वेइल टेंसर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Measure of the curvature of a pseudo-Riemannian manifold}}
{{Short description|Measure of the curvature of a pseudo-Riemannian manifold}}
[[ अंतर ज्यामिति | अंतर ज्यामिति]] में, वेइल वक्रता टेन्सर, जिसका नाम [[हरमन वेइल]] के नाम पर रखा गया है,<ref>{{Cite journal|last=Weyl|first=Hermann|date=1918-09-01|title=राइन इनफिनिटसिमल जियोमेट्री|url=https://doi.org/10.1007/BF01199420|journal=Mathematische Zeitschrift|language=de|volume=2|issue=3|pages=384–411|doi=10.1007/BF01199420|bibcode=1918MatZ....2..384W |s2cid=186232500 |issn=1432-1823}}</ref> [[ अंतरिक्ष समय |अंतरिक्ष समय]] की [[वक्रता]] का माप है या, अधिक सामान्यतः, [[स्यूडो-रीमैनियन मैनिफोल्ड]] रीमैन वक्रता [[टेन्सर]] की तरह, वेइल टेंसर [[ज्वारीय बल]] को व्यक्त करता है जो पिंड [[ geodesic |geodesic]] के साथ चलते समय महसूस करता है। वेइल टेन्सर [[घुंघराले वक्र]] टेंसर से इस मायने में भिन्न है कि यह इस बात की जानकारी नहीं देता है कि पिंड का आयतन कैसे बदलता है, बल्कि केवल यह बताता है कि ज्वारीय बल द्वारा पिंड का आकार कैसे विकृत होता है। रीमैन टेंसर के रिक्की वक्रता, या [[ट्रेस (रैखिक बीजगणित)]] घटक में सटीक रूप से जानकारी होती है कि ज्वारीय बलों की उपस्थिति में वॉल्यूम कैसे बदलते हैं, इसलिए वेइल टेंसर रीमैन टेंसर का [[ लापता |लापता]] घटक है। इस टेन्सर में रीमैन टेंसर के समान समरूपता है, लेकिन यह अतिरिक्त शर्त को पूरा करता है कि यह ट्रेस-मुक्त है: टेन्सर संकुचन # मीट्रिक संकुचन सूचकांकों की किसी भी जोड़ी पर शून्य प्राप्त करता है। यह रीमैन टेंसर से टेन्सर घटाकर प्राप्त किया जाता है जो रिक्की टेंसर में रैखिक अभिव्यक्ति है।
[[ अंतर ज्यामिति |अंतर ज्यामिति]] में, वेइल वक्रता टेन्सर, जिसका नाम [[हरमन वेइल]] के नाम पर रखा गया है,<ref>{{Cite journal|last=Weyl|first=Hermann|date=1918-09-01|title=राइन इनफिनिटसिमल जियोमेट्री|url=https://doi.org/10.1007/BF01199420|journal=Mathematische Zeitschrift|language=de|volume=2|issue=3|pages=384–411|doi=10.1007/BF01199420|bibcode=1918MatZ....2..384W |s2cid=186232500 |issn=1432-1823}}</ref> [[ अंतरिक्ष समय |अंतरिक्ष समय]] की [[वक्रता]] का माप है, या सामान्यतः, [[स्यूडो-रीमैनियन मैनिफोल्ड|छद्म-रीमैनियन मैनिफोल्ड]] है। रीमैन वक्रता [[टेन्सर]] के जैसे, वेइल टेंसर [[ज्वारीय बल]] को व्यक्त करता है जो पिंड [[ geodesic |जियोडेसिक]] के साथ गति करते समय अनुभूत करता है। वेइल टेन्सर [[घुंघराले वक्र|रीमैन कर्वेचर]] टेंसर से इस आशय में भिन्न है कि यह इस बात की सूचना नहीं देता है कि पिंड का आयतन कैसे परिवर्तित होता है, जबकि केवल यह बताता है कि ज्वारीय बल द्वारा पिंड का आकार कैसे विकृत होता है। रीमैन टेंसर के रिक्की वक्रता, या [[ट्रेस (रैखिक बीजगणित)]] घटक में त्रुटिहीन रूप से सूचना होती है कि ज्वारीय बलों की उपस्थिति में वॉल्यूम कैसे परिवर्तित होते हैं, इसलिए वेइल टेंसर रीमैन टेंसर का [[ लापता |लापता]] घटक है। इस टेन्सर में रीमैन टेंसर के समान समरूपता है, लेकिन यह अतिरिक्त प्रावधान को पूर्ण करता है कि यह ट्रेस-मुक्त है: टेन्सर संकुचन मापीय संकुचन सूचकांकों की किसी भी जोड़ी पर शून्य प्राप्त करता है। यह रीमैन टेंसर से टेन्सर घटाकर प्राप्त किया जाता है जो रिक्की टेंसर में रैखिक अभिव्यक्ति है।


