जैकबियन किस्म: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
गणित में, [[जीनस (गणित)]] ''g'' के गैर-एकवचन [[बीजगणितीय वक्र]] ''C'' की जेकोबियन क़िस्म ''J''(''C'') डिग्री 0 [[लाइन बंडल|रेखा समूहों]] का [[मोडुली स्पेस|मोडुली समष्टि]] है। यह ''C'' के [[पिकार्ड समूह]] में प्रमाण का संयोजित घटक है, इसलिए [[एबेलियन किस्म|एबेलियन क़िस्म]] कहलाता है।
गणित में, [[जीनस (गणित)]] ''g'' के गैर-एकवचन बीजगणितीय वक्र ''C'' की '''जेकोबियन क़िस्म''' ''J''(''C'') डिग्री 0 [[लाइन बंडल|रेखा समूहों]] का [[मोडुली स्पेस|मोडुली समष्टि]] है। यह ''C'' के [[पिकार्ड समूह]] में प्रमाण का संयोजित घटक है, इसलिए [[एबेलियन किस्म|एबेलियन क़िस्म]] कहलाता है।


== परिचय ==
== परिचय ==
Line 37: Line 37:
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}


=== संगणना तकनीक ===
=== संगणना तकनीक ===
Line 67: Line 64:
*{{Citation | last1=Hartshorne | first1=Robin | author1-link=Robin Hartshorne | title=Algebraic Geometry | date=19 December 1977 | publisher=Springer | location=New York | isbn=0-387-90244-9}}
*{{Citation | last1=Hartshorne | first1=Robin | author1-link=Robin Hartshorne | title=Algebraic Geometry | date=19 December 1977 | publisher=Springer | location=New York | isbn=0-387-90244-9}}


{{Algebraic curves navbox}}


श्रेणी:एबेलियन क़िस्में
श्रेणी:बीजगणितीय वक्र
श्रेणी:भाजकों की ज्यामिति
श्रेणी:मोडुली सिद्धांत


[[Category:Collapse templates]]
[[Category:Collapse templates]]

Latest revision as of 15:32, 30 October 2023

गणित में, जीनस (गणित) g के गैर-एकवचन बीजगणितीय वक्र C की जेकोबियन क़िस्म J(C) डिग्री 0 रेखा समूहों का मोडुली समष्टि है। यह C के पिकार्ड समूह में प्रमाण का संयोजित घटक है, इसलिए एबेलियन क़िस्म कहलाता है।

परिचय

जैकबियन क़िस्म का नाम कार्ल गुस्ताव जैकोबी के नाम पर रखा गया है, जिन्होंने एबेल-जैकोबी प्रमेय के पूर्ण संस्करण को प्रमाणित कर दिया, जिससे नील्स एबेल के इंजेक्शन कथन को समरूपता में परिवर्तित कर दिया गया। यह मुख्य रूप से ध्रुवीकृत एबेलियन क़िस्म है, जिसका आयाम g है, और इसलिए समिश्र संख्याओं पर यह जटिल टोरस है। यदि p, C का बिंदु है, तो वक्र C को J की पहचान के लिए दिए गए बिंदु p मानचित्रण के साथ J की उपश्रेणी में मैप किया जा सकता है और C, समूह (गणित) के रूप में J उत्पन्न करता है।

जटिल वक्रों के लिए निर्माण

समिश्र संख्याओं पर, जेकोबियन क़िस्म को खण्ड समष्टि (रैखिक बीजगणित) V/L के रूप में अनुभव किया जा सकता है, जहाँ V, C पर सभी वैश्विक होलोमोर्फिक अवकल की सदिश समष्टि का दुगना है और L, V के सभी तत्वों की जाली है।

जहां γ, C में संवृत पथ (टोपोलॉजी) है। अन्य शब्दों में,

के साथ उपरोक्त मानचित्र के माध्यम से में एम्बेड किया गया है। यह स्पष्ट रूप से थीटा फलनों के प्रयोग से किया जा सकता है।[1] आर्बिट्ररी क्षेत्र पर वक्र के जैकोबियन का निर्माण वेइल Weil (1948) द्वारा परिमित क्षेत्र पर वक्रों के लिए रीमैन परिकल्पना स्वयं के प्रमाण के भाग के रूप में किया गया था।

एबेल-जैकोबी प्रमेय में कहा गया है कि इस प्रकार निर्मित टोरस वक्र की जैकोबियन किस्म है, जो वास्तव में डिग्री 0 रेखा समूहों को पैरामीट्रिज करता है, जिसे इसकी पिकार्ड किस्म की डिग्री 0 विभाजक मॉड्यूलो रैखिक तुल्यता के साथ प्रमाणित किया जा सकता है।

बीजगणितीय संरचना

समूह के रूप में, वक्र की जैकोबियन किस्म प्रमुख विभाजकों के उपसमूह, अर्थात परिमेय फलन के विभाजकों द्वारा डिग्री शून्य के विभाजकों के समूह के भागफल के लिए समरूप होता है। यह उन क्षेत्रों के लिए प्रारम्भ होता है जो बीजगणितीय रूप से संवृत नहीं होते हैं, यदि उस क्षेत्र में परिभाषित विभाजक एवं फलन पर विचार किया जाए।

अग्र धारणाएँ

टोरेली के प्रमेय में कहा गया है कि जटिल वक्र उसके जैकबियन (इसके ध्रुवीकरण के साथ) द्वारा निर्धारित किया जाता है।

शोट्की समस्या पूछती है, कि मुख्य रूप से ध्रुवीकृत एबेलियन क़िस्में कर्व्स के जैकबियन हैं। पिकार्ड क़िस्म, अल्बानिया क़िस्म, सामान्यीकृत जैकबियन एवं मध्यवर्ती जैकबियन उच्च-आयामी क़िस्मों के लिए जैकबियन के सामान्यीकरण होते हैं। उच्च आयाम की क़िस्मों के लिए होलोमोर्फिक 1-रूपों के स्थान के भागफल के रूप में जैकोबियन क़िस्म का निर्माण अल्बानिया क़िस्म देने के लिए सामान्य होता है, किन्तु सामान्यतः यह पिकार्ड क़िस्म के लिए समरूपी नहीं होना चाहिए।

यह भी देखें

  • अवधि आव्यूह - आवर्त आव्यूह वक्र के जैकबियन की गणना के लिए उपयोगी प्रविधि है।
  • हॉज संरचना - ये जैकोबियंस के सामान्यीकरण हैं।
  • होंडा-टेट प्रमेय - एबेलियन क़िस्मों को परिमित क्षेत्रों में आइसोजेनी तक वर्गीकृत करता है।
  • इंटरमीडिएट जैकबियन

संदर्भ

  1. David, Mumford; Nori, Madhav; Previato, Emma; Stillman, Mike. थीटा I पर टाटा व्याख्यान. Springer.

संगणना तकनीक

आइसोजेनी वर्ग

क्रिप्टोग्राफी

  • arxiv:1807.05270|वक्र, जेकोबियन एवं क्रिप्टोग्राफी

सामान्य