार्थ तभी होता है जब <math>\operatorname{char}(K)\neq 2 </math>. | अतिरिक्त परिकल्पना के साथ कि [[विशेषता (फ़ील्ड)|विशेषता (क्षेत्र )]] <math>K</math> 2 नहीं है, सेटिंग <math>x_p=x_q=x </math> परिणाम के रूप में तात्पर्य है कि <math>f(x_1,\ldots, x,\ldots, x,\ldots, x_k) = 0 </math>; अर्थात, जब भी इसके दो तर्क सामान्य होते हैं, तो प्रपत्र का मान 0 होता है। चूँकि, ध्यान दें कि कुछ लेखक<ref>{{Cite book|title=परिमित-आयामी वेक्टर रिक्त स्थान|last=Halmos|first=Paul R.|publisher=Van Nostrand|year=1958|isbn=0-387-90093-4|edition=2nd |pages=50}}</ref> वैकल्पिक रूपों की परिभाषित संपत्ति के रूप में इस अंतिम स्थिति का उपयोग करें। इस परिभाषा का तात्पर्य खंड की शुरुआत में दी गई संपत्ति से है, किन्तु जैसा कि ऊपर उल्लेख किया गया है, विपरीत निहितार्थ तभी होता है जब <math>\operatorname{char}(K)\neq 2 </math>. | ||
<math>\R</math> पर <math>V</math> पर एक वैकल्पिक मल्टीलाइनर <math>k</math>-फॉर्म को डिग्री <math>k</math> या <math>k</math>-कोवेक्टर का मल्टीकोवेक्टर कहा जाता है, और ऐसे वैकल्पिक रूपों का वेक्टर स्पेस, एक सबस्पेस <math>\mathcal{T}^k(V)</math>, को आम तौर पर<math>\mathcal{A}^k(V)</math>, या आइसोमॉर्फिक kth के लिए संकेतन का उपयोग करके निरूपित किया जाता है <math>V^*</math>(<math>V</math>की दोहरी जगह) की बाहरी शक्ति <math display="inline">\bigwedge^k V^*</math> <ref>Spivak uses <math>\Omega^k(V)</math> for the space of <math>k</math>-covectors on <math>V</math>. However, this notation is more commonly reserved for the space of differential <math>k</math>-forms on <math>V</math>. In this article, we use <math>\Omega^k(V)</math> to mean the latter.</ref> ध्यान दें कि रैखिक कार्यात्मक <math>\R</math> पर बहुरेखीय 1-रूप) तुच्छ रूप से वैकल्पिक हैं, जिससे <math>\mathcal{A}^1(V)=\mathcal{T}^1(V)=V^*</math>, जबकि, परिपाटी के अनुसार, 0-रूपों को अदिश <math>\mathcal{A}^0(V)=\mathcal{T}^0(V)=\R</math> के रूप में परिभाषित किया गया है। | |||
निर्धारक चालू <math>n\times n</math> मेट्रिसेस, के रूप में देखा <math>n</math> स्तंभ वैक्टर का तर्क कार्य, वैकल्पिक बहुरेखीय रूप का महत्वपूर्ण उदाहरण है। | निर्धारक चालू <math>n\times n</math> मेट्रिसेस, के रूप में देखा <math>n</math> स्तंभ वैक्टर का तर्क कार्य, वैकल्पिक बहुरेखीय रूप का महत्वपूर्ण उदाहरण है। | ||
Line 45: | Line 45: | ||
: <math>(f\wedge g)(v_1,\ldots, v_{k+\ell})=\frac{1}{k!\ell!}\sum_{\sigma\in S_{k+\ell}} (\sgn(\sigma)) f(v_{\sigma(1)}, \ldots, v_{\sigma(k)})g(v_{\sigma(k+1)} | : <math>(f\wedge g)(v_1,\ldots, v_{k+\ell})=\frac{1}{k!\ell!}\sum_{\sigma\in S_{k+\ell}} (\sgn(\sigma)) f(v_{\sigma(1)}, \ldots, v_{\sigma(k)})g(v_{\sigma(k+1)} | ||
,\ldots,v_{\sigma(k+\ell)}),</math> | ,\ldots,v_{\sigma(k+\ell)}),</math> | ||
जहां | जहां <math>k+\ell</math> तत्वों, <math>S_{k+\ell}</math> पर सभी क्रमपरिवर्तनों के समूहपर योग लिया जाता है। बाहरी उत्पाद द्विरेखीय, साहचर्य और श्रेणीबद्ध-वैकल्पिक है: यदि <math>f\in\mathcal{A}^k(V)</math> और <math>g\in\mathcal{A}^\ell(V)</math> फिर <math>f\wedge g=(-1)^{k\ell}g\wedge f</math> है। | ||
आधार | <math>V</math> के लिए आधार <math>(v_1,\ldots, v_n)</math> और <math>(\phi^1,\ldots,\phi^n)</math> के लिए दोहरा आधार <math>V^*=\mathcal{A}^1(V)</math> दिया गया है, बाहरी उत्पाद <math>\phi^{i_1}\wedge\cdots\wedge\phi^{i_k}</math>, <math>1\leq i_1<\cdots<i_k\leq n</math> के साथ <math>\mathcal{A}^k(V)</math> के लिए एक आधार बनाते हैं। इसलिए, n-विम <math>V</math> के लिए <math>\mathcal{A}^k(V)</math> की विमीयता <math display="inline">\tbinom{n}{k}=\frac{n!}{(n-k)!\,k!}</math> है। | ||
=== विभेदक रूप === | === विभेदक रूप === | ||
{{main|विभेदक रूप}} | {{main|विभेदक रूप}} | ||
