अनुक्रमण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
आनुवांशिकी और जैव रसायन में, अनुक्रमण का अर्थ है अशाखित [[ जैव बहुलक |जैव बहुलक]] की [[प्राथमिक संरचना]] का निर्धारण करना। कभी-कभी इसे गलत विधियों से प्राथमिक अनुक्रम कहा जाता है और अनुक्रमण के परिणामस्वरूप प्रतीकात्मक रेखीय चित्रण होता है जिसे अनुक्रम के रूप में जाना जाता है जो अनुक्रमित अणु के परमाणु-स्तर की संरचना को संक्षेप में सारांशित करता है।
आनुवांशिकी और जैव रसायन में, अनुक्रमण का अर्थ है अशाखित [[ जैव बहुलक |जैव बहुलक]] की [[प्राथमिक संरचना]] का निर्धारण करना। कभी-कभी इसे गलत विधियों से प्राथमिक अनुक्रम कहा जाता है और अनुक्रमण के परिणामस्वरूप प्रतीकात्मक रेखीय चित्रण होता है जिसे अनुक्रम के रूप में जाना जाता है जो अनुक्रमित अणु के परमाणु-स्तर की संरचना को संक्षेप में सारांशित करता है।


== डीएनए अनुक्रमण ==
== डीएनए अनुक्रमण ==
{{main|डीएनए श्रृंखला बनाना}}
{{main|डीएनए श्रृंखला बनाना}}
[[डीएनए]] अनुक्रमण किसी दिए गए डीएनए टुकड़े के [[न्यूक्लियोटाइड]] क्रम को निर्धारित करने की प्रक्रिया है। अब तक, [[फ्रेडरिक सिंगर|फ्रेडरिक सांगेर]] द्वारा विकसित [[श्रृंखला समाप्ति विधि]] का उपयोग करके अधिकांश डीएनए अनुक्रमण किया गया है। यह प्रविधि संशोधित न्यूक्लियोटाइड उप रणनीति का उपयोग करके डीएनए संश्लेषण प्रतिक्रिया के अनुक्रम-विशिष्ट समाप्ति का उपयोग करती है। चूँकि, नई अनुक्रमण प्रौद्योगिकियाँ जैसे कि पाइरोग्रेडिंग, अनुक्रमण बाज़ार में बढ़ती भागीदारी प्राप्त कर रही हैं। सेंगर डीएनए अनुक्रमण की तुलना में अधिक जीनोम डेटा अब पाइरोडिंग द्वारा उत्पादित किया जा रहा है। पाइरोडिंग ने तेजी से जीनोम अनुक्रमण को सक्षम किया है। प्रविधि के साथ कई बार आवृत्त के साथ बैक्टीरियल जीनोम को ही रन में अनुक्रमित किया जा सकता है। इस प्रविधि का उपयोग हाल ही में जेम्स डी. वाटसन के जीनोम को अनुक्रमित करने के लिए भी किया गया था।<ref>{{Cite journal|title = बड़े पैमाने पर समानांतर डीएनए अनुक्रमण द्वारा किसी व्यक्ति का पूर्ण जीनोम|journal = Nature|date = 2008-04-17|issn = 0028-0836|pages = 872–876|volume = 452|issue = 7189|doi = 10.1038/nature06884|language = en|first1 = David A.|last1 = Wheeler|first2 = Maithreyan|last2 = Srinivasan|first3 = Michael|last3 = Egholm|first4 = Yufeng|last4 = Shen|first5 = Lei|last5 = Chen|first6 = Amy|last6 = McGuire|first7 = Wen|last7 = He|first8 = Yi-Ju|last8 = Chen|first9 = Vinod|last9 = Makhijani|pmid=18421352|bibcode = 2008Natur.452..872W|doi-access = free}}</ref>डीएनए का क्रम जीवित चीजों के जीवित रहने और पुनरुत्पादन के लिए आवश्यक जानकारी को कूटबद्ध करता है। इसलिए अनुक्रम का निर्धारण मौलिक शोध में उपयोगी है कि जीव क्यों और कैसे रहते हैं, साथ ही साथ लागू विषयों में भी जीवित चीजों के लिए डीएनए के महत्वपूइसर्ण महत्व के कारण हैं । डीएनए अनुक्रमों का ज्ञान व्यावहारिक रूप से जैविक अनुसंधान के किसी भी क्षेत्र में उपयोगी है। उदाहरण के लिए, चिकित्सा में इसका उपयोग आनुवंशिक रोगों की पहचान, निदान और उपचार विकसित करने के लिए किया जा सकता है। इसी प्रकार, रोगजनकों में अनुसंधान से संक्रामक रोगों का उपचार हो सकता है। [[जैव प्रौद्योगिकी]] उभरता हुआ विषय है, जिसमें कई उपयोगी उत्पादों और सेवाओं की क्षमता है।
[[डीएनए]] अनुक्रमण किसी दिए गए डीएनए टुकड़े के [[न्यूक्लियोटाइड]] क्रम को निर्धारित करने की प्रक्रिया है। अब तक, [[फ्रेडरिक सिंगर|फ्रेडरिक सांगेर]] द्वारा विकसित [[श्रृंखला समाप्ति विधि]] का उपयोग करके अधिकांश डीएनए अनुक्रमण किया गया है। यह प्रविधि संशोधित न्यूक्लियोटाइड उप रणनीति का उपयोग करके डीएनए संश्लेषण प्रतिक्रिया के अनुक्रम-विशिष्ट समाप्ति का उपयोग करती है। चूँकि, नई अनुक्रमण प्रौद्योगिकियाँ जैसे कि पाइरोग्रेडिंग, अनुक्रमण बाज़ार में बढ़ती भागीदारी प्राप्त कर रही हैं। सेंगर डीएनए अनुक्रमण की तुलना में अधिक जीनोम डेटा अब पाइरोडिंग द्वारा उत्पादित किया जा रहा है। पाइरोडिंग ने तेजी से जीनोम अनुक्रमण को सक्षम किया है। प्रविधि के साथ कई बार आवृत्त के साथ बैक्टीरियल जीनोम को ही रन में अनुक्रमित किया जा सकता है। इस प्रविधि का उपयोग हाल ही में जेम्स डी. वाटसन के जीनोम को अनुक्रमित करने के लिए भी किया गया था।<ref>{{Cite journal|title = बड़े पैमाने पर समानांतर डीएनए अनुक्रमण द्वारा किसी व्यक्ति का पूर्ण जीनोम|journal = Nature|date = 2008-04-17|issn = 0028-0836|pages = 872–876|volume = 452|issue = 7189|doi = 10.1038/nature06884|language = en|first1 = David A.|last1 = Wheeler|first2 = Maithreyan|last2 = Srinivasan|first3 = Michael|last3 = Egholm|first4 = Yufeng|last4 = Shen|first5 = Lei|last5 = Chen|first6 = Amy|last6 = McGuire|first7 = Wen|last7 = He|first8 = Yi-Ju|last8 = Chen|first9 = Vinod|last9 = Makhijani|pmid=18421352|bibcode = 2008Natur.452..872W|doi-access = free}}</ref>डीएनए का क्रम जीवित चीजों के जीवित रहने और पुनरुत्पादन के लिए आवश्यक जानकारी को कूटबद्ध करता है। इसलिए अनुक्रम का निर्धारण मौलिक शोध में उपयोगी है कि जीव क्यों और कैसे रहते हैं, साथ ही साथ लागू विषयों में भी जीवित चीजों के लिए डीएनए के महत्वपूइसर्ण महत्व के कारण हैं । डीएनए अनुक्रमों का ज्ञान व्यावहारिक रूप से जैविक अनुसंधान के किसी भी क्षेत्र में उपयोगी है। उदाहरण के लिए, चिकित्सा में इसका उपयोग आनुवंशिक रोगों की पहचान, निदान और उपचार विकसित करने के लिए किया जा सकता है। इसी प्रकार, रोगजनकों में अनुसंधान से संक्रामक रोगों का उपचार हो सकता है। [[जैव प्रौद्योगिकी]] उभरता हुआ विषय है, जिसमें कई उपयोगी उत्पादों और सेवाओं की क्षमता है।