[[सामान्य सापेक्षता]] में, वेइल वक्रता वक्रता का एकमात्र हिस्सा है जो मुक्त स्थान में मौजूद है - [[आइंस्टीन क्षेत्र समीकरण]] का समाधान - और यह पदार्थ से रहित अंतरिक्ष के क्षेत्रों के माध्यम से गुरुत्वाकर्षण तरंगों के प्रसार को नियंत्रित करता है।<ref name="Danehkar2009">{{cite journal | last1=Danehkar | first1=A. | date=2009 | title=सापेक्षतावादी ब्रह्माण्ड संबंधी मॉडल में वेइल वक्रता के महत्व पर| journal=Mod. Phys. Lett. A | volume=24 | issue=38 | pages=3113–3127 | doi=10.1142/S0217732309032046 | bibcode=2009MPLA...24.3113D| arxiv=0707.2987 | s2cid=15949217 }}</ref> अधिक सामान्यतः, [[रिक्की-फ्लैट कई गुना]] के लिए वेइल वक्रता वक्रता का एकमात्र घटक है और हमेशा [[ आइंस्टीन कई गुना |आइंस्टीन कई गुना]] के क्षेत्र समीकरणों की [[विशेषताओं की विधि]] को नियंत्रित करता है।<ref name="Danehkar2009"/>
[[सामान्य सापेक्षता]] में, वेइल वक्रता वक्रता का एकमात्र भाग है जो मुक्त स्थान में उपस्थित है - [[आइंस्टीन क्षेत्र समीकरण]] का समाधान - और यह पदार्थ से रहित अंतरिक्ष के क्षेत्रों के माध्यम से गुरुत्वाकर्षण तरंगों के प्रसार को नियंत्रित करता है।<ref name="Danehkar2009">{{cite journal | last1=Danehkar | first1=A. | date=2009 | title=सापेक्षतावादी ब्रह्माण्ड संबंधी मॉडल में वेइल वक्रता के महत्व पर| journal=Mod. Phys. Lett. A | volume=24 | issue=38 | pages=3113–3127 | doi=10.1142/S0217732309032046 | bibcode=2009MPLA...24.3113D| arxiv=0707.2987 | s2cid=15949217 }}</ref> अधिक सामान्यतः, [[रिक्की-फ्लैट कई गुना|रिक्की-समतल मैनिफोल्ड्स]] के लिए वेइल वक्रता का एकमात्र घटक है और सदैव [[ आइंस्टीन कई गुना |आइंस्टीन मैनिफोल्ड]] के क्षेत्र समीकरणों की [[विशेषताओं की विधि|विशेषताओं]] को नियंत्रित करता है।<ref name="Danehkar2009"/>


आयाम 2 और 3 में वेइल वक्रता टेन्सर समान रूप से गायब हो जाता है। आयाम ≥ 4 में, वेइल वक्रता सामान्यतः गैर-शून्य होती है। यदि वीइल टेंसर आयाम ≥ 4 में गायब हो जाता है, तो मीट्रिक स्थानीय रूप से समतल है: [[स्थानीय समन्वय प्रणाली]] मौजूद है जिसमें मीट्रिक टेंसर स्थिर टेंसर के समानुपाती होता है। यह तथ्य नॉर्डस्ट्रॉम के गुरुत्वाकर्षण के सिद्धांत का प्रमुख घटक था, जो सामान्य सापेक्षता का अग्रदूत था।
आयाम 2 और 3 में वेइल वक्रता टेन्सर समान रूप से लुप्त हो जाता है। आयाम ≥ 4 में, वेइल वक्रता सामान्यतः गैर-शून्य होती है। यदि वीइल टेंसर आयाम ≥ 4 में लुप्त हो जाता है, तो मापीय स्थानीय रूप से समतल है: [[स्थानीय समन्वय प्रणाली]] उपस्थित है जिसमें मापीय टेंसर स्थिर टेंसर के समानुपाती होता है। यह तथ्य नॉर्डस्ट्रॉम के गुरुत्वाकर्षण के सिद्धांत का प्रमुख घटक था, जो सामान्य सापेक्षता का अग्रदूत था।