विभेदक रूप गणितीय वस्तुएं हैं जो स्पर्शरेखा रिक्त स्थान और बहु-रेखीय रूपों के माध्यम से निर्मित होती हैं, जो कई तरह से व्यवहार करती हैं, जैसे मौलिक अर्थों में कार्य का अंतर। चूंकि संकल्पनात्मक और कम्प्यूटेशनल रूप से उपयोगी, अंतर कलन के इतिहास में प्रारंभिक रूप से विकसित अपरिमित मात्राओं की अ-परिभाषित धारणाओं पर आधारित हैं। विभेदक रूप लंबे समय से चले आ रहे इस विचार को आधुनिक बनाने के लिए गणितीय रूप से कठोर और स्पष्ट रूपरेखा प्रदान करते हैं। विभेदक रूप विशेष रूप से [[बहुभिन्नरूपी कैलकुलस]] (विश्लेषण) और विभेदक ज्यामिति में उपयोगी होते हैं क्योंकि उनके पास परिवर्तन गुण होते हैं जो उन्हें घटता, सतहों और उनके उच्च-आयामी एनालॉग्स (भिन्नात्मक कई गुना) पर एकीकृत करने की अनुमति देते हैं। दूरगामी अनुप्रयोग स्टोक्स प्रमेय का आधुनिक कथन है, उच्च आयामों के लिए कलन के मौलिक प्रमेय का व्यापक | विभेदक रूप गणितीय वस्तुएं हैं जो स्पर्शरेखा रिक्त स्थान और बहु-रेखीय रूपों के माध्यम से निर्मित होती हैं, जो कई तरह से व्यवहार करती हैं, जैसे मौलिक अर्थों में कार्य का अंतर। चूंकि संकल्पनात्मक और कम्प्यूटेशनल रूप से उपयोगी, अंतर कलन के इतिहास में प्रारंभिक रूप से विकसित अपरिमित मात्राओं की अ-परिभाषित धारणाओं पर आधारित हैं। विभेदक रूप लंबे समय से चले आ रहे इस विचार को आधुनिक बनाने के लिए गणितीय रूप से कठोर और स्पष्ट रूपरेखा प्रदान करते हैं। विभेदक रूप विशेष रूप से [[बहुभिन्नरूपी कैलकुलस]] (विश्लेषण) और विभेदक ज्यामिति में उपयोगी होते हैं क्योंकि उनके पास परिवर्तन गुण होते हैं जो उन्हें घटता, सतहों और उनके उच्च-आयामी एनालॉग्स (भिन्नात्मक कई गुना) पर एकीकृत करने की अनुमति देते हैं। दूरगामी अनुप्रयोग स्टोक्स प्रमेय का आधुनिक कथन है, उच्च आयामों के लिए कलन के मौलिक प्रमेय का व्यापक सामान्यीकरण है। | ||
नीचे दिया गया सार मुख्य रूप से स्पिवक (1965)<ref>{{Cite book|url=https://archive.org/details/SpivakM.CalculusOnManifoldsPerseus2006Reprint|title=कई गुना पर पथरी|last=Spivak|first=Michael|publisher=W. A. Benjamin, Inc.|year=1965|isbn=0805390219 |pages=75–146}}</ref> और तू (2011) पर आधारित है। <ref name=":0" /> | नीचे दिया गया सार मुख्य रूप से स्पिवक (1965)<ref>{{Cite book|url=https://archive.org/details/SpivakM.CalculusOnManifoldsPerseus2006Reprint|title=कई गुना पर पथरी|last=Spivak|first=Michael|publisher=W. A. Benjamin, Inc.|year=1965|isbn=0805390219 |pages=75–146}}</ref> और तू (2011) पर आधारित है। <ref name=":0" /> | ||
Line 59: | Line 59: | ||
==== विभेदक k- रूपों की परिभाषा और 1-रूपों का निर्माण ==== | ==== विभेदक k- रूपों की परिभाषा और 1-रूपों का निर्माण ==== | ||
खुले | खुले उपसमुच्चयों <math>U\subset\R^n</math> पर विभेदक रूपों को परिभाषित करने के लिए, हमें सबसे पहले <math>p</math> पर <math>\R^n</math> की स्पर्शरेखा स्थान की धारणा की आवश्यकता होती है, जिसे सामान्यतः <math>T_p\R^n</math> या <math>\R^n_p</math>। सदिश स्थान <math>\R^n_p</math> को तत्वों के सेट के रूप में सबसे आसानी से परिभाषित किया जा सकता है <math>v_p</math> (<math>v\in\R^n</math>, <math>v_p+w_p:=(v+w)_p</math> और <math>p\in\R^n</math> फिक्स्ड) सदिश जोड़ और स्केलर गुणन के साथ <math>a\cdot(v_p):=(a\cdot v)_p</math>, क्रमशः। इसके अतिरिक्त , यदि <math>(e_1,\ldots,e_n)</math><math>\R^n</math> के लिए मानक आधार है, तो <math>((e_1)_p,\ldots,(e_n)_p)</math><math>\R^n_p</math> के लिए समान मानक आधार है। दूसरे शब्दों में, प्रत्येक स्पर्शरेखा स्थान <math>\R^n_p</math> को केवल <math>\R^n</math> (स्पर्शरेखा सदिशों का एक सेट) की एक प्रति के रूप में माना जा सकता है बिंदु <math>p</math>। <math>\R^n</math> की स्पर्शरेखा रिक्त स्थान का संग्रह (विच्छिन्न संघ) बिल्कुल<math>p\in\R^n</math> को <math>\R^n</math> के स्पर्शरेखा बंडल के रूप में जाना जाता है। और सामान्यतः <math display="inline">T\R^n:=\bigcup_{p\in\R^n}\R^n_p</math>। जबकि यहाँ दी गई परिभाषा <math>\R^n</math> के स्पर्शरेखा स्थान का एक सरल विवरण प्रदान करती है, वहाँ अन्य, अधिक परिष्कृत निर्माण हैं जो सामान्य रूप से चिकनी मैनिफोल्ड्स के स्पर्शरेखा रिक्त स्थान को परिभाषित करने के लिए बेहतर अनुकूल हैं (पर लेख देखें) विवरण के लिए स्पर्शरेखा रिक्त स्थान है)। | ||
<math>U\subset\R^n</math> पर डिफरेंशियल <math>\boldsymbol{k}</math>-फॉर्म को एक फंक्शन <math>\omega</math> के रूप में परिभाषित किया गया है जो टेंगेंट पर हर <math>p\in U</math> a <math>k</math>-कोवेक्टोर को असाइन करता है। <math>p</math> पर <math>\R^n</math> की जगह, आमतौर पर <math>\omega_p:=\omega(p)\in\mathcal{A}^k(\R^n_p)</math>। संक्षेप में, एक विभेदक <math>k</math>-रूप एक <math>k</math>-वेक्टर क्षेत्र है। <math>U</math> पर <math>k</math>-फॉर्म का स्थान आमतौर पर <math>\Omega^k(U)</math>; इस प्रकार यदि <math>\omega</math> एक विभेदक <math>k</math>-रूप है, तो हम <math>\omega\in\Omega^k(U)</math> लिखते हैं। परिपाटी के अनुसार, <math>U</math> पर एक सतत फलन अवकल 0-रूप: <math>f\in C^0(U)=\Omega^0(U)</math> है। | |||