कार्लसन वक्र अर्थशास्त्री द्वारा गढ़ा गया शब्द है <ref>Life 2.0. (2006, August 31). The Economist</ref> मूर के कानून के जैव प्रौद्योगिकी समकक्ष का वर्णन करने के लिए और इसका नाम लेखक रॉब कार्लसन के नाम पर रखा गया है।<ref>Carlson, Robert H. Biology Is Technology: The Promise, Peril, and New Business of Engineering Life. Cambridge, MA: Harvard UP, 2010. Print</ref> कार्लसन ने डीएनए अनुक्रमण प्रविधियों (लागत और प्रदर्शन द्वारा मापा गया) के दोगुने समय की सटीक भविष्यवाणी की, कम से कम मूर के नियम के रूप में तेज़ होगा।<ref>{{cite journal | last1 = Carlson | first1 = Robert | year = 2003 | title = जैविक प्रौद्योगिकियों की गति और प्रसार| journal = Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science | volume = 1 | issue = 3| pages = 203–214 | doi = 10.1089/153871303769201851 | pmid=15040198}}</ref> कार्लसन कर्व्स डीएनए अनुक्रमण, [[डीएनए संश्लेषण]], और प्रोटीन अभिव्यक्ति में और प्रोटीन संरचनाओं के निर्धारण में उपयोग किए जाने वाले भौतिक और अभिकलनात्मक उपकरणों की श्रृंखला सहित विभिन्न प्रविधियों की लागत में तेजी से (कुछ स्थितियों में अति घातीय) घटता है और प्रदर्शन में वृद्धि का वर्णन करता है।  
कार्लसन वक्र अर्थशास्त्री द्वारा गढ़ा गया शब्द है <ref>Life 2.0. (2006, August 31). The Economist</ref> मूर के कानून के जैव प्रौद्योगिकी समकक्ष का वर्णन करने के लिए और इसका नाम लेखक रॉब कार्लसन के नाम पर रखा गया है।<ref>Carlson, Robert H. Biology Is Technology: The Promise, Peril, and New Business of Engineering Life. Cambridge, MA: Harvard UP, 2010. Print</ref> कार्लसन ने डीएनए अनुक्रमण प्रविधियों (लागत और प्रदर्शन द्वारा मापा गया) के दोगुने समय की सटीक भविष्यवाणी की, कम से कम मूर के नियम के रूप में तेज़ होगा।<ref>{{cite journal | last1 = Carlson | first1 = Robert | year = 2003 | title = जैविक प्रौद्योगिकियों की गति और प्रसार| journal = Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science | volume = 1 | issue = 3| pages = 203–214 | doi = 10.1089/153871303769201851 | pmid=15040198}}</ref> कार्लसन कर्व्स डीएनए अनुक्रमण, [[डीएनए संश्लेषण]], और प्रोटीन अभिव्यक्ति में और प्रोटीन संरचनाओं के निर्धारण में उपयोग किए जाने वाले भौतिक और अभिकलनात्मक उपकरणों की श्रृंखला सहित विभिन्न प्रविधियों की लागत में तेजी से (कुछ स्थितियों में अति घातीय) घटता है और प्रदर्शन में वृद्धि का वर्णन करता है।  


