वेइल टेंसर: Difference between revisions
No edit summary |
No edit summary |
||
Line 37: | Line 37: | ||
कहाँ <math>R_{abcd}</math> रीमैन टेन्सर है, <math>R_{ab}</math> रिक्की टेन्सर है, <math>R</math> रिक्की अदिश (अदिश वक्रता) है और सूचकांकों के चारों ओर कोष्ठक [[एंटीसिमेट्रिक टेंसर]] को संदर्भित करता है। समान रूप से, | कहाँ <math>R_{abcd}</math> रीमैन टेन्सर है, <math>R_{ab}</math> रिक्की टेन्सर है, <math>R</math> रिक्की अदिश (अदिश वक्रता) है और सूचकांकों के चारों ओर कोष्ठक [[एंटीसिमेट्रिक टेंसर]] को संदर्भित करता है। समान रूप से, | ||
:<math>{C_{ab}}^{cd} = {R_{ab}}^{cd} - 4S_{[a}^{[c}\delta_{b]}^{d]}</math> | :<math>{C_{ab}}^{cd} = {R_{ab}}^{cd} - 4S_{[a}^{[c}\delta_{b]}^{d]}</math> | ||
जहाँ S, Schouten टेंसर को दर्शाता है। | जहाँ S, Schouten टेंसर को दर्शाता है। | ||
== गुण == | == गुण == | ||
=== अनुरूप रीस्केलिंग === | === अनुरूप रीस्केलिंग === | ||
वेइल टेन्सर का विशेष गुण है कि यह [[मीट्रिक टेंसर]] के अनुरूप | वेइल टेन्सर का विशेष गुण है कि यह [[मीट्रिक टेंसर|मापीय]] के अनुरूप परिवर्तन के अंतर्गत अपरिवर्तनीय है। अर्थात, यदि <math>g_{\mu\nu}\mapsto g'_{\mu\nu} = f g_{\mu\nu}</math> कुछ सकारात्मक अदिश फलन के लिए <math>f</math> तब (1,3) वैलेंट वेइल टेंसर <math>{C'}^{a}_{\ \ bcd} = C^{a}_{\ \ bcd}</math> संतुष्ट करता है। इस कारण वेइल टेंसर को अनुरूप टेंसर भी कहा जाता है। यह इस प्रकार है कि रिमेंनियन मैनिफोल्ड के अनुरूप समतल होने के लिए [[आवश्यक शर्त|आवश्यक प्रावधान]] यह है कि वेइल टेन्सर लुप्त हो जाता है। आयाम ≥ 4 में यह स्थिति भी [[पर्याप्त स्थिति|पर्याप्त]] है। आयाम 3 में [[ कपास टेंसर |कॉटन टेंसर]] का लुप्त होना रिमेंनियन मैनिफोल्ड के अनुरूप रूप से समतल होने के लिए आवश्यक और पर्याप्त स्थिति है। कोई भी 2-आयामी रीमैनियन मैनिफोल्ड अनुरूप रूप से समतल है, जो [[इज़ोटेर्मल निर्देशांक]] के अस्तित्व का परिणाम है। | ||
वास्तव में, समान रूप से | वास्तव में, समान रूप से समतल स्तर का अस्तित्व अतिनिर्धारित आंशिक अंतर समीकरण का समाधान करने के समान है: | ||
:<math>Ddf - df\otimes df + \left(|df|^2 + \frac{\Delta f}{n - 2}\right)g = \operatorname{Ric}.</math> | :<math>Ddf - df\otimes df + \left(|df|^2 + \frac{\Delta f}{n - 2}\right)g = \operatorname{Ric}.</math> | ||