हम पहले 0-रूपों से विभेदक 1-रूपों का निर्माण करते हैं और उनके कुछ मूलभूत गुणों को निकालते हैं। नीचे दी गई चर्चा को सरल बनाने के लिए, हम केवल चिकनेपन से निर्मित [[चिकनाई]] अंतर रूपों पर विचार करेंगे (<math>C^\infty</math>) कार्य करता है। होने देना <math>f:\R^n\to\R</math> सुचारू कार्य हो। हम 1-रूप को परिभाषित करते हैं <math>df</math> पर <math>U</math> के लिए <math>p\in U</math> और <math>v_p\in\R^n_p</math> द्वारा <math>(df)_p(v_p):=Df|_p(v)</math>, जहाँ <math>Df|_p:\R^n\to\R</math> का कुल योग है <math>f</math> पर <math>p</math>. (याद रखें कि कुल व्युत्पन्न रैखिक परिवर्तन है।) विशेष रुचि के प्रक्षेपण मानचित्र हैं (जिन्हें समन्वय कार्यों के रूप में भी जाना जाता है) <math>\pi^i:\R^n\to\R</math>, द्वारा परिभाषित <math>x\mapsto x^i</math>, जहाँ <math>x^i</math> का i मानक निर्देशांक है <math>x\in\R^n</math>. 1-रूप <math>d\pi^i</math> मूलभूत 1-रूपों के रूप में जाने जाते हैं; वे पारंपरिक रूप से निरूपित हैं <math>dx^i</math>. यदि मानक निर्देशांक <math>v_p\in\R^n_p</math> हैं <math>(v^1,\ldots, v^n)</math>, फिर की परिभाषा का अनुप्रयोग <math>df</math> पैदावार <math>dx^i_p(v_p)=v^i</math>, जिससे <math>dx^i_p((e_j)_p)=\delta_j^i</math>, जहाँ <math>\delta^i_j</math> [[क्रोनकर डेल्टा]] है।<ref>The Kronecker delta is usually denoted by <math>\delta_{ij}=\delta(i,j)</math> and defined as <math display="inline">\delta:X\times X\to\{0,1\},\ (i,j)\mapsto \begin{cases} 1, & i=j \\ 0, & i\neq j \end{cases}</math>. Here, the notation <math>\delta^i_j</math> is used to conform to the tensor calculus convention on the use of upper and lower indices. </ref> इस प्रकार, के लिए मानक आधार के दोहरे के रूप में <math>\R^n_p</math>, <math>(dx^1_p,\ldots,dx^n_p)</math> का आधार बनता है <math>\mathcal{A}^1(\R^n_p)=(\R^n_p)^*</math>. परिणामस्वरूप यदि <math>\omega</math> 1-फॉर्म ऑन है <math>U</math>, तब <math>\omega</math> रूप में लिखा जा सकता है <math display="inline">\sum a_i\,dx^i</math> सुचारू कार्यों के लिए <math>a_i:U\to\R</math>. इसके अतिरिक्त , हम के लिए अभिव्यक्ति प्राप्त कर सकते हैं <math>df</math> कुल अंतर के लिए मौलिक अभिव्यक्ति के साथ मेल खाता है: | '''हम पहले''' 0-रूपों से विभेदक 1-रूपों का निर्माण करते हैं और उनके कुछ मूलभूत गुणों को निकालते हैं। नीचे दी गई चर्चा को सरल बनाने के लिए, हम केवल चिकनेपन से निर्मित [[चिकनाई]] अंतर रूपों पर विचार करेंगे (<math>C^\infty</math>) कार्य करता है। होने देना <math>f:\R^n\to\R</math> सुचारू कार्य हो। हम 1-रूप को परिभाषित करते हैं <math>df</math> पर <math>U</math> के लिए <math>p\in U</math> और <math>v_p\in\R^n_p</math> द्वारा <math>(df)_p(v_p):=Df|_p(v)</math>, जहाँ <math>Df|_p:\R^n\to\R</math> का कुल योग है <math>f</math> पर <math>p</math>. (याद रखें कि कुल व्युत्पन्न रैखिक परिवर्तन है।) विशेष रुचि के प्रक्षेपण मानचित्र हैं (जिन्हें समन्वय कार्यों के रूप में भी जाना जाता है) <math>\pi^i:\R^n\to\R</math>, द्वारा परिभाषित <math>x\mapsto x^i</math>, जहाँ <math>x^i</math> का i मानक निर्देशांक है <math>x\in\R^n</math>. 1-रूप <math>d\pi^i</math> मूलभूत 1-रूपों के रूप में जाने जाते हैं; वे पारंपरिक रूप से निरूपित हैं <math>dx^i</math>. यदि मानक निर्देशांक <math>v_p\in\R^n_p</math> हैं <math>(v^1,\ldots, v^n)</math>, फिर की परिभाषा का अनुप्रयोग <math>df</math> पैदावार <math>dx^i_p(v_p)=v^i</math>, जिससे <math>dx^i_p((e_j)_p)=\delta_j^i</math>, जहाँ <math>\delta^i_j</math> [[क्रोनकर डेल्टा]] है।<ref>The Kronecker delta is usually denoted by <math>\delta_{ij}=\delta(i,j)</math> and defined as <math display="inline">\delta:X\times X\to\{0,1\},\ (i,j)\mapsto \begin{cases} 1, & i=j \\ 0, & i\neq j \end{cases}</math>. Here, the notation <math>\delta^i_j</math> is used to conform to the tensor calculus convention on the use of upper and lower indices. </ref> इस प्रकार, के लिए मानक आधार के दोहरे के रूप में <math>\R^n_p</math>, <math>(dx^1_p,\ldots,dx^n_p)</math> का आधार बनता है <math>\mathcal{A}^1(\R^n_p)=(\R^n_p)^*</math>. परिणामस्वरूप यदि <math>\omega</math> 1-फॉर्म ऑन है <math>U</math>, तब <math>\omega</math> रूप में लिखा जा सकता है <math display="inline">\sum a_i\,dx^i</math> सुचारू कार्यों के लिए <math>a_i:U\to\R</math>. इसके अतिरिक्त , हम के लिए अभिव्यक्ति प्राप्त कर सकते हैं <math>df</math> कुल अंतर के लिए मौलिक अभिव्यक्ति के साथ मेल खाता है: | ||