=== सांगेर अनुक्रमण ===
=== सांगेर अनुक्रमण ===
{{main|सांगेर अनुक्रमण}}
{{main|सांगेर अनुक्रमण}}
[[Image:Sequencing.jpg|thumb|right|एक रेडियोधर्मी लेबल अनुक्रमण जेल का हिस्सा]]श्रृंखला टर्मिनेटर अनुक्रमण (सेंगर अनुक्रमण) में, उस क्षेत्र में सांचा के लिए लघु ओलिगो न्यूक्लियोटाइड 'प्राइमर' पूरक का उपयोग करके सांचा डीएनए पर विशिष्ट साइट पर विस्तार प्रारंभ किया जाता है। ओलिगो न्यूक्लियोटाइड प्राइमर [[डीएनए पोलीमरेज़|डीएनए पोलीमर्स]] का उपयोग करके बढ़ाया जाता है, एंजाइम जो डीएनए को दोहराता है। प्राइमर और डीएनए पोलीमर्स के साथ चार डीऑक्सीन्यूक्लियोटाइड आधार (डीएनए इमारत ब्लॉक्स) सम्मलित हैं, साथ ही न्यूक्लियोटाइड को समाप्त करने वाली श्रृंखला की कम सांद्रता (सामान्यतः डी-डीऑक्सीन्यूक्लियोटाइड)। डीऑक्सीन्यूक्लियोटाइड्स की OH समूह में राइबोस अणु की 2' और 3' दोनों स्थितियों में कमी होती है, इसलिए बार डीएनए अणु के भीतर डाले जाने के बाद वे इसे और लंबे होने से रोकते हैं। इस अनुक्रमक में चार अलग-अलग जहाजों को नियोजित किया जाता है, जिनमें से प्रत्येक में केवल चार डाइडॉक्सीराइबोन्यूक्लियोटाइड्स होते हैं; डीएनए पोलीमर्स द्वारा श्रृंखला को समाप्त करने वाले न्यूक्लियोटाइड्स को यादृच्छिक स्थिति में सम्मलित करने से विभिन्न आकारों के संबंधित डीएनए टुकड़ों की श्रृंखला होती है, जो दिए गए डिडोक्सीरिबोन्यूक्लियोटाइड के साथ समाप्त होती है। टुकड़ों को तब स्लैब पॉलीएक्रिलामाइड जेल में वैद्युतकणसंचलन द्वारा अलग किया जाता है और अधिक सामान्यतः अब चिपचिपा बहुलक से भरी संकीर्ण काँच की नली (केशिका) में होती है।
[[Image:Sequencing.jpg|thumb|right|एक रेडियोधर्मी लेबल अनुक्रमण जेल का हिस्सा]]श्रृंखला टर्मिनेटर अनुक्रमण (सेंगर अनुक्रमण) में, उस क्षेत्र में सांचा के लिए लघु ओलिगो न्यूक्लियोटाइड 'प्राइमर' पूरक का उपयोग करके सांचा डीएनए पर विशिष्ट साइट पर विस्तार प्रारंभ किया जाता है। ओलिगो न्यूक्लियोटाइड प्राइमर [[डीएनए पोलीमरेज़|डीएनए पोलीमर्स]] का उपयोग करके बढ़ाया जाता है, एंजाइम जो डीएनए को दोहराता है। प्राइमर और डीएनए पोलीमर्स के साथ चार डीऑक्सीन्यूक्लियोटाइड आधार (डीएनए इमारत ब्लॉक्स) सम्मलित हैं, साथ ही न्यूक्लियोटाइड को समाप्त करने वाली श्रृंखला की कम सांद्रता (सामान्यतः डी-डीऑक्सीन्यूक्लियोटाइड)। डीऑक्सीन्यूक्लियोटाइड्स की OH समूह में राइबोस अणु की 2' और 3' दोनों स्थितियों में कमी होती है, इसलिए बार डीएनए अणु के भीतर डाले जाने के बाद वे इसे और लंबे होने से रोकते हैं। इस अनुक्रमक में चार अलग-अलग जहाजों को नियोजित किया जाता है, जिनमें से प्रत्येक में केवल चार डाइडॉक्सीराइबोन्यूक्लियोटाइड्स होते हैं; डीएनए पोलीमर्स द्वारा श्रृंखला को समाप्त करने वाले न्यूक्लियोटाइड्स को यादृच्छिक स्थिति में सम्मलित करने से विभिन्न आकारों के संबंधित डीएनए टुकड़ों की श्रृंखला होती है, जो दिए गए डिडोक्सीरिबोन्यूक्लियोटाइड के साथ समाप्त होती है। टुकड़ों को तब स्लैब पॉलीएक्रिलामाइड जेल में वैद्युतकणसंचलन द्वारा अलग किया जाता है और अधिक सामान्यतः अब चिपचिपा बहुलक से भरी संकीर्ण काँच की नली (केशिका) में होती है।