== परिभाषा ==
== परिभाषा ==

Revision as of 06:40, 5 May 2023

अंतर ज्यामिति में, वेइल वक्रता टेन्सर, जिसका नाम हरमन वेइल के नाम पर रखा गया है,[1] अंतरिक्ष समय की वक्रता का माप है, या सामान्यतः, छद्म-रीमैनियन मैनिफोल्ड है। रीमैन वक्रता टेन्सर के जैसे, वेइल टेंसर ज्वारीय बल को व्यक्त करता है जो पिंड जियोडेसिक के साथ गति करते समय अनुभूत करता है। वेइल टेन्सर रीमैन कर्वेचर टेंसर से इस आशय में भिन्न है कि यह इस बात की सूचना नहीं देता है कि पिंड का आयतन कैसे परिवर्तित होता है, जबकि केवल यह बताता है कि ज्वारीय बल द्वारा पिंड का आकार कैसे विकृत होता है। रीमैन टेंसर के रिक्की वक्रता, या ट्रेस (रैखिक बीजगणित) घटक में त्रुटिहीन रूप से सूचना होती है कि ज्वारीय बलों की उपस्थिति में वॉल्यूम कैसे परिवर्तित होते हैं, इसलिए वेइल टेंसर रीमैन टेंसर का लापता घटक है। इस टेन्सर में रीमैन टेंसर के समान समरूपता है, लेकिन यह अतिरिक्त प्रावधान को पूर्ण करता है कि यह ट्रेस-मुक्त है: टेन्सर संकुचन मापीय संकुचन सूचकांकों की किसी भी जोड़ी पर शून्य प्राप्त करता है। यह रीमैन टेंसर से टेन्सर घटाकर प्राप्त किया जाता है जो रिक्की टेंसर में रैखिक अभिव्यक्ति है।

सामान्य सापेक्षता में, वेइल वक्रता वक्रता का एकमात्र भाग है जो मुक्त स्थान में उपस्थित है - आइंस्टीन क्षेत्र समीकरण का समाधान - और यह पदार्थ से रहित अंतरिक्ष के क्षेत्रों के माध्यम से गुरुत्वाकर्षण तरंगों के प्रसार को नियंत्रित करता है।[2] अधिक सामान्यतः, रिक्की-समतल मैनिफोल्ड्स के लिए वेइल वक्रता का एकमात्र घटक है और सदैव आइंस्टीन मैनिफोल्ड के क्षेत्र समीकरणों की विशेषताओं को नियंत्रित करता है।[2]

आयाम 2 और 3 में वेइल वक्रता टेन्सर समान रूप से लुप्त हो जाता है। आयाम ≥ 4 में, वेइल वक्रता सामान्यतः गैर-शून्य होती है। यदि वीइल टेंसर आयाम ≥ 4 में लुप्त हो जाता है, तो मापीय स्थानीय रूप से समतल है: स्थानीय समन्वय प्रणाली उपस्थित है जिसमें मापीय टेंसर स्थिर टेंसर के समानुपाती होता है। यह तथ्य नॉर्डस्ट्रॉम के गुरुत्वाकर्षण के सिद्धांत का प्रमुख घटक था, जो सामान्य सापेक्षता का अग्रदूत था।

परिभाषा

विभिन्न अंशों को घटाकर पूर्ण वक्रता टेंसर से वेइल टेन्सर प्राप्त किया जा सकता है। यह रीमैन टेंसर को (0,4) वैलेंस टेंसर (मापीय के साथ अनुबंध करके) के रूप में लिखकर सबसे सरलता से किया जाता है। (0,4) वैलेंस वेइल टेंसर तब है (पीटरसन 2006, p. 92)

जहाँ n कई गुना का आयाम है, g मापीय है, R रीमैन टेन्सर है, Ric रिक्की टेंसर है, s अदिश वक्रता है, और दो सममित (0,2) टेंसरों के कुलकर्णी-नोमिज़ू उत्पाद को दर्शाता है:

टेन्सर घटक संकेतन में, इसे इस रूप में लिखा जा सकता है:

साधारण (1,3) वैलेंट वेइल टेन्सर तब उपरोक्त को मापीय के व्युत्क्रम के साथ अनुबंधित करके दिया जाता है।