आयाम ≥ 4 में, वेइल टेन्सर का | आयाम ≥ 4 में, वेइल टेन्सर का लुप्त होना इस समीकरण के लिए एकमात्र पूर्णता की स्थिति है; आयाम 3 में, इसके अतिरिक्त यह कॉटन टेन्सर है। | ||
=== समरूपता === | === समरूपता === | ||
Line 55: | Line 55: | ||
C(u, v)w + C(v, w)u + C(w, u)v &= 0. | C(u, v)w + C(v, w)u + C(w, u)v &= 0. | ||
\end{align}</math> | \end{align}</math> | ||
इसके | इसके अतिरिक्त, निश्चित रूप से, वीइल टेंसर ट्रेस मुक्त है: | ||
:<math>\operatorname{tr} C(u, \cdot)v = 0</math> | :<math>\operatorname{tr} C(u, \cdot)v = 0</math> | ||
सभी | सभी ''u'' के लिए ''v है'' । सूचकांकों में ये चार स्थितियां हैं: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
C_{abcd} = -C_{bacd} &= -C_{abdc} \\ | C_{abcd} = -C_{bacd} &= -C_{abdc} \\ | ||
Line 64: | Line 64: | ||
\end{align}</math> | \end{align}</math> | ||
=== बियांची पहचान === | === बियांची पहचान === | ||
रीमैन टेंसर की सामान्य दूसरी बियांची पहचान के | रीमैन टेंसर की सामान्य दूसरी बियांची पहचान के चिन्ह लेने से अंततः यह ज्ञात होता है: | ||
:<math>\nabla_a {C^a}_{bcd} = 2(n - 3)\nabla_{[c}S_{d]b}</math> | :<math>\nabla_a {C^a}_{bcd} = 2(n - 3)\nabla_{[c}S_{d]b}</math> | ||
जहां S शाउटन टेन्सर है। प्रारंभिक कारक के | जहां S शाउटन टेन्सर है। प्रारंभिक कारक के अतिरिक्त, दाहिनी ओर वैलेंस (0,3) टेंसर कॉटन टेंसर है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 80: | Line 80: | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
{{reflist}} | {{reflist}} | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 06:17, 5 May 2023
अंतर ज्यामिति में, वेइल वक्रता टेन्सर, जिसका नाम हरमन वेइल के नाम पर रखा गया है,[1] अंतरिक्ष समय की वक्रता का माप है या, अधिक सामान्यतः, स्यूडो-रीमैनियन मैनिफोल्ड रीमैन वक्रता टेन्सर की तरह, वेइल टेंसर ज्वारीय बल को व्यक्त करता है जो पिंड geodesic के साथ चलते समय महसूस करता है। वेइल टेन्सर घुंघराले वक्र टेंसर से इस मायने में भिन्न है कि यह इस बात की जानकारी नहीं देता है कि पिंड का आयतन कैसे बदलता है, बल्कि केवल यह बताता है कि ज्वारीय बल द्वारा पिंड का आकार कैसे विकृत होता है। रीमैन टेंसर के रिक्की वक्रता, या ट्रेस (रैखिक बीजगणित) घटक में सटीक रूप से जानकारी होती है कि ज्वारीय बलों की उपस्थिति में वॉल्यूम कैसे बदलते हैं, इसलिए वेइल टेंसर रीमैन टेंसर का लापता घटक है। इस टेन्सर में रीमैन टेंसर के समान समरूपता है, लेकिन यह अतिरिक्त शर्त को पूरा करता है कि यह ट्रेस-मुक्त है: टेन्सर संकुचन # मीट्रिक संकुचन सूचकांकों की किसी भी जोड़ी पर शून्य प्राप्त करता है। यह रीमैन टेंसर से टेन्सर घटाकर प्राप्त किया जाता है जो रिक्की टेंसर में रैखिक अभिव्यक्ति है।