: <math>df=\sum_{i=1}^n D_i f\; dx^i={\partial f\over\partial x^1} \, dx^1+\cdots+{\partial f\over\partial x^n} \, dx^n.</math> | : <math>df=\sum_{i=1}^n D_i f\; dx^i={\partial f\over\partial x^1} \, dx^1+\cdots+{\partial f\over\partial x^n} \, dx^n.</math> | ||
[नोटेशन पर टिप्पणियाँ: इस लेख में, हम [[टेंसर कैलकुलेशन|टेंसर गणना]] और डिफरेंशियल ज्योमेट्री के कन्वेंशन का पालन करते हैं जिसमें मल्टीवैक्टर और मल्टीकोवेक्टर क्रमशः निचले और ऊपरी सूचकांकों के साथ लिखे जाते हैं। चूंकि विभेदक रूप बहुवेक्टर क्षेत्र हैं, इसलिए उन्हें अनुक्रमित करने के लिए ऊपरी सूचकांकों को नियोजित किया जाता है।<ref name=":0" /> विपरीत नियम मल्टीवैक्टर और मल्टीकोक्टर के घटकों पर प्रयुक्त होता है, जो क्रमशः ऊपरी और निचले सूचकांकों के साथ लिखे जाते हैं। उदाहरण के लिए, हम वेक्टर के मानक निर्देशांक का प्रतिनिधित्व करते हैं <math>v\in\R^n</math> जैसा <math>(v^1,\ldots,v^n)</math>, जिससे <math display="inline">v=\sum_{i=1}^n v^ie_i</math> मानक आधार के संदर्भ में <math>(e_1,\ldots,e_n)</math>. इसके अतिरिक्त , अभिव्यक्ति के भाजक में दिखाई देने वाली सुपरस्क्रिप्ट (जैसा कि <math display="inline">\frac{\partial f}{\partial x^i}</math>) को इस परिपाटी में निम्न सूचकांकों के रूप में माना जाता है। जब सूचकांकों को इस तरीके से प्रयुक्त और व्याख्या किया जाता है, तो ऊपरी सूचकांकों की संख्या घटाकर अभिव्यक्ति के प्रत्येक शब्द में निचले सूचकांकों की संख्या को संरक्षित किया जाता है, योग के अंदर और समान चिह्न के अंदर, सुविधा जो उपयोगी स्मरक उपकरण के रूप में कार्य करती है और मैन्युअल संगणना के समय की गई त्रुटियों को इंगित करने में सहायता करता है।] | [नोटेशन पर टिप्पणियाँ: इस लेख में, हम [[टेंसर कैलकुलेशन|टेंसर गणना]] और डिफरेंशियल ज्योमेट्री के कन्वेंशन का पालन करते हैं जिसमें मल्टीवैक्टर और मल्टीकोवेक्टर क्रमशः निचले और ऊपरी सूचकांकों के साथ लिखे जाते हैं। चूंकि विभेदक रूप बहुवेक्टर क्षेत्र हैं, इसलिए उन्हें अनुक्रमित करने के लिए ऊपरी सूचकांकों को नियोजित किया जाता है।<ref name=":0" /> विपरीत नियम मल्टीवैक्टर और मल्टीकोक्टर के घटकों पर प्रयुक्त होता है, जो क्रमशः ऊपरी और निचले सूचकांकों के साथ लिखे जाते हैं। उदाहरण के लिए, हम वेक्टर के मानक निर्देशांक का प्रतिनिधित्व करते हैं <math>v\in\R^n</math> जैसा <math>(v^1,\ldots,v^n)</math>, जिससे <math display="inline">v=\sum_{i=1}^n v^ie_i</math> मानक आधार के संदर्भ में <math>(e_1,\ldots,e_n)</math>. इसके अतिरिक्त , अभिव्यक्ति के भाजक में दिखाई देने वाली सुपरस्क्रिप्ट (जैसा कि <math display="inline">\frac{\partial f}{\partial x^i}</math>) को इस परिपाटी में निम्न सूचकांकों के रूप में माना जाता है। जब सूचकांकों को इस तरीके से प्रयुक्त और व्याख्या किया जाता है, तो ऊपरी सूचकांकों की संख्या घटाकर अभिव्यक्ति के प्रत्येक शब्द में निचले सूचकांकों की संख्या को संरक्षित किया जाता है, योग के अंदर और समान चिह्न के अंदर, सुविधा जो उपयोगी स्मरक उपकरण के रूप में कार्य करती है और मैन्युअल संगणना के समय की गई त्रुटियों को इंगित करने में सहायता करता है।] | ||
==== अंतर के-रूपों पर मूलभूत संचालन ==== | ==== अंतर के-रूपों पर मूलभूत संचालन ==== | ||
बाहरी उत्पाद (<math>\wedge</math>) और बाहरी व्युत्पन्न (<math>d</math>) विभेदक रूपों पर दो मूलभूत संक्रियाएँ हैं। ए का बाहरी उत्पाद <math>k</math>-रूप और <math>\ell</math>-रूप है <math>(k+\ell)</math>-फॉर्म, जबकि ए के बाहरी व्युत्पन्न <math>k</math>-रूप है <math>(k+1)</math>-प्रपत्र। इस प्रकार, दोनों संक्रियाएँ निम्न कोटि के उच्चतर कोटि के विभेदक रूपों को उत्पन्न करती हैं। | बाहरी उत्पाद (<math>\wedge</math>) और बाहरी व्युत्पन्न (<math>d</math>) विभेदक रूपों पर दो मूलभूत संक्रियाएँ हैं। ए का बाहरी उत्पाद <math>k</math>-रूप और <math>\ell</math>-रूप है <math>(k+\ell)</math>-फॉर्म, जबकि ए के बाहरी व्युत्पन्न <math>k</math>-रूप है <math>(k+1)</math>-प्रपत्र। इस प्रकार, दोनों संक्रियाएँ निम्न कोटि के उच्चतर कोटि के विभेदक रूपों को उत्पन्न करती हैं। | ||