[[Image:Sanger sequencing read display.png|thumb|right|एक उदाहरण डाई-टर्मिनेटर पढ़ने की शुरुआत का दृश्य (विस्तृत करने के लिए क्लिक करें)]]प्राइमर की लेबलिंग का विकल्प इसके अतिरिक्त टर्मिनेटर्स को लेबल करना है, जिसे सामान्यतः 'डाई टर्मिनेटर अनुक्रमण' कहा जाता है। इस दृष्टिकोण का प्रमुख लाभ यह है कि पूर्ण अनुक्रमण सेट को लेबल-प्राइमर दृष्टिकोण के साथ आवश्यक चार के अतिरिक्त ही प्रतिक्रिया में किया जा सकता है। यह अलग फ्लोरोसेंट डाई के साथ प्रत्येक डाइडॉक्सिन्यूक्लियोटाइड श्रृंखला-टर्मिनेटर को लेबल करके पूरा किया जाता है, जो अलग [[तरंग दैर्ध्य]] पर फ़्लॉरेसेस करता है। डाई प्राइमर दृष्टिकोण की तुलना में यह विधि सरल और तेज है, किन्तु बड़े डाई चेन-टर्मिनेटरों के समावेश में सांचा निर्भर अंतर के कारण अधिक असमान डेटा चोटियों (विभिन्न ऊंचाइयों) का उत्पादन कर सकता है। नए एंजाइमों और रंगों की प्रारंभिक के साथ यह समस्या अधिक कम हो गई है जो निगमन परिवर्तनशीलता को कम करते हैं।
[[Image:Sanger sequencing read display.png|thumb|right|एक उदाहरण डाई-टर्मिनेटर पढ़ने की शुरुआत का दृश्य (विस्तृत करने के लिए क्लिक करें)]]प्राइमर की लेबलिंग का विकल्प इसके अतिरिक्त टर्मिनेटर्स को लेबल करना है, जिसे सामान्यतः 'डाई टर्मिनेटर अनुक्रमण' कहा जाता है। इस दृष्टिकोण का प्रमुख लाभ यह है कि पूर्ण अनुक्रमण सेट को लेबल-प्राइमर दृष्टिकोण के साथ आवश्यक चार के अतिरिक्त ही प्रतिक्रिया में किया जा सकता है। यह अलग फ्लोरोसेंट डाई के साथ प्रत्येक डाइडॉक्सिन्यूक्लियोटाइड श्रृंखला-टर्मिनेटर को लेबल करके पूरा किया जाता है, जो अलग [[तरंग दैर्ध्य]] पर फ़्लॉरेसेस करता है। डाई प्राइमर दृष्टिकोण की तुलना में यह विधि सरल और तेज है, किन्तु बड़े डाई चेन-टर्मिनेटरों के समावेश में सांचा निर्भर अंतर के कारण अधिक असमान डेटा चोटियों (विभिन्न ऊंचाइयों) का उत्पादन कर सकता है। नए एंजाइमों और रंगों की प्रारंभिक के साथ यह समस्या अधिक कम हो गई है जो निगमन परिवर्तनशीलता को कम करते हैं।
इस पद्धति का उपयोग अब अधिकांश अनुक्रमण प्रतिक्रियाओं के लिए किया जाता है क्योंकि यह सरल और सस्ता दोनों है। इसका प्रमुख कारण यह है कि प्राइमरों को अलग से लेबल करने की आवश्यकता नहीं है (जो एक बार उपयोग किए जाने वाले प्रचलन प्राइमर के लिए महत्वपूर्ण खर्च हो सकता है), चूंकि यह अधिकांशतः उपयोग किए जाने वाले 'सार्वभौमिक' प्राइमरों के साथ कम चिंता का विषय है। इलुमिना, 454, एबीआई, हेलिकोज और डोवर की दूसरी और तीसरी पीढ़ी की प्रणालियों की बढ़ती लागत-प्रभावशीलता के कारण यह तेजी से बदल रहा है।
इस पद्धति का उपयोग अब अधिकांश अनुक्रमण प्रतिक्रियाओं के लिए किया जाता है क्योंकि यह सरल और सस्ता दोनों है। इसका प्रमुख कारण यह है कि प्राइमरों को अलग से लेबल करने की आवश्यकता नहीं है (जो एक बार उपयोग किए जाने वाले प्रचलन प्राइमर के लिए महत्वपूर्ण खर्च हो सकता है), चूंकि यह अधिकांशतः उपयोग किए जाने वाले 'सार्वभौमिक' प्राइमरों के साथ कम चिंता का विषय है। इलुमिना, 454, एबीआई, हेलिकोज और डोवर की दूसरी और तीसरी पीढ़ी की प्रणालियों की बढ़ती लागत-प्रभावशीलता के कारण यह तेजी से बदल रहा है।


