वेइल टेंसर: Difference between revisions
(Created page with "{{Short description|Measure of the curvature of a pseudo-Riemannian manifold}} अंतर ज्यामिति में, वेइल वक्रता टेन...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Measure of the curvature of a pseudo-Riemannian manifold}} | {{Short description|Measure of the curvature of a pseudo-Riemannian manifold}} | ||
[[ अंतर ज्यामिति ]] में, वेइल वक्रता टेन्सर, जिसका नाम [[हरमन वेइल]] के नाम पर रखा गया है,<ref>{{Cite journal|last=Weyl|first=Hermann|date=1918-09-01|title=राइन इनफिनिटसिमल जियोमेट्री|url=https://doi.org/10.1007/BF01199420|journal=Mathematische Zeitschrift|language=de|volume=2|issue=3|pages=384–411|doi=10.1007/BF01199420|bibcode=1918MatZ....2..384W |s2cid=186232500 |issn=1432-1823}}</ref> [[ अंतरिक्ष समय ]] की [[वक्रता]] का | [[ अंतर ज्यामिति | अंतर ज्यामिति]] में, वेइल वक्रता टेन्सर, जिसका नाम [[हरमन वेइल]] के नाम पर रखा गया है,<ref>{{Cite journal|last=Weyl|first=Hermann|date=1918-09-01|title=राइन इनफिनिटसिमल जियोमेट्री|url=https://doi.org/10.1007/BF01199420|journal=Mathematische Zeitschrift|language=de|volume=2|issue=3|pages=384–411|doi=10.1007/BF01199420|bibcode=1918MatZ....2..384W |s2cid=186232500 |issn=1432-1823}}</ref> [[ अंतरिक्ष समय |अंतरिक्ष समय]] की [[वक्रता]] का माप है या, अधिक सामान्यतः, [[स्यूडो-रीमैनियन मैनिफोल्ड]] रीमैन वक्रता [[टेन्सर]] की तरह, वेइल टेंसर [[ज्वारीय बल]] को व्यक्त करता है जो पिंड [[ geodesic |geodesic]] के साथ चलते समय महसूस करता है। वेइल टेन्सर [[घुंघराले वक्र]] टेंसर से इस मायने में भिन्न है कि यह इस बात की जानकारी नहीं देता है कि पिंड का आयतन कैसे बदलता है, बल्कि केवल यह बताता है कि ज्वारीय बल द्वारा पिंड का आकार कैसे विकृत होता है। रीमैन टेंसर के रिक्की वक्रता, या [[ट्रेस (रैखिक बीजगणित)]] घटक में सटीक रूप से जानकारी होती है कि ज्वारीय बलों की उपस्थिति में वॉल्यूम कैसे बदलते हैं, इसलिए वेइल टेंसर रीमैन टेंसर का [[ लापता |लापता]] घटक है। इस टेन्सर में रीमैन टेंसर के समान समरूपता है, लेकिन यह अतिरिक्त शर्त को पूरा करता है कि यह ट्रेस-मुक्त है: टेन्सर संकुचन # मीट्रिक संकुचन सूचकांकों की किसी भी जोड़ी पर शून्य प्राप्त करता है। यह रीमैन टेंसर से टेन्सर घटाकर प्राप्त किया जाता है जो रिक्की टेंसर में रैखिक अभिव्यक्ति है। | ||