Line 81: | Line 81: | ||
यदि <math>I=\{i_1,\ldots,i_k\}</math>, <math>J=\{j_1,\ldots,j_{\ell}\}</math>, और <math>I\cap J=\varnothing</math>, फिर के सूचकांक <math>\omega\wedge\eta</math> ऐसे स्वैप के (सीमित) अनुक्रम द्वारा आरोही क्रम में व्यवस्थित किया जा सकता है। तब से <math>dx^\alpha\wedge dx^\alpha=0</math>, <math>I\cap J\neq\varnothing</math> इसका आशय है <math>\omega\wedge\eta=0</math>. अंत में, द्विरेखीयता के परिणामस्वरूप, यदि <math>\omega</math> और <math>\eta</math> कई शब्दों का योग है, उनका बाहरी उत्पाद इनमें से प्रत्येक पद के संबंध में वितरण का पालन करता है। | यदि <math>I=\{i_1,\ldots,i_k\}</math>, <math>J=\{j_1,\ldots,j_{\ell}\}</math>, और <math>I\cap J=\varnothing</math>, फिर के सूचकांक <math>\omega\wedge\eta</math> ऐसे स्वैप के (सीमित) अनुक्रम द्वारा आरोही क्रम में व्यवस्थित किया जा सकता है। तब से <math>dx^\alpha\wedge dx^\alpha=0</math>, <math>I\cap J\neq\varnothing</math> इसका आशय है <math>\omega\wedge\eta=0</math>. अंत में, द्विरेखीयता के परिणामस्वरूप, यदि <math>\omega</math> और <math>\eta</math> कई शब्दों का योग है, उनका बाहरी उत्पाद इनमें से प्रत्येक पद के संबंध में वितरण का पालन करता है। | ||
मूलभूत 1-रूपों के बाहरी उत्पादों का संग्रह <math>\{dx^{i_1}\wedge\cdots\wedge dx^{i_k} \mid 1\leq i_1<\cdots< i_k\leq n\}</math> अंतर के-रूपों के स्थान के लिए आधार का गठन करता है। इस प्रकार, कोई <math>\omega\in\Omega^k(U)</math> रूप में लिखा जा सकता है | मूलभूत 1-रूपों के बाहरी उत्पादों का संग्रह <math>\{dx^{i_1}\wedge\cdots\wedge dx^{i_k} \mid 1\leq i_1<\cdots< i_k\leq n\}</math> अंतर के-रूपों के स्थान के लिए आधार का गठन करता है। इस प्रकार, कोई <math>\omega\in\Omega^k(U)</math> रूप में लिखा जा सकता है | ||
: <math>\omega=\sum_{i_1<\cdots<i_k} a_{i_1\ldots i_k} \, dx^{i_1}\wedge\cdots\wedge dx^{i_k}, \qquad (*)</math> | : <math>\omega=\sum_{i_1<\cdots<i_k} a_{i_1\ldots i_k} \, dx^{i_1}\wedge\cdots\wedge dx^{i_k}, \qquad (*)</math> |
Revision as of 23:28, 30 April 2023
अमूर्त बीजगणित और बहुरेखीय बीजगणित में, सदिश स्थान पर बहुरेखीय रूप क्षेत्र पर (गणित) मानचित्र (गणित) है
जो अपने प्रत्येक तर्कों में अलग से -रैखिक है।[1] अधिक सामान्यतः , मॉड्यूल (गणित) पर क्रमविनिमेय वृत्त पर बहु-रेखीय रूपों को परिभाषित किया जा सकता है। चूँकि, इस लेख के बाकी हिस्से में केवल आयाम (वेक्टर स्पेस) या परिमित-आयामी वेक्टर स्पेस पर बहुरेखीय रूपों पर विचार किया जाएगा।
पर पर बहुरेखीय -रूप को (सहसंयोजक) -टेंसर कहा जाता है, और ऐसे रूपों के सदिश स्थान को सामान्यतः पर या निरूपित किया जाता है|[2]
टेंसर उत्पाद
दिए गए -टेंसर और -टेंसर , उत्पाद , टेंसर उत्पाद के रूप में जाना जाता है, जिसे संपत्ति द्वारा परिभाषित किया जा सकता है
सभी के लिए। बहुरेखीय रूपों का टेन्सर उत्पाद क्रमविनिमेय नहीं है; चूँकि यह द्विरेखीय और साहचर्य है:
- ,
और
यदि -आयामी सदिश स्थान के लिए आधार बनाता है और दोहरे स्थान ,के लिए संगत दोहरा आधार है, तो के साथ उत्पाद के लिए आधार बनाते हैं। परिणामस्वरूप, में आयाम है
उदाहरण
द्विरेखीय रूप
यदि को द्विरेखीय रूप कहा जाता है। (सममित) द्विरेखीय रूप का परिचित और महत्वपूर्ण उदाहरण सदिशों का मानक आंतरिक उत्पाद (डॉट उत्पाद) है।
वैकल्पिक बहुरेखीय रूप
बहुरेखीय रूपों का महत्वपूर्ण वर्ग वैकल्पिक बहुरेखीय रूप हैं, जिनके पास अतिरिक्त संपत्ति है[3]
जहाँ क्रम परिवर्तन है और क्रमचय के अपने चिह्न को दर्शाता है (+1 यदि सम है, -1 यदि विषम है)। परिणामस्वरूप, वैकल्पिक बहुरेखीय मानचित्र बहुरेखीय रूप किसी भी दो तर्कों की अदला-बदली के संबंध में विषम हैं (अर्थात, और ):
अतिरिक्त परिकल्पना के साथ कि विशेषता (क्षेत्र ) 2 नहीं है, सेटिंग परिणाम के रूप में तात्पर्य है कि ; अर्थात, जब भी इसके दो तर्क सामान्य होते हैं, तो प्रपत्र का मान 0 होता है। चूँकि, ध्यान दें कि कुछ लेखक[4] वैकल्पिक रूपों की परिभाषित संपत्ति के रूप में इस अंतिम स्थिति का उपयोग करें। इस परिभाषा का तात्पर्य खंड की शुरुआत में दी गई संपत्ति से है, किन्तु जैसा कि ऊपर उल्लेख किया गया है, विपरीत निहितार्थ तभी होता है जब .