सामान्य सापेक्षता में, वेइल वक्रता वक्रता का एकमात्र हिस्सा है जो मुक्त स्थान में मौजूद है - आइंस्टीन क्षेत्र समीकरण का समाधान - और यह पदार्थ से रहित अंतरिक्ष के क्षेत्रों के माध्यम से गुरुत्वाकर्षण तरंगों के प्रसार को नियंत्रित करता है।[2] अधिक सामान्यतः, रिक्की-फ्लैट कई गुना के लिए वेइल वक्रता वक्रता का एकमात्र घटक है और हमेशा आइंस्टीन कई गुना के क्षेत्र समीकरणों की विशेषताओं की विधि को नियंत्रित करता है।[2]
आयाम 2 और 3 में वेइल वक्रता टेन्सर समान रूप से गायब हो जाता है। आयाम ≥ 4 में, वेइल वक्रता सामान्यतः गैर-शून्य होती है। यदि वीइल टेंसर आयाम ≥ 4 में गायब हो जाता है, तो मीट्रिक स्थानीय रूप से समतल है: स्थानीय समन्वय प्रणाली मौजूद है जिसमें मीट्रिक टेंसर स्थिर टेंसर के समानुपाती होता है। यह तथ्य नॉर्डस्ट्रॉम के गुरुत्वाकर्षण के सिद्धांत का प्रमुख घटक था, जो सामान्य सापेक्षता का अग्रदूत था।
परिभाषा
विभिन्न अंशों को घटाकर पूर्ण वक्रता टेंसर से वेइल टेन्सर प्राप्त किया जा सकता है। यह रीमैन टेंसर को (0,4) वैलेंस टेंसर (मीट्रिक के साथ अनुबंध करके) के रूप में लिखकर सबसे आसानी से किया जाता है। (0,4) वैलेंस वेइल टेंसर तब है (Petersen 2006, p. 92)
जहाँ n कई गुना का आयाम है, g मीट्रिक है, R रीमैन टेन्सर है, रिक रिक्की टेंसर है, s स्केलर वक्रता है, और दो सममित (0,2) टेंसरों के कुलकर्णी-नोमिज़ू उत्पाद को दर्शाता है:
टेन्सर कंपोनेंट नोटेशन में, इसे इस रूप में लिखा जा सकता है
साधारण (1,3) वैलेंट वेइल टेन्सर तब उपरोक्त को मीट्रिक के व्युत्क्रम के साथ अनुबंधित करके दिया जाता है।
अपघटन (1) रीमैन टेन्सर को वेक्टर बंडलों के ओर्थोगोनल प्रत्यक्ष योग के रूप में व्यक्त करता है, इस अर्थ में कि
यह अपघटन, जिसे रिक्की अपघटन के रूप में जाना जाता है, ऑर्थोगोनल समूह की कार्रवाई के तहत रिमेंन वक्रता टेंसर को इसके इरेड्यूसेबल प्रतिनिधित्व घटकों में व्यक्त करता है। (Singer & Thorpe 1968) . आयाम 4 में, वेइल टेन्सर विशेष ऑर्थोगोनल समूह, स्व-दोहरी और एंटीसेल्फ-डुअल भागों सी की कार्रवाई के लिए अपरिवर्तनीय कारकों में और विघटित हो जाता है।+ और सी-</सुप>.