[[सामान्य सापेक्षता]] में, वेइल वक्रता वक्रता का एकमात्र हिस्सा है जो मुक्त स्थान में मौजूद है - [[आइंस्टीन क्षेत्र समीकरण]] का | [[सामान्य सापेक्षता]] में, वेइल वक्रता वक्रता का एकमात्र हिस्सा है जो मुक्त स्थान में मौजूद है - [[आइंस्टीन क्षेत्र समीकरण]] का समाधान - और यह पदार्थ से रहित अंतरिक्ष के क्षेत्रों के माध्यम से गुरुत्वाकर्षण तरंगों के प्रसार को नियंत्रित करता है।<ref name="Danehkar2009">{{cite journal | last1=Danehkar | first1=A. | date=2009 | title=सापेक्षतावादी ब्रह्माण्ड संबंधी मॉडल में वेइल वक्रता के महत्व पर| journal=Mod. Phys. Lett. A | volume=24 | issue=38 | pages=3113–3127 | doi=10.1142/S0217732309032046 | bibcode=2009MPLA...24.3113D| arxiv=0707.2987 | s2cid=15949217 }}</ref> अधिक आम तौर पर, [[रिक्की-फ्लैट कई गुना]] के लिए वेइल वक्रता वक्रता का एकमात्र घटक है और हमेशा [[ आइंस्टीन कई गुना |आइंस्टीन कई गुना]] के क्षेत्र समीकरणों की [[विशेषताओं की विधि]] को नियंत्रित करता है।<ref name="Danehkar2009"/> | ||
आयाम 2 और 3 में वेइल वक्रता टेन्सर समान रूप से गायब हो जाता है। आयाम ≥ 4 में, वेइल वक्रता आम तौर पर गैर-शून्य होती है। यदि वीइल टेंसर आयाम ≥ 4 में गायब हो जाता है, तो मीट्रिक स्थानीय रूप से समतल है: | आयाम 2 और 3 में वेइल वक्रता टेन्सर समान रूप से गायब हो जाता है। आयाम ≥ 4 में, वेइल वक्रता आम तौर पर गैर-शून्य होती है। यदि वीइल टेंसर आयाम ≥ 4 में गायब हो जाता है, तो मीट्रिक स्थानीय रूप से समतल है: [[स्थानीय समन्वय प्रणाली]] मौजूद है जिसमें मीट्रिक टेंसर स्थिर टेंसर के समानुपाती होता है। यह तथ्य नॉर्डस्ट्रॉम के गुरुत्वाकर्षण के सिद्धांत का प्रमुख घटक था, जो सामान्य सापेक्षता का अग्रदूत था। | ||
== परिभाषा == | == परिभाषा == | ||
Line 25: | Line 25: | ||
साधारण (1,3) वैलेंट वेइल टेन्सर तब उपरोक्त को मीट्रिक के व्युत्क्रम के साथ अनुबंधित करके दिया जाता है। | साधारण (1,3) वैलेंट वेइल टेन्सर तब उपरोक्त को मीट्रिक के व्युत्क्रम के साथ अनुबंधित करके दिया जाता है। | ||
अपघटन ({{EquationNote|1}}) रीमैन टेन्सर को वेक्टर बंडलों के [[ ओर्थोगोनल ]] प्रत्यक्ष योग के रूप में व्यक्त करता है, इस अर्थ में कि | अपघटन ({{EquationNote|1}}) रीमैन टेन्सर को वेक्टर बंडलों के [[ ओर्थोगोनल |ओर्थोगोनल]] प्रत्यक्ष योग के रूप में व्यक्त करता है, इस अर्थ में कि | ||
:<math>|R|^2 = |C|^2 + \left|\frac{1}{n - 2}\left(\mathrm{Ric} - \frac{s}{n}g\right) {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} g\right|^2 + \left|\frac{s}{2n(n - 1)}g {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} g\right|^2.</math> | :<math>|R|^2 = |C|^2 + \left|\frac{1}{n - 2}\left(\mathrm{Ric} - \frac{s}{n}g\right) {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} g\right|^2 + \left|\frac{s}{2n(n - 1)}g {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} g\right|^2.</math> | ||