अपघटन (1) रीमैन टेन्सर को सदिश बंडलों के लंबकोणीय प्रत्यक्ष योग के रूप में व्यक्त करता है, इस अर्थ में कि

यह अपघटन, जिसे रिक्की अपघटन के रूप में जाना जाता है, लंबकोणीय समूह की कार्रवाई के अंतर्गत रिमेंन वक्रता टेंसर को इसके इरेड्यूसेबल प्रतिनिधित्व घटकों में व्यक्त करता है (सिंगर & थोर्प 1968)। आयाम 4 में, वेइल टेन्सर विशेष लंबकोणीयसमूह भागों सी की कार्रवाई के लिए अपरिवर्तनीय कारकों में और विघटित हो जाता है। स्व-दोहरी और एंटीसेल्फ-दोहरी भाग C+ और C- है।

वेइल टेंसर को शाउटन टेंसर का उपयोग करके भी व्यक्त किया जा सकता है, जो रिक्की टेंसर का ट्रेस-एडजस्टेड मल्टीपल है,

तब

सूचकांकों में,[3]

जहाँ रीमैन टेन्सर है, रिक्की टेन्सर है, रिक्की अदिश (अदिश वक्रता) है और सूचकांकों के चारों ओर कोष्ठक एंटीसिमेट्रिक टेंसर को संदर्भित करता है। समान रूप से,

जहाँ S, शाउटन टेंसर को दर्शाता है।

गुण

अनुरूप रीस्केलिंग

वेइल टेन्सर का विशेष गुण है कि यह मापीय के अनुरूप परिवर्तन के अंतर्गत अपरिवर्तनीय है। अर्थात, यदि कुछ सकारात्मक अदिश फलन के लिए तब (1,3) वैलेंट वेइल टेंसर संतुष्ट करता है। इस कारण वेइल टेंसर को अनुरूप टेंसर भी कहा जाता है। यह इस प्रकार है कि रिमेंनियन मैनिफोल्ड के अनुरूप समतल होने के लिए आवश्यक प्रावधान यह है कि वेइल टेन्सर लुप्त हो जाता है। आयाम ≥ 4 में यह स्थिति भी पर्याप्त है। आयाम 3 में कॉटन टेंसर का लुप्त होना रिमेंनियन मैनिफोल्ड के अनुरूप रूप से समतल होने के लिए आवश्यक और पर्याप्त स्थिति है। कोई भी 2-आयामी रीमैनियन मैनिफोल्ड अनुरूप रूप से समतल है, जो इज़ोटेर्मल निर्देशांक के अस्तित्व का परिणाम है।

वास्तव में, समान रूप से समतल स्तर का अस्तित्व अतिनिर्धारित आंशिक अंतर समीकरण का समाधान करने के समान है:

आयाम ≥ 4 में, वेइल टेन्सर का लुप्त होना इस समीकरण के लिए एकमात्र पूर्णता की स्थिति है; आयाम 3 में, इसके अतिरिक्त यह कॉटन टेन्सर है।

समरूपता

वेइल टेंसर में रीमैन टेंसर के समान समरूपता होती है। यह भी सम्मिलित है:

इसके अतिरिक्त, निश्चित रूप से, वीइल टेंसर ट्रेस मुक्त है:

सभी u के लिए v है । सूचकांकों में ये चार स्थितियां हैं:

बियांची पहचान

रीमैन टेंसर की सामान्य दूसरी बियांची पहचान के चिन्ह लेने से अंततः यह ज्ञात होता है:

जहां S शाउटन टेन्सर है। प्रारंभिक कारक के अतिरिक्त, दाहिनी ओर वैलेंस (0,3) टेंसर कॉटन टेंसर है।

यह भी देखें

टिप्पणियाँ

  1. Weyl, Hermann (1918-09-01). "राइन इनफिनिटसिमल जियोमेट्री". Mathematische Zeitschrift (in Deutsch). 2 (3): 384–411. Bibcode:1918MatZ....2..384W. doi:10.1007/BF01199420. ISSN 1432-1823. S2CID 186232500.
  2. 2.0 2.1 Danehkar, A. (2009). "सापेक्षतावादी ब्रह्माण्ड संबंधी मॉडल में वेइल वक्रता के महत्व पर". Mod. Phys. Lett. A. 24 (38): 3113–3127. arXiv:0707.2987. Bibcode:2009MPLA...24.3113D. doi:10.1142/S0217732309032046. S2CID 15949217.
  3. Grøn & Hervik 2007, p. 490

संदर्भ