=== पायरो अनुक्रमण ===
=== पायरो अनुक्रमण ===
पाइरोग्रेडिंग विधि न्यूक्लियोटाइड निगमन पर मुक्त पाइरोफॉस्फेट का पता लगाने पर आधारित है। पाइरोग्रेडिंग करने से पहले, डीएनए अनुक्रम सूत्र को पीसीआर द्वारा प्रवर्धित किया जाना है। फिर जिस क्रम में अनुक्रमक में न्यूक्लियोटाइड्स को जोड़ना होता है, उसे चुना जाता है (अर्थातG-A-T-C)। जब विशिष्ट न्यूक्लियोटाइड जोड़ा जाता है, अगर डीएनए पोलीमर्स इसे बढ़ती श्रृंखला में सम्मलित करता है, तो पाइरोफॉस्फेट जारी किया जाता है और एटीपी सल्फ्यूरलेज़ द्वारा एटीपी में परिवर्तित हो जाता है। एटीपी ल्यूसिफरेज के माध्यम से ल्यूसिफरेज के ऑक्सीकरण को शक्ति देता है, यह प्रतिक्रिया पाइरोग्राम चोटी के रूप में अंकित प्रकाश संकेत उत्पन्न करती है। इस प्रकार, न्यूक्लियोटाइड निगमन संकेत से सहसंबद्ध होता है। प्रकाश संकेत डीएनए सूत्र के संश्लेषण के पर्यन्त सम्मलित न्यूक्लियोटाइड्स की मात्रा के समानुपाती होता है (अर्थातदो न्यूक्लियोटाइड्स सम्मलित होते हैं जो दो पायरोग्राम चोटियों के अनुरूप होते हैं)। जब जोड़े गए न्यूक्लियोटाइड डीएनए अणु में सम्मलित नहीं होते हैं, तो कोई संकेत अंकित नहीं किया जाता है; [[एंजाइम]] एपिरेज़ प्रतिक्रिया में शेष किसी भी असंबद्ध न्यूक्लियोटाइड को हटा देता है। इस विधि के लिए न तो फ्लोरोसेंटली लेबल वाले न्यूक्लियोटाइड्स की आवश्यकता होती है और न ही जेल वैद्युतकणसंचलन की। पाल न्यरेन और मुस्तफा रोनाघी डीएनए द्वारा विकसित पाइरोग्रेडिंग का बायोटेज (कम-थ्रूपुट अनुक्रमण के लिए) और 454 जीवन विज्ञान (उच्च-थ्रूपुट अनुक्रमण के लिए) द्वारा व्यावसायीकरण किया गया है। बाद वाला प्लेटफॉर्म मशीन के साथ सात घंटे की दौड़ में लगभग 100 [[मेगाबेस]] [अब 400 मेगाबेस तक] का अनुक्रम करता है। सरणी-आधारित विधि (454 जीवन विज्ञान द्वारा व्यावसायीकृत) में, एकल-फंसे डीएनए को मोतियों के साथ जोड़ा जाता है और ईएमपीसीआर के माध्यम से प्रवर्धित किया जाता है। इन डीएनए- में बंधे हुए मोती को तब एंजाइम के साथ फाइबर-ऑप्टिक चिप पर कुओं में रखा जाता है जो [[एडेनोसाइन ट्रायफ़ोस्फेट]] की उपस्थिति में प्रकाश उत्पन्न करता है। जब मुक्त न्यूक्लियोटाइड इस चिप पर धोए जाते हैं, तो एटीपी के रूप में प्रकाश उत्पन्न होता है जब न्यूक्लियोटाइड अपने पूरक आधार जोड़े के साथ जुड़ते हैं। अधिक न्यूक्लियोटाइडओं के परिणाम में प्रतिक्रिया होती है जो प्रकाश संकेत उत्पन्न करती है जिसे उपकरण में सीसीडी कैमरा द्वारा रिकॉर्ड किया जाता है। संकेत की शक्ति न्यूक्लियोटाइड्स की संख्या के समानुपाती होती है, उदाहरण के लिए, एकल न्यूक्लियोटाइड प्रवाह में सम्मलित एकाधिकार फैलाता है। [https://web.archive.org/web/20080318163514/http://www.454.com/]
पाइरोग्रेडिंग विधि न्यूक्लियोटाइड निगमन पर मुक्त पाइरोफॉस्फेट का पता लगाने पर आधारित है। पाइरोग्रेडिंग करने से पहले, डीएनए अनुक्रम सूत्र को पीसीआर द्वारा प्रवर्धित किया जाना है। फिर जिस क्रम में अनुक्रमक में न्यूक्लियोटाइड्स को जोड़ना होता है, उसे चुना जाता है (अर्थातG-A-T-C)। जब विशिष्ट न्यूक्लियोटाइड जोड़ा जाता है, अगर डीएनए पोलीमर्स इसे बढ़ती श्रृंखला में सम्मलित करता है, तो पाइरोफॉस्फेट जारी किया जाता है और एटीपी सल्फ्यूरलेज़ द्वारा एटीपी में परिवर्तित हो जाता है। एटीपी ल्यूसिफरेज के माध्यम से ल्यूसिफरेज के ऑक्सीकरण को शक्ति देता है, यह प्रतिक्रिया पाइरोग्राम चोटी के रूप में अंकित प्रकाश संकेत उत्पन्न करती है। इस प्रकार, न्यूक्लियोटाइड निगमन संकेत से सहसंबद्ध होता है। प्रकाश संकेत डीएनए सूत्र के संश्लेषण के पर्यन्त सम्मलित न्यूक्लियोटाइड्स की मात्रा के समानुपाती होता है (अर्थातदो न्यूक्लियोटाइड्स सम्मलित होते हैं जो दो पायरोग्राम चोटियों के अनुरूप होते हैं)। जब जोड़े गए न्यूक्लियोटाइड डीएनए अणु में सम्मलित नहीं होते हैं, तो कोई संकेत अंकित नहीं किया जाता है; [[एंजाइम]] एपिरेज़ प्रतिक्रिया में शेष किसी भी असंबद्ध न्यूक्लियोटाइड को हटा देता है। इस विधि के लिए न तो फ्लोरोसेंटली लेबल वाले न्यूक्लियोटाइड्स की आवश्यकता होती है और न ही जेल वैद्युतकणसंचलन की। पाल न्यरेन और मुस्तफा रोनाघी डीएनए द्वारा विकसित पाइरोग्रेडिंग का बायोटेज (कम-थ्रूपुट अनुक्रमण के लिए) और 454 जीवन विज्ञान (उच्च-थ्रूपुट अनुक्रमण के लिए) द्वारा व्यावसायीकरण किया गया है। बाद वाला प्लेटफॉर्म मशीन के साथ सात घंटे की दौड़ में लगभग 100 [[मेगाबेस]] [अब 400 मेगाबेस तक] का अनुक्रम करता है। सरणी-आधारित विधि (454 जीवन विज्ञान द्वारा व्यावसायीकृत) में, एकल-फंसे डीएनए को मोतियों के साथ जोड़ा जाता है और ईएमपीसीआर के माध्यम से प्रवर्धित किया जाता है। इन डीएनए- में बंधे हुए मोती को तब एंजाइम के साथ फाइबर-ऑप्टिक चिप पर कुओं में रखा जाता है जो [[एडेनोसाइन ट्रायफ़ोस्फेट]] की उपस्थिति में प्रकाश उत्पन्न करता है। जब मुक्त न्यूक्लियोटाइड इस चिप पर धोए जाते हैं, तो एटीपी के रूप में प्रकाश उत्पन्न होता है जब न्यूक्लियोटाइड अपने पूरक आधार जोड़े के साथ जुड़ते हैं। अधिक न्यूक्लियोटाइडओं के परिणाम में प्रतिक्रिया होती है जो प्रकाश संकेत उत्पन्न करती है जिसे उपकरण में सीसीडी कैमरा द्वारा रिकॉर्ड किया जाता है। संकेत की शक्ति न्यूक्लियोटाइड्स की संख्या के समानुपाती होती है, उदाहरण के लिए, एकल न्यूक्लियोटाइड प्रवाह में सम्मलित एकाधिकार फैलाता है। [https://web.archive.org/web/20080318163514/http://www.454.com/]