वेइल टेंसर को शाउटन टेंसर का उपयोग करके भी व्यक्त किया जा सकता है, जो रिक्की टेंसर का ट्रेस-एडजस्टेड मल्टीपल है,
तब
सूचकांकों में,[3]
कहाँ रीमैन टेन्सर है, रिक्की टेन्सर है, रिक्की अदिश (अदिश वक्रता) है और सूचकांकों के चारों ओर कोष्ठक एंटीसिमेट्रिक टेंसर को संदर्भित करता है। समान रूप से,
जहाँ S, Schouten टेंसर को दर्शाता है।
गुण
अनुरूप रीस्केलिंग
वेइल टेन्सर का विशेष गुण है कि यह मापीय के अनुरूप परिवर्तन के अंतर्गत अपरिवर्तनीय है। अर्थात, यदि कुछ सकारात्मक अदिश फलन के लिए तब (1,3) वैलेंट वेइल टेंसर संतुष्ट करता है। इस कारण वेइल टेंसर को अनुरूप टेंसर भी कहा जाता है। यह इस प्रकार है कि रिमेंनियन मैनिफोल्ड के अनुरूप समतल होने के लिए आवश्यक प्रावधान यह है कि वेइल टेन्सर लुप्त हो जाता है। आयाम ≥ 4 में यह स्थिति भी पर्याप्त है। आयाम 3 में कॉटन टेंसर का लुप्त होना रिमेंनियन मैनिफोल्ड के अनुरूप रूप से समतल होने के लिए आवश्यक और पर्याप्त स्थिति है। कोई भी 2-आयामी रीमैनियन मैनिफोल्ड अनुरूप रूप से समतल है, जो इज़ोटेर्मल निर्देशांक के अस्तित्व का परिणाम है।
वास्तव में, समान रूप से समतल स्तर का अस्तित्व अतिनिर्धारित आंशिक अंतर समीकरण का समाधान करने के समान है:
आयाम ≥ 4 में, वेइल टेन्सर का लुप्त होना इस समीकरण के लिए एकमात्र पूर्णता की स्थिति है; आयाम 3 में, इसके अतिरिक्त यह कॉटन टेन्सर है।
समरूपता
वेइल टेंसर में रीमैन टेंसर के समान समरूपता होती है। यह भी सम्मिलित है:
इसके अतिरिक्त, निश्चित रूप से, वीइल टेंसर ट्रेस मुक्त है:
सभी u के लिए v है । सूचकांकों में ये चार स्थितियां हैं:
बियांची पहचान
रीमैन टेंसर की सामान्य दूसरी बियांची पहचान के चिन्ह लेने से अंततः यह ज्ञात होता है:
जहां S शाउटन टेन्सर है। प्रारंभिक कारक के अतिरिक्त, दाहिनी ओर वैलेंस (0,3) टेंसर कॉटन टेंसर है।
यह भी देखें
- रीमानियन मैनिफोल्ड्स की वक्रता
- क्रिस्टोफेल प्रतीक वेइल टेन्सर के लिए समन्वय अभिव्यक्ति प्रदान करते हैं।
- लैंक्ज़ोस टेंशनर
- छीलने की प्रमेय
- पेत्रोव वर्गीकरण
- प्लेबन टेंसर
- वेइल वक्रता परिकल्पना
- वेइल अदिश
टिप्पणियाँ
- ↑ Weyl, Hermann (1918-09-01). "राइन इनफिनिटसिमल जियोमेट्री". Mathematische Zeitschrift (in Deutsch). 2 (3): 384–411. Bibcode:1918MatZ....2..384W. doi:10.1007/BF01199420. ISSN 1432-1823. S2CID 186232500.
- ↑ 2.0 2.1 Danehkar, A. (2009). "सापेक्षतावादी ब्रह्माण्ड संबंधी मॉडल में वेइल वक्रता के महत्व पर". Mod. Phys. Lett. A. 24 (38): 3113–3127. arXiv:0707.2987. Bibcode:2009MPLA...24.3113D. doi:10.1142/S0217732309032046. S2CID 15949217.
- ↑ Grøn & Hervik 2007, p. 490
संदर्भ
- Hawking, Stephen W.; Ellis, George F. R. (1973), The Large Scale Structure of Space-Time, Cambridge University Press, ISBN 0-521-09906-4
- Petersen, Peter (2006), Riemannian geometry, Graduate Texts in Mathematics, vol. 171 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 0387292462, MR 2243772.
- Sharpe, R.W. (1997), Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Springer-Verlag, New York, ISBN 0-387-94732-9.
- Singer, I.M.; Thorpe, J.A. (1969), "The curvature of 4-dimensional Einstein spaces", Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, pp. 355–365
- "Weyl tensor", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Grøn, Øyvind; Hervik, Sigbjørn (2007), Einstein's General Theory of Relativity, New York: Springer, ISBN 978-0-387-69199-2