डिरिचलेट ऊर्जा: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|A mathematical measure of a function's variability}} | {{Short description|A mathematical measure of a function's variability}} | ||
गणित में, डिरिचलेट ऊर्जा इस बात का माप है कि कोई फलन (गणित) कितना | गणित में, डिरिचलेट ऊर्जा इस बात का माप है कि कोई फलन (गणित) कितना वेरिएबल है। अधिक संक्षेप में, यह सोबोलिव अंतरिक्ष {{math|''H''<sup>1</sup>}} पर एक द्विघात कार्य [[कार्यात्मक (गणित)]] है। डिरिचलेट ऊर्जा लाप्लास के समीकरण से घनिष्ठ रूप से जुड़ी हुई है और इसका नाम जर्मन गणितज्ञ [[पीटर गुस्ताव लेज्यून डिरिचलेट]] के नाम पर रखा गया है। | ||
== परिभाषा == | == परिभाषा == | ||
एक [[खुला सेट]] {{math|Ω ⊆ '''R'''<sup>''n''</sup>}} और एक | एक [[खुला सेट]] {{math|Ω ⊆ '''R'''<sup>''n''</sup>}} और एक फलन {{math|''u'' : Ω → '''R'''}} दिया गया है, फलन {{math|''u''}} की डिरिचलेट ऊर्जा [[वास्तविक संख्या]] है | ||
:<math>E[u] = \frac 1 2 \int_\Omega \| \nabla u(x) \|^2 \, dx,</math> | :<math>E[u] = \frac 1 2 \int_\Omega \| \nabla u(x) \|^2 \, dx,</math> | ||
जहाँ {{math|∇''u'' : Ω → '''R'''<sup>''n''</sup>}} | जहाँ {{math|∇''u'' : Ω → '''R'''<sup>''n''</sup>}} फलन {{math|''u''}} के ढाल [[वेक्टर क्षेत्र]] को दर्शाता है। | ||
== गुण और अनुप्रयोग == | == गुण और अनुप्रयोग == | ||
Line 12: | Line 12: | ||
चूँकि यह एक गैर-नकारात्मक मात्रा का अभिन्न अंग है, इसलिए डिरिचलेट ऊर्जा स्वयं गैर-ऋणात्मक है, अर्थात {{math|''E''[''u''] ≥ 0}} प्रत्येक कार्य {{math|''u''}} के लिए। | चूँकि यह एक गैर-नकारात्मक मात्रा का अभिन्न अंग है, इसलिए डिरिचलेट ऊर्जा स्वयं गैर-ऋणात्मक है, अर्थात {{math|''E''[''u''] ≥ 0}} प्रत्येक कार्य {{math|''u''}} के लिए। | ||
लाप्लास के समीकरण को हल करना <math>-\Delta u(x) = 0</math> सभी <math>x \in \Omega</math> के लिए, उचित सीमा शर्तों के अधीन, एक | लाप्लास के समीकरण को हल करना <math>-\Delta u(x) = 0</math> सभी <math>x \in \Omega</math> के लिए, उचित सीमा शर्तों के अधीन, एक फलन {{math|''u''}} खोजने की विविधताओं की कलन को हल करने के समान है जो सीमा की स्थितियों को संतुष्ट करता है और न्यूनतम डिरिचलेट ऊर्जा रखता है। | ||
इस तरह के समाधान को [[हार्मोनिक फ़ंक्शन]] कहा जाता है और ऐसे समाधान [[संभावित सिद्धांत]] में अध्ययन का विषय हैं। | इस तरह के समाधान को [[हार्मोनिक फ़ंक्शन|हार्मोनिक]] फलन कहा जाता है और ऐसे समाधान [[संभावित सिद्धांत]] में अध्ययन का विषय हैं। | ||
अधिक सामान्य सेटिंग में, जहाँ {{math|Ω ⊆ '''R'''<sup>''n''</sup>}} को किसी भी [[ रीमैनियन कई गुना |रीमैनियन मैनिफोल्ड]] {{math|''M''}} द्वारा प्रतिस्थापित किया जाता है, और {{math|''u'' : Ω → '''R'''}} द्वारा प्रतिस्थापित किया जाता है {{math|''u'' : ''M'' → Φ}} दूसरे (अलग) रीमैनियन मैनिफोल्ड {{math|Φ}} के लिए, डिरिचलेट ऊर्जा [[सिग्मा मॉडल]] द्वारा दी गई है। सिग्मा मॉडल [[Lagrangian (क्षेत्र सिद्धांत)|लैग्रेंजियन (क्षेत्र सिद्धांत)]] के लिए [[लैग्रेंज समीकरण]] के समाधान वे कार्य हैं जो डिरिचलेट ऊर्जा को न्यूनतम/अधिकतम करता है। इस सामान्य स्थितियों को {{math|''u''}} के विशिष्ट स्थितियों में वापस प्रतिबंधित करना: {{math|''u'' : Ω → '''R'''}} सिर्फ दिखाता है कि लैग्रेंज समीकरण (या, समतुल्य, हैमिल्टन-जैकोबी समीकरण) चरम समाधान प्राप्त करने के लिए मूलभूत उपकरण प्रदान करते हैं। | अधिक सामान्य सेटिंग में, जहाँ {{math|Ω ⊆ '''R'''<sup>''n''</sup>}} को किसी भी [[ रीमैनियन कई गुना |रीमैनियन मैनिफोल्ड]] {{math|''M''}} द्वारा प्रतिस्थापित किया जाता है, और {{math|''u'' : Ω → '''R'''}} द्वारा प्रतिस्थापित किया जाता है {{math|''u'' : ''M'' → Φ}} दूसरे (अलग) रीमैनियन मैनिफोल्ड {{math|Φ}} के लिए, डिरिचलेट ऊर्जा [[सिग्मा मॉडल]] द्वारा दी गई है। सिग्मा मॉडल [[Lagrangian (क्षेत्र सिद्धांत)|लैग्रेंजियन (क्षेत्र सिद्धांत)]] के लिए [[लैग्रेंज समीकरण]] के समाधान वे कार्य हैं जो डिरिचलेट ऊर्जा को न्यूनतम/अधिकतम करता है। इस सामान्य स्थितियों को {{math|''u''}} के विशिष्ट स्थितियों में वापस प्रतिबंधित करना: {{math|''u'' : Ω → '''R'''}} सिर्फ दिखाता है कि लैग्रेंज समीकरण (या, समतुल्य, हैमिल्टन-जैकोबी समीकरण) चरम समाधान प्राप्त करने के लिए मूलभूत उपकरण प्रदान करते हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
* डिरिक्लेट का सिद्धांत | * डिरिक्लेट का सिद्धांत | ||
* [[डिरिचलेट आइगेनवैल्यू]] | * [[डिरिचलेट आइगेनवैल्यू]] |
Revision as of 11:48, 2 May 2023
गणित में, डिरिचलेट ऊर्जा इस बात का माप है कि कोई फलन (गणित) कितना वेरिएबल है। अधिक संक्षेप में, यह सोबोलिव अंतरिक्ष H1 पर एक द्विघात कार्य कार्यात्मक (गणित) है। डिरिचलेट ऊर्जा लाप्लास के समीकरण से घनिष्ठ रूप से जुड़ी हुई है और इसका नाम जर्मन गणितज्ञ पीटर गुस्ताव लेज्यून डिरिचलेट के नाम पर रखा गया है।
परिभाषा
एक खुला सेट Ω ⊆ Rn और एक फलन u : Ω → R दिया गया है, फलन u की डिरिचलेट ऊर्जा वास्तविक संख्या है
जहाँ ∇u : Ω → Rn फलन u के ढाल वेक्टर क्षेत्र को दर्शाता है।
गुण और अनुप्रयोग
चूँकि यह एक गैर-नकारात्मक मात्रा का अभिन्न अंग है, इसलिए डिरिचलेट ऊर्जा स्वयं गैर-ऋणात्मक है, अर्थात E[u] ≥ 0 प्रत्येक कार्य u के लिए।
लाप्लास के समीकरण को हल करना सभी के लिए, उचित सीमा शर्तों के अधीन, एक फलन u खोजने की विविधताओं की कलन को हल करने के समान है जो सीमा की स्थितियों को संतुष्ट करता है और न्यूनतम डिरिचलेट ऊर्जा रखता है।
इस तरह के समाधान को हार्मोनिक फलन कहा जाता है और ऐसे समाधान संभावित सिद्धांत में अध्ययन का विषय हैं।
अधिक सामान्य सेटिंग में, जहाँ Ω ⊆ Rn को किसी भी रीमैनियन मैनिफोल्ड M द्वारा प्रतिस्थापित किया जाता है, और u : Ω → R द्वारा प्रतिस्थापित किया जाता है u : M → Φ दूसरे (अलग) रीमैनियन मैनिफोल्ड Φ के लिए, डिरिचलेट ऊर्जा सिग्मा मॉडल द्वारा दी गई है। सिग्मा मॉडल लैग्रेंजियन (क्षेत्र सिद्धांत) के लिए लैग्रेंज समीकरण के समाधान वे कार्य हैं जो डिरिचलेट ऊर्जा को न्यूनतम/अधिकतम करता है। इस सामान्य स्थितियों को u के विशिष्ट स्थितियों में वापस प्रतिबंधित करना: u : Ω → R सिर्फ दिखाता है कि लैग्रेंज समीकरण (या, समतुल्य, हैमिल्टन-जैकोबी समीकरण) चरम समाधान प्राप्त करने के लिए मूलभूत उपकरण प्रदान करते हैं।
यह भी देखें
- डिरिक्लेट का सिद्धांत
- डिरिचलेट आइगेनवैल्यू
- कुल भिन्नता
- परिबद्ध माध्य दोलन
हार्मोनिक नक्शा मानचित्र
संदर्भ
- Lawrence C. Evans (1998). Partial Differential Equations. American Mathematical Society. ISBN 978-0821807729.