=== सही एकल अणु अनुक्रमण ===
=== सही एकल अणु अनुक्रमण ===

Revision as of 03:09, 19 May 2023

आनुवांशिकी और जैव रसायन में, अनुक्रमण का अर्थ है अशाखित जैव बहुलक की प्राथमिक संरचना का निर्धारण करना। कभी-कभी इसे गलत विधियों से प्राथमिक अनुक्रम कहा जाता है और अनुक्रमण के परिणामस्वरूप प्रतीकात्मक रेखीय चित्रण होता है जिसे अनुक्रम के रूप में जाना जाता है जो अनुक्रमित अणु के परमाणु-स्तर की संरचना को संक्षेप में सारांशित करता है।

डीएनए अनुक्रमण

डीएनए अनुक्रमण किसी दिए गए डीएनए टुकड़े के न्यूक्लियोटाइड क्रम को निर्धारित करने की प्रक्रिया है। अब तक, फ्रेडरिक सांगेर द्वारा विकसित श्रृंखला समाप्ति विधि का उपयोग करके अधिकांश डीएनए अनुक्रमण किया गया है। यह प्रविधि संशोधित न्यूक्लियोटाइड उप रणनीति का उपयोग करके डीएनए संश्लेषण प्रतिक्रिया के अनुक्रम-विशिष्ट समाप्ति का उपयोग करती है। चूँकि, नई अनुक्रमण प्रौद्योगिकियाँ जैसे कि पाइरोग्रेडिंग, अनुक्रमण बाज़ार में बढ़ती भागीदारी प्राप्त कर रही हैं। सेंगर डीएनए अनुक्रमण की तुलना में अधिक जीनोम डेटा अब पाइरोडिंग द्वारा उत्पादित किया जा रहा है। पाइरोडिंग ने तेजी से जीनोम अनुक्रमण को सक्षम किया है। प्रविधि के साथ कई बार आवृत्त के साथ बैक्टीरियल जीनोम को ही रन में अनुक्रमित किया जा सकता है। इस प्रविधि का उपयोग हाल ही में जेम्स डी. वाटसन के जीनोम को अनुक्रमित करने के लिए भी किया गया था।[1]डीएनए का क्रम जीवित चीजों के जीवित रहने और पुनरुत्पादन के लिए आवश्यक जानकारी को कूटबद्ध करता है। इसलिए अनुक्रम का निर्धारण मौलिक शोध में उपयोगी है कि जीव क्यों और कैसे रहते हैं, साथ ही साथ लागू विषयों में भी जीवित चीजों के लिए डीएनए के महत्वपूइसर्ण महत्व के कारण हैं । डीएनए अनुक्रमों का ज्ञान व्यावहारिक रूप से जैविक अनुसंधान के किसी भी क्षेत्र में उपयोगी है। उदाहरण के लिए, चिकित्सा में इसका उपयोग आनुवंशिक रोगों की पहचान, निदान और उपचार विकसित करने के लिए किया जा सकता है। इसी प्रकार, रोगजनकों में अनुसंधान से संक्रामक रोगों का उपचार हो सकता है। जैव प्रौद्योगिकी उभरता हुआ विषय है, जिसमें कई उपयोगी उत्पादों और सेवाओं की क्षमता है।

कार्लसन वक्र अर्थशास्त्री द्वारा गढ़ा गया शब्द है [2] मूर के कानून के जैव प्रौद्योगिकी समकक्ष का वर्णन करने के लिए और इसका नाम लेखक रॉब कार्लसन के नाम पर रखा गया है।[3] कार्लसन ने डीएनए अनुक्रमण प्रविधियों (लागत और प्रदर्शन द्वारा मापा गया) के दोगुने समय की सटीक भविष्यवाणी की, कम से कम मूर के नियम के रूप में तेज़ होगा।[4] कार्लसन कर्व्स डीएनए अनुक्रमण, डीएनए संश्लेषण, और प्रोटीन अभिव्यक्ति में और प्रोटीन संरचनाओं के निर्धारण में उपयोग किए जाने वाले भौतिक और अभिकलनात्मक उपकरणों की श्रृंखला सहित विभिन्न प्रविधियों की लागत में तेजी से (कुछ स्थितियों में अति घातीय) घटता है और प्रदर्शन में वृद्धि का वर्णन करता है।

सांगेर अनुक्रमण

एक रेडियोधर्मी लेबल अनुक्रमण जेल का हिस्सा

श्रृंखला टर्मिनेटर अनुक्रमण (सेंगर अनुक्रमण) में, उस क्षेत्र में सांचा के लिए लघु ओलिगो न्यूक्लियोटाइड 'प्राइमर' पूरक का उपयोग करके सांचा डीएनए पर विशिष्ट साइट पर विस्तार प्रारंभ किया जाता है। ओलिगो न्यूक्लियोटाइड प्राइमर डीएनए पोलीमर्स का उपयोग करके बढ़ाया जाता है, एंजाइम जो डीएनए को दोहराता है। प्राइमर और डीएनए पोलीमर्स के साथ चार डीऑक्सीन्यूक्लियोटाइड आधार (डीएनए इमारत ब्लॉक्स) सम्मलित हैं, साथ ही न्यूक्लियोटाइड को समाप्त करने वाली श्रृंखला की कम सांद्रता (सामान्यतः डी-डीऑक्सीन्यूक्लियोटाइड)। डीऑक्सीन्यूक्लियोटाइड्स की OH समूह में राइबोस अणु की 2' और 3' दोनों स्थितियों में कमी होती है, इसलिए बार डीएनए अणु के भीतर डाले जाने के बाद वे इसे और लंबे होने से रोकते हैं। इस अनुक्रमक में चार अलग-अलग जहाजों को नियोजित किया जाता है, जिनमें से प्रत्येक में केवल चार डाइडॉक्सीराइबोन्यूक्लियोटाइड्स होते हैं; डीएनए पोलीमर्स द्वारा श्रृंखला को समाप्त करने वाले न्यूक्लियोटाइड्स को यादृच्छिक स्थिति में सम्मलित करने से विभिन्न आकारों के संबंधित डीएनए टुकड़ों की श्रृंखला होती है, जो दिए गए डिडोक्सीरिबोन्यूक्लियोटाइड के साथ समाप्त होती है। टुकड़ों को तब स्लैब पॉलीएक्रिलामाइड जेल में वैद्युतकणसंचलन द्वारा अलग किया जाता है और अधिक सामान्यतः अब चिपचिपा बहुलक से भरी संकीर्ण काँच की नली (केशिका) में होती है।

एक उदाहरण डाई-टर्मिनेटर पढ़ने की शुरुआत का दृश्य (विस्तृत करने के लिए क्लिक करें)

प्राइमर की लेबलिंग का विकल्प इसके अतिरिक्त टर्मिनेटर्स को लेबल करना है, जिसे सामान्यतः 'डाई टर्मिनेटर अनुक्रमण' कहा जाता है। इस दृष्टिकोण का प्रमुख लाभ यह है कि पूर्ण अनुक्रमण सेट को लेबल-प्राइमर दृष्टिकोण के साथ आवश्यक चार के अतिरिक्त ही प्रतिक्रिया में किया जा सकता है। यह अलग फ्लोरोसेंट डाई के साथ प्रत्येक डाइडॉक्सिन्यूक्लियोटाइड श्रृंखला-टर्मिनेटर को लेबल करके पूरा किया जाता है, जो अलग तरंग दैर्ध्य पर फ़्लॉरेसेस करता है। डाई प्राइमर दृष्टिकोण की तुलना में यह विधि सरल और तेज है, किन्तु बड़े डाई चेन-टर्मिनेटरों के समावेश में सांचा निर्भर अंतर के कारण अधिक असमान डेटा चोटियों (विभिन्न ऊंचाइयों) का उत्पादन कर सकता है। नए एंजाइमों और रंगों की प्रारंभिक के साथ यह समस्या अधिक कम हो गई है जो निगमन परिवर्तनशीलता को कम करते हैं।