यह अपघटन, जिसे [[रिक्की अपघटन]] के रूप में जाना जाता है, [[ऑर्थोगोनल समूह]] की कार्रवाई के तहत रिमेंन वक्रता टेंसर को इसके इरेड्यूसेबल प्रतिनिधित्व घटकों में व्यक्त करता है। {{Harv|Singer|Thorpe|1968}}. आयाम 4 में, वेइल टेन्सर [[विशेष ऑर्थोगोनल समूह]], स्व-दोहरी और एंटीसेल्फ-डुअल भागों सी की कार्रवाई के लिए अपरिवर्तनीय कारकों में और विघटित हो जाता है।<sup>+</sup> और सी<sup>-</सुप>. | यह अपघटन, जिसे [[रिक्की अपघटन]] के रूप में जाना जाता है, [[ऑर्थोगोनल समूह]] की कार्रवाई के तहत रिमेंन वक्रता टेंसर को इसके इरेड्यूसेबल प्रतिनिधित्व घटकों में व्यक्त करता है। {{Harv|Singer|Thorpe|1968}}. आयाम 4 में, वेइल टेन्सर [[विशेष ऑर्थोगोनल समूह]], स्व-दोहरी और एंटीसेल्फ-डुअल भागों सी की कार्रवाई के लिए अपरिवर्तनीय कारकों में और विघटित हो जाता है।<sup>+</sup> और सी<sup>-</सुप>. | ||
वेइल टेंसर को [[शाउटन टेंसर]] का उपयोग करके भी व्यक्त किया जा सकता है, जो रिक्की टेंसर का | वेइल टेंसर को [[शाउटन टेंसर]] का उपयोग करके भी व्यक्त किया जा सकता है, जो रिक्की टेंसर का ट्रेस-एडजस्टेड मल्टीपल है, | ||
:<math>P = \frac{1}{n - 2}\left(\mathrm{Ric} - \frac{s}{2(n-1)}g\right).</math> | :<math>P = \frac{1}{n - 2}\left(\mathrm{Ric} - \frac{s}{2(n-1)}g\right).</math> | ||
तब | तब | ||
Line 42: | Line 42: | ||
=== अनुरूप रीस्केलिंग === | === अनुरूप रीस्केलिंग === | ||
वेइल टेन्सर का विशेष गुण है कि यह [[मीट्रिक टेंसर]] के अनुरूप मानचित्र परिवर्तन के तहत अपरिवर्तनीय है। यानी अगर <math>g_{\mu\nu}\mapsto g'_{\mu\nu} = f g_{\mu\nu}</math> कुछ सकारात्मक स्केलर फ़ंक्शन के लिए <math>f</math> तब (1,3) वैलेंट वेइल टेंसर संतुष्ट करता है <math>{C'}^{a}_{\ \ bcd} = C^{a}_{\ \ bcd}</math>. इस कारण वेइल टेंसर को कंफर्मल टेंसर भी कहा जाता है। यह इस प्रकार है कि | वेइल टेन्सर का विशेष गुण है कि यह [[मीट्रिक टेंसर]] के अनुरूप मानचित्र परिवर्तन के तहत अपरिवर्तनीय है। यानी अगर <math>g_{\mu\nu}\mapsto g'_{\mu\nu} = f g_{\mu\nu}</math> कुछ सकारात्मक स्केलर फ़ंक्शन के लिए <math>f</math> तब (1,3) वैलेंट वेइल टेंसर संतुष्ट करता है <math>{C'}^{a}_{\ \ bcd} = C^{a}_{\ \ bcd}</math>. इस कारण वेइल टेंसर को कंफर्मल टेंसर भी कहा जाता है। यह इस प्रकार है कि रिमेंनियन मैनिफोल्ड