पर पर एक वैकल्पिक मल्टीलाइनर -फॉर्म को डिग्री या -कोवेक्टर का मल्टीकोवेक्टर कहा जाता है, और ऐसे वैकल्पिक रूपों का वेक्टर स्पेस, एक सबस्पेस , को आम तौर पर, या आइसोमॉर्फिक kth के लिए संकेतन का उपयोग करके निरूपित किया जाता है (की दोहरी जगह) की बाहरी शक्ति [5] ध्यान दें कि रैखिक कार्यात्मक पर बहुरेखीय 1-रूप) तुच्छ रूप से वैकल्पिक हैं, जिससे , जबकि, परिपाटी के अनुसार, 0-रूपों को अदिश के रूप में परिभाषित किया गया है।
निर्धारक चालू मेट्रिसेस, के रूप में देखा स्तंभ वैक्टर का तर्क कार्य, वैकल्पिक बहुरेखीय रूप का महत्वपूर्ण उदाहरण है।
बाहरी उत्पाद
वैकल्पिक बहुरेखीय रूपों का टेन्सर उत्पाद, सामान्य रूप से, अब वैकल्पिक नहीं है। चूँकि, टेन्सर उत्पाद के सभी क्रम परिवर्तनों का योग करके, प्रत्येक शब्द की समानता को ध्यान में रखते हुए, बाहरी उत्पाद (, जिसे वेज उत्पाद के रूप में भी जाना जाता है) को मल्टीकोक्टर्स के रूप में परिभाषित किया जा सकता है, जिससे यदि और , तब :
जहां तत्वों, पर सभी क्रमपरिवर्तनों के समूहपर योग लिया जाता है। बाहरी उत्पाद द्विरेखीय, साहचर्य और श्रेणीबद्ध-वैकल्पिक है: यदि और फिर है।
के लिए आधार और के लिए दोहरा आधार दिया गया है, बाहरी उत्पाद , के साथ के लिए एक आधार बनाते हैं। इसलिए, n-विम के लिए की विमीयता है।
विभेदक रूप
विभेदक रूप गणितीय वस्तुएं हैं जो स्पर्शरेखा रिक्त स्थान और बहु-रेखीय रूपों के माध्यम से निर्मित होती हैं, जो कई तरह से व्यवहार करती हैं, जैसे मौलिक अर्थों में कार्य का अंतर। चूंकि संकल्पनात्मक और कम्प्यूटेशनल रूप से उपयोगी, अंतर कलन के इतिहास में प्रारंभिक रूप से विकसित अपरिमित मात्राओं की अ-परिभाषित धारणाओं पर आधारित हैं। विभेदक रूप लंबे समय से चले आ रहे इस विचार को आधुनिक बनाने के लिए गणितीय रूप से कठोर और स्पष्ट रूपरेखा प्रदान करते हैं। विभेदक रूप विशेष रूप से बहुभिन्नरूपी कैलकुलस (विश्लेषण) और विभेदक ज्यामिति में उपयोगी होते हैं क्योंकि उनके पास परिवर्तन गुण होते हैं जो उन्हें घटता, सतहों और उनके उच्च-आयामी एनालॉग्स (भिन्नात्मक कई गुना) पर एकीकृत करने की अनुमति देते हैं। दूरगामी अनुप्रयोग स्टोक्स प्रमेय का आधुनिक कथन है, उच्च आयामों के लिए कलन के मौलिक प्रमेय का व्यापक सामान्यीकरण है।
नीचे दिया गया सार मुख्य रूप से स्पिवक (1965)[6] और तू (2011) पर आधारित है। [3]
विभेदक k- रूपों की परिभाषा और 1-रूपों का निर्माण
खुले उपसमुच्चयों पर विभेदक रूपों को परिभाषित करने के लिए, हमें सबसे पहले पर की स्पर्शरेखा स्थान की धारणा की आवश्यकता होती है, जिसे सामान्यतः या । सदिश स्थान को तत्वों के सेट के रूप में सबसे आसानी से परिभाषित किया जा सकता है (, और फिक्स्ड) सदिश जोड़ और स्केलर गुणन के साथ , क्रमशः। इसके अतिरिक्त , यदि के लिए मानक आधार है, तो के लिए समान मानक आधार है। दूसरे शब्दों में, प्रत्येक स्पर्शरेखा स्थान को केवल (स्पर्शरेखा सदिशों का एक सेट) की एक प्रति के रूप में माना जा सकता है बिंदु । की स्पर्शरेखा रिक्त स्थान का संग्रह (विच्छिन्न संघ) बिल्कुल को के स्पर्शरेखा बंडल के रूप में जाना जाता है। और सामान्यतः । जबकि यहाँ दी गई परिभाषा के स्पर्शरेखा स्थान का एक सरल विवरण प्रदान करती है, वहाँ अन्य, अधिक परिष्कृत निर्माण हैं जो सामान्य रूप से चिकनी मैनिफोल्ड्स के स्पर्शरेखा रिक्त स्थान को परिभाषित करने के लिए बेहतर अनुकूल हैं (पर लेख देखें) विवरण के लिए स्पर्शरेखा रिक्त स्थान है)।
पर डिफरेंशियल -फॉर्म को एक फंक्शन के रूप में परिभाषित किया गया है जो टेंगेंट पर हर a -कोवेक्टोर को असाइन करता है। पर की जगह, आमतौर पर । संक्षेप में, एक विभेदक -रूप एक -वेक्टर क्षेत्र है। पर -फॉर्म का स्थान आमतौर पर ; इस प्रकार यदि एक विभेदक -रूप है, तो हम लिखते हैं। परिपाटी के अनुसार, पर एक सतत फलन अवकल 0-रूप: है।