इस पद्धति का उपयोग अब अधिकांश अनुक्रमण प्रतिक्रियाओं के लिए किया जाता है क्योंकि यह सरल और सस्ता दोनों है। इसका प्रमुख कारण यह है कि प्राइमरों को अलग से लेबल करने की आवश्यकता नहीं है (जो एक बार उपयोग किए जाने वाले प्रचलन प्राइमर के लिए महत्वपूर्ण खर्च हो सकता है), चूंकि यह अधिकांशतः उपयोग किए जाने वाले 'सार्वभौमिक' प्राइमरों के साथ कम चिंता का विषय है। इलुमिना, 454, एबीआई, हेलिकोज और डोवर की दूसरी और तीसरी पीढ़ी की प्रणालियों की बढ़ती लागत-प्रभावशीलता के कारण यह तेजी से बदल रहा है।

पायरो अनुक्रमण

पाइरोग्रेडिंग विधि न्यूक्लियोटाइड निगमन पर मुक्त पाइरोफॉस्फेट का पता लगाने पर आधारित है। पाइरोग्रेडिंग करने से पहले, डीएनए अनुक्रम सूत्र को पीसीआर द्वारा प्रवर्धित किया जाना है। फिर जिस क्रम में अनुक्रमक में न्यूक्लियोटाइड्स को जोड़ना होता है, उसे चुना जाता है (अर्थातG-A-T-C)। जब विशिष्ट न्यूक्लियोटाइड जोड़ा जाता है, अगर डीएनए पोलीमर्स इसे बढ़ती श्रृंखला में सम्मलित करता है, तो पाइरोफॉस्फेट जारी किया जाता है और एटीपी सल्फ्यूरलेज़ द्वारा एटीपी में परिवर्तित हो जाता है। एटीपी ल्यूसिफरेज के माध्यम से ल्यूसिफरेज के ऑक्सीकरण को शक्ति देता है, यह प्रतिक्रिया पाइरोग्राम चोटी के रूप में अंकित प्रकाश संकेत उत्पन्न करती है। इस प्रकार, न्यूक्लियोटाइड निगमन संकेत से सहसंबद्ध होता है। प्रकाश संकेत डीएनए सूत्र के संश्लेषण के पर्यन्त सम्मलित न्यूक्लियोटाइड्स की मात्रा के समानुपाती होता है (अर्थातदो न्यूक्लियोटाइड्स सम्मलित होते हैं जो दो पायरोग्राम चोटियों के अनुरूप होते हैं)। जब जोड़े गए न्यूक्लियोटाइड डीएनए अणु में सम्मलित नहीं होते हैं, तो कोई संकेत अंकित नहीं किया जाता है; एंजाइम एपिरेज़ प्रतिक्रिया में शेष किसी भी असंबद्ध न्यूक्लियोटाइड को हटा देता है। इस विधि के लिए न तो फ्लोरोसेंटली लेबल वाले न्यूक्लियोटाइड्स की आवश्यकता होती है और न ही जेल वैद्युतकणसंचलन की। पाल न्यरेन और मुस्तफा रोनाघी डीएनए द्वारा विकसित पाइरोग्रेडिंग का बायोटेज (कम-थ्रूपुट अनुक्रमण के लिए) और 454 जीवन विज्ञान (उच्च-थ्रूपुट अनुक्रमण के लिए) द्वारा व्यावसायीकरण किया गया है। बाद वाला प्लेटफॉर्म मशीन के साथ सात घंटे की दौड़ में लगभग 100 मेगाबेस [अब 400 मेगाबेस तक] का अनुक्रम करता है। सरणी-आधारित विधि (454 जीवन विज्ञान द्वारा व्यावसायीकृत) में, एकल-फंसे डीएनए को मोतियों के साथ जोड़ा जाता है और ईएमपीसीआर के माध्यम से प्रवर्धित किया जाता है। इन डीएनए- में बंधे हुए मोती को तब एंजाइम के साथ फाइबर-ऑप्टिक चिप पर कुओं में रखा जाता है जो एडेनोसाइन ट्रायफ़ोस्फेट की उपस्थिति में प्रकाश उत्पन्न करता है। जब मुक्त न्यूक्लियोटाइड इस चिप पर धोए जाते हैं, तो एटीपी के रूप में प्रकाश उत्पन्न होता है जब न्यूक्लियोटाइड अपने पूरक आधार जोड़े के साथ जुड़ते हैं। अधिक न्यूक्लियोटाइडओं के परिणाम में प्रतिक्रिया होती है जो प्रकाश संकेत उत्पन्न करती है जिसे उपकरण में सीसीडी कैमरा द्वारा रिकॉर्ड किया जाता है। संकेत की शक्ति न्यूक्लियोटाइड्स की संख्या के समानुपाती होती है, उदाहरण के लिए, एकल न्यूक्लियोटाइड प्रवाह में सम्मलित एकाधिकार फैलाता है। [1]

सही एकल अणु अनुक्रमण

बड़े पैमाने पर अनुक्रमण

जबकि उपरोक्त विधियाँ विभिन्न अनुक्रमण विधियों का वर्णन करती हैं, अलग-अलग संबंधित शब्दों का उपयोग तब किया जाता है जब जीनोम का बड़ा हिस्सा अनुक्रमित होता है। एक्सोम अनुक्रमण (सभी गुणसूत्रों में सभी डीएनए का सबसेट जो जीन को एनकोड करता है) या संपूर्ण जीनोम अनुक्रमण (मानव के सभी परमाणु डीएनए का अनुक्रमण) करने के लिए कई प्लेटफॉर्म विकसित किए गए थे।