के अनुरूप फ्लैट होने के लिए [[आवश्यक शर्त]] यह है कि वेइल टेन्सर गायब हो जाता है। आयाम ≥ 4 में यह स्थिति भी [[पर्याप्त स्थिति]] है। डायमेंशन 3 में [[ कपास टेंसर |कपास टेंसर]] का गायब होना रिमेंनियन मैनिफोल्ड के अनुरूप रूप से सपाट होने के लिए आवश्यक और पर्याप्त स्थिति है। कोई भी 2-आयामी (चिकनी) रीमैनियन मैनिफोल्ड अनुरूप रूप से सपाट है, जो [[इज़ोटेर्मल निर्देशांक]] के अस्तित्व का परिणाम है। | ||
वास्तव में, | वास्तव में, समान रूप से सपाट पैमाने का अस्तित्व अतिनिर्धारित आंशिक अंतर समीकरण को हल करने के बराबर है | ||
:<math>Ddf - df\otimes df + \left(|df|^2 + \frac{\Delta f}{n - 2}\right)g = \operatorname{Ric}.</math> | :<math>Ddf - df\otimes df + \left(|df|^2 + \frac{\Delta f}{n - 2}\right)g = \operatorname{Ric}.</math> | ||
आयाम ≥ 4 में, वेइल टेन्सर का गायब होना इस समीकरण के लिए एकमात्र पूर्णता की स्थिति है; आयाम 3 में, इसके बजाय यह कॉटन टेन्सर है। | आयाम ≥ 4 में, वेइल टेन्सर का गायब होना इस समीकरण के लिए एकमात्र पूर्णता की स्थिति है; आयाम 3 में, इसके बजाय यह कॉटन टेन्सर है। | ||
Line 63: | Line 63: | ||
{C^a}_{bac} &= 0. | {C^a}_{bac} &= 0. | ||
\end{align}</math> | \end{align}</math> | ||
=== बियांची पहचान === | === बियांची पहचान === | ||
रीमैन टेंसर की सामान्य दूसरी बियांची पहचान के निशान लेने से अंततः यह पता चलता है | रीमैन टेंसर की सामान्य दूसरी बियांची पहचान के निशान लेने से अंततः यह पता चलता है | ||
Line 72: | Line 70: | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[रीमानियन मैनिफोल्ड्स की वक्रता]] | * [[रीमानियन मैनिफोल्ड्स की वक्रता]] | ||
* क्रिस्टोफेल प्रतीक वेइल टेन्सर के लिए | * क्रिस्टोफेल प्रतीक वेइल टेन्सर के लिए समन्वय अभिव्यक्ति प्रदान करते हैं। | ||
* [[लैंक्ज़ोस टेंशनर]] | * [[लैंक्ज़ोस टेंशनर]] | ||
* [[छीलने की प्रमेय]] | * [[छीलने की प्रमेय]] |
Revision as of 05:58, 5 May 2023
अंतर ज्यामिति में, वेइल वक्रता टेन्सर, जिसका नाम हरमन वेइल के नाम पर रखा गया है,[1] अंतरिक्ष समय की वक्रता का माप है या, अधिक सामान्यतः, स्यूडो-रीमैनियन मैनिफोल्ड रीमैन वक्रता टेन्सर की तरह, वेइल टेंसर ज्वारीय बल को व्यक्त करता है जो पिंड geodesic के साथ चलते समय महसूस करता है। वेइल टेन्सर घुंघराले वक्र टेंसर से इस मायने में भिन्न है कि यह इस बात की जानकारी नहीं देता है कि पिंड का आयतन कैसे बदलता है, बल्कि केवल यह बताता है कि ज्वारीय बल द्वारा पिंड का आकार कैसे विकृत होता है। रीमैन टेंसर के रिक्की वक्रता, या ट्रेस (रैखिक बीजगणित) घटक