हम पहले 0-रूपों से विभेदक 1-रूपों का निर्माण करते हैं और उनके कुछ मूलभूत गुणों को निकालते हैं। नीचे दी गई चर्चा को सरल बनाने के लिए, हम केवल चिकनेपन से निर्मित चिकनाई अंतर रूपों पर विचार करेंगे () कार्य करता है। होने देना सुचारू कार्य हो। हम 1-रूप को परिभाषित करते हैं पर के लिए और द्वारा , जहाँ का कुल योग है पर . (याद रखें कि कुल व्युत्पन्न रैखिक परिवर्तन है।) विशेष रुचि के प्रक्षेपण मानचित्र हैं (जिन्हें समन्वय कार्यों के रूप में भी जाना जाता है) , द्वारा परिभाषित , जहाँ का i मानक निर्देशांक है . 1-रूप मूलभूत 1-रूपों के रूप में जाने जाते हैं; वे पारंपरिक रूप से निरूपित हैं . यदि मानक निर्देशांक हैं , फिर की परिभाषा का अनुप्रयोग पैदावार , जिससे , जहाँ क्रोनकर डेल्टा है।[7] इस प्रकार, के लिए मानक आधार के दोहरे के रूप में , का आधार बनता है . परिणामस्वरूप यदि 1-फॉर्म ऑन है , तब रूप में लिखा जा सकता है सुचारू कार्यों के लिए . इसके अतिरिक्त , हम के लिए अभिव्यक्ति प्राप्त कर सकते हैं कुल अंतर के लिए मौलिक अभिव्यक्ति के साथ मेल खाता है:
[नोटेशन पर टिप्पणियाँ: इस लेख में, हम टेंसर गणना और डिफरेंशियल ज्योमेट्री के कन्वेंशन का पालन करते हैं जिसमें मल्टीवैक्टर और मल्टीकोवेक्टर क्रमशः निचले और ऊपरी सूचकांकों के साथ लिखे जाते हैं। चूंकि विभेदक रूप बहुवेक्टर क्षेत्र हैं, इसलिए उन्हें अनुक्रमित करने के लिए ऊपरी सूचकांकों को नियोजित किया जाता है।[3] विपरीत नियम मल्टीवैक्टर और मल्टीकोक्टर के घटकों पर प्रयुक्त होता है, जो क्रमशः ऊपरी और निचले सूचकांकों के साथ लिखे जाते हैं। उदाहरण के लिए, हम वेक्टर के मानक निर्देशांक का प्रतिनिधित्व करते हैं जैसा , जिससे मानक आधार के संदर्भ में . इसके अतिरिक्त , अभिव्यक्ति के भाजक में दिखाई देने वाली सुपरस्क्रिप्ट (जैसा कि ) को इस परिपाटी में निम्न सूचकांकों के रूप में माना जाता है। जब सूचकांकों को इस तरीके से प्रयुक्त और व्याख्या किया जाता है, तो ऊपरी सूचकांकों की संख्या घटाकर अभिव्यक्ति के प्रत्येक शब्द में निचले सूचकांकों की संख्या को संरक्षित किया जाता है, योग के अंदर और समान चिह्न के अंदर, सुविधा जो उपयोगी स्मरक उपकरण के रूप में कार्य करती है और मैन्युअल संगणना के समय की गई त्रुटियों को इंगित करने में सहायता करता है।]
अंतर के-रूपों पर मूलभूत संचालन
बाहरी उत्पाद () और बाहरी व्युत्पन्न () विभेदक रूपों पर दो मूलभूत संक्रियाएँ हैं। ए का बाहरी उत्पाद -रूप और -रूप है -फॉर्म, जबकि ए के बाहरी व्युत्पन्न -रूप है -प्रपत्र। इस प्रकार, दोनों संक्रियाएँ निम्न कोटि के उच्चतर कोटि के विभेदक रूपों को उत्पन्न करती हैं।
बाहरी उत्पाद विभेदक रूपों का सामान्य रूप से बहुसंवाहकों के बाहरी उत्पाद का विशेष स्थिति है (ऊपर देखें)। जैसा कि बाहरी उत्पाद के लिए सामान्य रूप से सच है, अंतर रूपों का बाहरी उत्पाद द्विरेखीय, साहचर्य है, और वैकल्पिक बीजगणित है। श्रेणीबद्ध-वैकल्पिक।
अधिक ठोस रूप से, यदि और , तब
इसके अतिरिक्त , सूचकांकों के किसी भी समुच्चय के लिए ,
यदि , , और , फिर के सूचकांक ऐसे स्वैप के (सीमित) अनुक्रम द्वारा आरोही क्रम में व्यवस्थित किया जा सकता है। तब से , इसका आशय है . अंत में, द्विरेखीयता के परिणामस्वरूप, यदि और कई शब्दों का योग है, उनका बाहरी उत्पाद इनमें से प्रत्येक पद के संबंध में वितरण का पालन करता है।
मूलभूत 1-रूपों के बाहरी उत्पादों का संग्रह अंतर के-रूपों के स्थान के लिए आधार का गठन करता है। इस प्रकार, कोई रूप में लिखा जा सकता है
जहाँ चिकने कार्य हैं। सूचकांकों के प्रत्येक समुच्चय के साथ आरोही क्रम में रखा, (*) की मानक प्रस्तुति कहा जाता है.