आरएनए अनुक्रमण

आरएनए कोशिका में कम स्थिर होता है, और प्रयोगात्मक रूप से न्यूक्लियस हमले के लिए भी अधिक प्रवण होता है। चूंकि डीएनए से प्रतिलेखन (आनुवांशिकी)आनुवांशिकी) द्वारा आरएनए उत्पन्न होता है, इसलिए जानकारी सेल के डीएनए में पहले से मौजूद होती है। हालांकि, यह कभी-कभी RNA-Seq अणुओं के लिए वांछनीय होता है। जबकि अनुक्रमण डीएनए जीव का आनुवंशिक प्रोफ़ाइल देता है, अनुक्रमण आरएनए केवल उन अनुक्रमों को दर्शाता है जो कोशिकाओं में सक्रिय रूप से जीन अभिव्यक्ति हैं। आरएनए को अनुक्रमित करने के लिए, सीडीएनए टुकड़े उत्पन्न करने के लिए नमूने से निकाले गए आरएनए को रिवर्स ट्रांसक्रिपटेस के लिए सामान्य विधि सबसे पहले है। इसे ऊपर वर्णित अनुसार अनुक्रमित किया जा सकता है। कोशिकाओं में अभिव्यक्त आरएनए के थोक रिबोसोमल आरएनए या छोटे आरएनए हैं, जो सेलुलर अनुवाद के लिए हानिकारक हैं, किन्तु अधिकांशतः अध्ययन का ध्यान केंद्रित नहीं करते हैं। इस अंश को इन विट्रो में हटाया जा सकता है, हालांकि, मैसेंजर आरएनए के लिए समृद्ध करने के लिए, यह भी सम्मलित है, जो सामान्यतः रुचि का <यू>है</यू>। एक्सॉन से व्युत्पन्न ये एमआरएनए बाद में प्रोटीन में अनुवादित होते हैं जो विशेष सेलुलर कार्यों का समर्थन करते हैं। अभिव्यक्ति प्रोफाइल इसलिए सेलुलर गतिविधि को इंगित करता है, विशेष रूप से रोगों, सेलुलर व्यवहार, अभिकर्मकों या उत्तेजनाओं के जवाबों के अध्ययन में वांछित है। यूकेरियोट आरएनए अणु आवश्यक रूप से अपने डीएनए सांचा के साथ सह-रैखिक नहीं होते हैं, क्योंकि इंट्रॉन एक्साइज़ होते हैं। यह अनुक्रम पढ़ें को वापस जीनोम में मैप करने के लिए निश्चित जटिलता देता है और इस प्रकार उनकी उत्पत्ति की पहचान करता है। संपूर्ण ट्रांसक्रिप्टोम पर लागू अगली पीढ़ी के अनुक्रमण की क्षमताओं के बारे में अधिक जानकारी के लिए देखें: RNA-Seq और माइक्रो RNA अनुक्रमण।

प्रोटीन अनुक्रमण

प्रोटीन अनुक्रमण करने के तरीके सम्मलित करना:

यदि जीन एन्कोडिंग प्रोटीन ज्ञात है, तो वर्तमान में डीएनए को अनुक्रमित करना और प्रोटीन अनुक्रम का अनुमान लगाना बहुत सरल है। उपरोक्त विधियों में से किसी द्वारा प्रोटीन के एमिनो एसिड | अमीनो-एसिड अनुक्रम (अधिकांशतः छोर) का निर्धारण इस जीन को ले जाने वाले क्लोन (आनुवांशिकी) की पहचान करने के लिए पर्याप्त हो सकता है।

बहुशर्करा अनुक्रमण

चूंकि पॉलीसेकेराइड भी बायोपॉलिमर हैं, किन्तु कई कारणों से पॉलीसेकेराइड को 'अनुक्रमण' करने की बात करना इतना आम नहीं है। चूँकि कई पॉलीसेकेराइड रैखिक होते हैं, किन्तु कई की शाखाएँ होती हैं। कई अलग-अलग इकाइयों (व्यक्तिगत मोनोसैकराइड) का उपयोग किया जा सकता है, और रासायनिक बंधन अलग-अलग विधियों से किया जा सकता है। हालांकि, मुख्य सैद्धांतिक कारण यह है कि यहां सूचीबद्ध अन्य पॉलिमर मुख्य रूप से प्रक्रियात्मक एंजाइम द्वारा 'टेम्पलेट-आश्रित' विधियों से उत्पन्न होते हैं, प्रत्येक व्यक्ति पॉलीसेकेराइड में अलग एंजाइम द्वारा गठित हो सकता है। कई स्थितियों में असेंबली विशिष्ट रूप से निर्दिष्ट नहीं होती है; किस एंजाइम के कार्य के आधार पर, कई अलग-अलग इकाइयों में से को सम्मलित किया जा सकता है। इससे समान अणुओं का परिवार बन सकता है। यह प्लांट पॉलीसेकेराइड के लिए विशेष रूप से सच है। ओलिगो सैकराइड और पॉलीसेकेराइड की संरचना निर्धारण के विधियों में एनएमआर स्पेक्ट्रोस्कोपी और मिथाइलेशन विश्लेषण सम्मलित हैं।[5]


यह भी देखें

संदर्भ

  1. Wheeler, David A.; Srinivasan, Maithreyan; Egholm, Michael; Shen, Yufeng; Chen, Lei; McGuire, Amy; He, Wen; Chen, Yi-Ju; Makhijani, Vinod (2008-04-17). "बड़े पैमाने पर समानांतर डीएनए अनुक्रमण द्वारा किसी व्यक्ति का पूर्ण जीनोम". Nature (in English). 452 (7189): 872–876. Bibcode:2008Natur.452..872W. doi:10.1038/nature06884. ISSN 0028-0836. PMID 18421352.
  2. Life 2.0. (2006, August 31). The Economist
  3. Carlson, Robert H. Biology Is Technology: The Promise, Peril, and New Business of Engineering Life. Cambridge, MA: Harvard UP, 2010. Print
  4. Carlson, Robert (2003). "जैविक प्रौद्योगिकियों की गति और प्रसार". Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science. 1 (3): 203–214. doi:10.1089/153871303769201851. PMID 15040198.
  5. "A practical guide to structural analysis of carbohydrates".


लिंक

श्रेणी:जैव रसायन विधियां श्रेणी:आण्विक जीव विज्ञान