में सटीक रूप से जानकारी होती है कि ज्वारीय बलों की उपस्थिति में वॉल्यूम कैसे बदलते हैं, इसलिए वेइल टेंसर रीमैन टेंसर का लापता घटक है। इस टेन्सर में रीमैन टेंसर के समान समरूपता है, लेकिन यह अतिरिक्त शर्त को पूरा करता है कि यह ट्रेस-मुक्त है: टेन्सर संकुचन # मीट्रिक संकुचन सूचकांकों की किसी भी जोड़ी पर शून्य प्राप्त करता है। यह रीमैन टेंसर से टेन्सर घटाकर प्राप्त किया जाता है जो रिक्की टेंसर में रैखिक अभिव्यक्ति है।
सामान्य सापेक्षता में, वेइल वक्रता वक्रता का एकमात्र हिस्सा है जो मुक्त स्थान में मौजूद है - आइंस्टीन क्षेत्र समीकरण का समाधान - और यह पदार्थ से रहित अंतरिक्ष के क्षेत्रों के माध्यम से गुरुत्वाकर्षण तरंगों के प्रसार को नियंत्रित करता है।[2] अधिक आम तौर पर, रिक्की-फ्लैट कई गुना के लिए वेइल वक्रता वक्रता का एकमात्र घटक है और हमेशा आइंस्टीन कई गुना के क्षेत्र समीकरणों की विशेषताओं की विधि को नियंत्रित करता है।[2]
आयाम 2 और 3 में वेइल वक्रता टेन्सर समान रूप से गायब हो जाता है। आयाम ≥ 4 में, वेइल वक्रता आम तौर पर गैर-शून्य होती है। यदि वीइल टेंसर आयाम ≥ 4 में गायब हो जाता है, तो मीट्रिक स्थानीय रूप से समतल है: स्थानीय समन्वय प्रणाली मौजूद है जिसमें मीट्रिक टेंसर स्थिर टेंसर के समानुपाती होता है। यह तथ्य नॉर्डस्ट्रॉम के गुरुत्वाकर्षण के सिद्धांत का प्रमुख घटक था, जो सामान्य सापेक्षता का अग्रदूत था।
परिभाषा
विभिन्न अंशों को घटाकर पूर्ण वक्रता टेंसर से वेइल टेन्सर प्राप्त किया जा सकता है। यह रीमैन टेंसर को (0,4) वैलेंस टेंसर (मीट्रिक के साथ अनुबंध करके) के रूप में लिखकर सबसे आसानी से किया जाता है। (0,4) वैलेंस वेइल टेंसर तब है (Petersen 2006, p. 92)
जहाँ n कई गुना का आयाम है, g मीट्रिक है, R रीमैन टेन्सर है, रिक रिक्की टेंसर है, s स्केलर वक्रता है, और दो सममित (0,2) टेंसरों के कुलकर्णी-नोमिज़ू उत्पाद को दर्शाता है:
टेन्सर कंपोनेंट नोटेशन में, इसे इस रूप में लिखा जा सकता है
साधारण (1,3) वैलेंट वेइल टेन्सर तब उपरोक्त को मीट्रिक के व्युत्क्रम के साथ अनुबंधित करके दिया जाता है।
अपघटन (1) रीमैन टेन्सर को वेक्टर बंडलों के ओर्थोगोनल प्रत्यक्ष योग के रूप में व्यक्त करता है, इस अर्थ में कि
यह अपघटन, जिसे रिक्की अपघटन के रूप में जाना जाता है, ऑर्थोगोनल समूह की कार्रवाई के तहत रिमेंन वक्रता टेंसर को इसके इरेड्यूसेबल प्रतिनिधित्व घटकों में व्यक्त करता है। (Singer & Thorpe 1968) . आयाम 4 में, वेइल टेन्सर विशेष ऑर्थोगोनल समूह, स्व-दोहरी और एंटीसेल्फ-डुअल भागों सी की कार्रवाई के लिए अपरिवर्तनीय कारकों में और विघटित हो जाता है।+ और सी-</सुप>.