पिछले अनुभाग में, 1-फ़ॉर्म 0-फॉर्म (निरंतर कार्य) के बाहरी व्युत्पन्न को ले कर परिभाषित किया गया था . अब हम एक्सटीरियर डेरिवेटिव ऑपरेटर को परिभाषित करके इसका विस्तार करते हैं के लिए . यदि की मानक प्रस्तुति -प्रपत्र (*) द्वारा दिया गया है -प्रपत्र द्वारा परिभाषित किया गया है
की संपत्ति जो सभी चिकने रूपों के लिए है, वह किसी का दूसरा बाहरी व्युत्पन्न है समान रूप से गायब हो जाता है: . इसे सीधे की परिभाषा से स्थापित किया जा सकता है और दूसरे डेरिवेटिव की समरूपता या के मिश्रित दूसरे क्रम के आंशिक डेरिवेटिव की समानता कार्य (विवरण के लिए बंद और स्पष्ट अंतर रूपों पर आलेख देखें)।
जंजीरों के लिए अंतर रूपों और स्टोक्स प्रमेय का एकीकरण
पैरामिट्रीकृत डोमेन पर डिफरेंशियल फॉर्म को एकीकृत करने के लिए, हमें सबसे पहले डिफरेंशियल फॉर्म के पुलबैक की धारणा को प्रस्तुत करने की आवश्यकता है। मोटे तौर पर बोलते हुए, जब विभेदक प्रपत्र एकीकृत होता है, तो पुलबैक को प्रयुक्त करने से यह तरह से बदल जाता है जो सही ढंग से समन्वय के परिवर्तन के लिए खाता है।
अवकलनीय फलन दिया है और -प्रपत्र , हम बुलाते है पुलबैक (डिफरेंशियल ज्योमेट्री) का द्वारा और इसे के रूप में परिभाषित करें - ऐसा रूप
के लिए , जहाँ नक्शा है .
यदि -फॉर्म ऑन (अर्थात।, ), हम इकाई पर इसके अभिन्न को परिभाषित करते हैं -सेल पुनरावृत्त रीमैन के अभिन्न अंग के रूप में :
अगला, हम अलग-अलग कार्य द्वारा मानकीकृत एकीकरण के डोमेन पर विचार करते हैं , जिसे n-घन के रूप में जाना जाता है। के अभिन्न को परिभाषित करने के लिए ऊपर , हम से वापस खींचते हैं यूनिट एन-सेल के लिए:
अधिक सामान्य डोमेन पर एकीकृत करने के लिए, हम परिभाषित करते हैं-ज़ंजीर के औपचारिक योग के रूप में -क्यूब्स और समुच्चय
की उपयुक्त परिभाषा -चेन (बीजगणितीय टोपोलॉजी) की सीमा के रूप में जाना जाता है ,[8] हमें स्टोक्स के प्रमेय (स्टोक्स-कार्टन प्रमेय) को सबसेट में जंजीरों के लिए बताने की अनुमति देता है :
यदि चिकना है - खुले समुच्चय पर फॉर्म और चिकना है -श्रृंखला में , तब
अधिक परिष्कृत मशीनरी (जैसे, रोगाणु और व्युत्पत्ति (अंतर बीजगणित)) का उपयोग करके, स्पर्शरेखा स्थान किसी भी चिकनी कई गुना (जरूरी नहीं कि में एम्बेडेड) को परिभाषित किया जा सके। समान रूप से, सामान्य चिकने मैनिफोल्ड पर विभेदक रूप नक्शा है। स्टोक्स के प्रमेय को और अधिक सामान्यीकृत किया जा सकता है मनमाने ढंग से चिकनी मैनिफोल्ड-साथ-सीमा और यहां तक कि कुछ "रफ" डोमेन (विवरण के लिए स्टोक्स के प्रमेय पर लेख देखें)।
यह भी देखें
- बिलिनियर नक्शा
- बाहरी बीजगणित
- सजातीय बहुपद
- रेखीय रूप
- बहुरेखीय नक्शा
संदर्भ
- ↑ Weisstein, Eric W. "Multilinear Form". MathWorld.
- ↑ Many authors use the opposite convention, writing to denote the contravariant k-tensors on and to denote the covariant k-tensors on .
- ↑ 3.0 3.1 3.2 Tu, Loring W. (2011). कई गुना का परिचय (2nd ed.). Springer. pp. 22–23. ISBN 978-1-4419-7399-3.
- ↑ Halmos, Paul R. (1958). परिमित-आयामी वेक्टर रिक्त स्थान (2nd ed.). Van Nostrand. p. 50. ISBN 0-387-90093-4.
- ↑ Spivak uses for the space of -covectors on . However, this notation is more commonly reserved for the space of differential -forms on . In this article, we use to mean the latter.
- ↑ Spivak, Michael (1965). कई गुना पर पथरी. W. A. Benjamin, Inc. pp. 75–146. ISBN 0805390219.
- ↑ The Kronecker delta is usually denoted by and defined as . Here, the notation is used to conform to the tensor calculus convention on the use of upper and lower indices.
- ↑ The formal definition of the boundary of a chain is somewhat involved and is omitted here (see Spivak 1965, pp. 98–99 for a discussion). Intuitively, if maps to a square, then is a linear combination of functions that maps to its edges in a counterclockwise manner. The boundary of a chain is distinct from the notion of a boundary in point-set topology.