वेइल टेंसर को शाउटन टेंसर का उपयोग करके भी व्यक्त किया जा सकता है, जो रिक्की टेंसर का ट्रेस-एडजस्टेड मल्टीपल है,
तब
सूचकांकों में,[3]
कहाँ रीमैन टेन्सर है, रिक्की टेन्सर है, रिक्की अदिश (अदिश वक्रता) है और सूचकांकों के चारों ओर कोष्ठक एंटीसिमेट्रिक टेंसर को संदर्भित करता है। समान रूप से,
जहाँ S, Schouten टेंसर को दर्शाता है।
गुण
अनुरूप रीस्केलिंग
वेइल टेन्सर का विशेष गुण है कि यह मीट्रिक टेंसर के अनुरूप मानचित्र परिवर्तन के तहत अपरिवर्तनीय है। यानी अगर कुछ सकारात्मक स्केलर फ़ंक्शन के लिए तब (1,3) वैलेंट वेइल टेंसर संतुष्ट करता है . इस कारण वेइल टेंसर को कंफर्मल टेंसर भी कहा जाता है। यह इस प्रकार है कि रिमेंनियन मैनिफोल्ड के अनुरूप फ्लैट होने के लिए आवश्यक शर्त यह है कि वेइल टेन्सर गायब हो जाता है। आयाम ≥ 4 में यह स्थिति भी पर्याप्त स्थिति है। डायमेंशन 3 में कपास टेंसर का गायब होना रिमेंनियन मैनिफोल्ड के अनुरूप रूप से सपाट होने के लिए आवश्यक और पर्याप्त स्थिति है। कोई भी 2-आयामी (चिकनी) रीमैनियन मैनिफोल्ड अनुरूप रूप से सपाट है, जो इज़ोटेर्मल निर्देशांक के अस्तित्व का परिणाम है।
वास्तव में, समान रूप से सपाट पैमाने का अस्तित्व अतिनिर्धारित आंशिक अंतर समीकरण को हल करने के बराबर है
आयाम ≥ 4 में, वेइल टेन्सर का गायब होना इस समीकरण के लिए एकमात्र पूर्णता की स्थिति है; आयाम 3 में, इसके बजाय यह कॉटन टेन्सर है।
समरूपता
वेइल टेंसर में रीमैन टेंसर के समान समरूपता होती है। यह भी शामिल है:
इसके अलावा, निश्चित रूप से, वीइल टेंसर ट्रेस मुक्त है:
सभी यू के लिए, वी। सूचकांकों में ये चार स्थितियां हैं
बियांची पहचान
रीमैन टेंसर की सामान्य दूसरी बियांची पहचान के निशान लेने से अंततः यह पता चलता है
जहां S शाउटन टेन्सर है। प्रारंभिक कारक के अलावा, दाहिनी ओर वैलेंस (0,3) टेंसर कॉटन टेंसर है।
यह भी देखें
- रीमानियन मैनिफोल्ड्स की वक्रता
- क्रिस्टोफेल प्रतीक वेइल टेन्सर के लिए समन्वय अभिव्यक्ति प्रदान करते हैं।
- लैंक्ज़ोस टेंशनर
- छीलने की प्रमेय
- पेत्रोव वर्गीकरण
- प्लेबन टेंसर
- वेइल वक्रता परिकल्पना
- वेइल अदिश
टिप्पणियाँ
- ↑ Weyl, Hermann (1918-09-01). "राइन इनफिनिटसिमल जियोमेट्री". Mathematische Zeitschrift (in Deutsch). 2 (3): 384–411. Bibcode:1918MatZ....2..384W. doi:10.1007/BF01199420. ISSN 1432-1823. S2CID 186232500.
- ↑ 2.0 2.1 Danehkar, A. (2009). "सापेक्षतावादी ब्रह्माण्ड संबंधी मॉडल में वेइल वक्रता के महत्व पर". Mod. Phys. Lett. A. 24 (38): 3113–3127. arXiv:0707.2987. Bibcode:2009MPLA...24.3113D. doi:10.1142/S0217732309032046. S2CID 15949217.
- ↑ Grøn & Hervik 2007, p. 490
संदर्भ
- Hawking, Stephen W.; Ellis, George F. R. (1973), The Large Scale Structure of Space-Time, Cambridge University Press, ISBN 0-521-09906-4
- Petersen, Peter (2006), Riemannian geometry, Graduate Texts in Mathematics, vol. 171 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 0387292462, MR 2243772.
- Sharpe, R.W. (1997), Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Springer-Verlag, New York, ISBN 0-387-94732-9.
- Singer, I.M.; Thorpe, J.A. (1969), "The curvature of 4-dimensional Einstein spaces", Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, pp. 355–365
- "Weyl tensor", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Grøn, Øyvind; Hervik, Sigbjørn (2007), Einstein's General Theory of Relativity, New York: Springer, ISBN 978-0-387-69199-2