संयोजन डिजाइन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{short description|Symmetric arrangement of finite sets}}
{{short description|Symmetric arrangement of finite sets}}
संयोजन डिज़ाइन सिद्धांत गणित वह भाग है जो [[साहचर्य|परिमित]][[ सेट प्रणाली |  सेट की प्रणाली]] के अस्तित्व, निर्माण और गुणों से संबंधित है, जिनकी व्यवस्था 'संतुलन' और/या 'समरूपता' की सामान्यीकृत अवधारणाओं को संतुष्ट करती है। इन अवधारणाओं को सटीक नहीं बनाया गया है ताकि एक ही छत्र के नीचे वस्तुओं की विस्तृत श्रृंखला के बारे में सोचा जा सकता है। कभी-कभी इसमें [[ब्लॉक डिजाइन]] के रूप में सेट प्रतिच्छेदन के संख्यात्मक आकार सम्मिलित हो सकते हैं, जबकि दूसरी बार इसमें [[सुडोकू]] ग्रिड के रूप में सरणी में प्रविष्टियों की स्थानिक व्यवस्था सम्मिलित हो सकती है।
'''संयोजन डिज़ाइन''' सिद्धांत गणित वह भाग है जो [[साहचर्य|परिमित]][[ सेट प्रणाली |  सेट की प्रणाली]] के अस्तित्व, निर्माण और गुणों से संबंधित है, जिनकी व्यवस्था 'संतुलन' और/या 'समरूपता' की सामान्यीकृत अवधारणाओं को संतुष्ट करती है। इन अवधारणाओं को सटीक नहीं बनाया गया है ताकि एक ही छत्र के नीचे वस्तुओं की विस्तृत श्रृंखला के बारे में सोचा जा सकता है। कभी-कभी इसमें [[ब्लॉक डिजाइन]] के रूप में सेट प्रतिच्छेदन के संख्यात्मक आकार सम्मिलित हो सकते हैं, जबकि दूसरी बार इसमें [[सुडोकू]] ग्रिड के रूप में सरणी में प्रविष्टियों की स्थानिक व्यवस्था सम्मिलित हो सकती है।


संयोजन डिज़ाइन सिद्धांत को प्रयोगों के डिज़ाइन के क्षेत्र में लागू किया जा सकता है। जैविक प्रयोगों के डिजाइन पर सांख्यिकी [[रोनाल्ड फिशर]] के काम में संयोजी डिजाइनों के कुछ बुनियादी सिद्धांत उत्पन्न हुए थे। [[परिमित ज्यामिति]], [[टूर्नामेंट]], [[लॉटरी]], गणितीय रसायन विज्ञान, [[गणितीय जीव विज्ञान]], [[एल्गोरिथम डिजाइन]],[[ संगणक संजाल | संगणक नेटवर्किंग]], [[समूह परीक्षण]] और [[क्रिप्टोग्राफी]] सहित क्षेत्रों की विस्तृत श्रृंखला में आधुनिक अनुप्रयोग भी पाए जाते हैं।<ref>{{harvnb|Stinson|2003|loc=pg.1}}</ref>
संयोजन डिज़ाइन सिद्धांत को प्रयोगों के डिज़ाइन के क्षेत्र में लागू किया जा सकता है। जैविक प्रयोगों के डिजाइन पर सांख्यिकी [[रोनाल्ड फिशर]] के काम में संयोजी डिजाइनों के कुछ बुनियादी सिद्धांत उत्पन्न हुए थे। [[परिमित ज्यामिति]], [[टूर्नामेंट]], [[लॉटरी]], गणितीय रसायन विज्ञान, [[गणितीय जीव विज्ञान]], [[एल्गोरिथम डिजाइन]],[[ संगणक संजाल | संगणक नेटवर्किंग]], [[समूह परीक्षण]] और [[क्रिप्टोग्राफी]] सहित क्षेत्रों की विस्तृत श्रृंखला में आधुनिक अनुप्रयोग भी पाए जाते हैं।<ref>{{harvnb|Stinson|2003|loc=pg.1}}</ref>

Latest revision as of 16:09, 23 August 2023

संयोजन डिज़ाइन सिद्धांत गणित वह भाग है जो परिमित सेट की प्रणाली के अस्तित्व, निर्माण और गुणों से संबंधित है, जिनकी व्यवस्था 'संतुलन' और/या 'समरूपता' की सामान्यीकृत अवधारणाओं को संतुष्ट करती है। इन अवधारणाओं को सटीक नहीं बनाया गया है ताकि एक ही छत्र के नीचे वस्तुओं की विस्तृत श्रृंखला के बारे में सोचा जा सकता है। कभी-कभी इसमें ब्लॉक डिजाइन के रूप में सेट प्रतिच्छेदन के संख्यात्मक आकार सम्मिलित हो सकते हैं, जबकि दूसरी बार इसमें सुडोकू ग्रिड के रूप में सरणी में प्रविष्टियों की स्थानिक व्यवस्था सम्मिलित हो सकती है।

संयोजन डिज़ाइन सिद्धांत को प्रयोगों के डिज़ाइन के क्षेत्र में लागू किया जा सकता है। जैविक प्रयोगों के डिजाइन पर सांख्यिकी रोनाल्ड फिशर के काम में संयोजी डिजाइनों के कुछ बुनियादी सिद्धांत उत्पन्न हुए थे। परिमित ज्यामिति, टूर्नामेंट, लॉटरी, गणितीय रसायन विज्ञान, गणितीय जीव विज्ञान, एल्गोरिथम डिजाइन, संगणक नेटवर्किंग, समूह परीक्षण और क्रिप्टोग्राफी सहित क्षेत्रों की विस्तृत श्रृंखला में आधुनिक अनुप्रयोग भी पाए जाते हैं।[1]

उदाहरण

लोगों की निश्चित संख्या n को देखते हुए, क्या उन्हें सेट करने के लिए असाइन करना संभव है ताकि प्रत्येक व्यक्ति कम से कम एक सेट में हो, लोगों की प्रत्येक जोड़ी एक साथ सेट में हो, हर दो सेट में ठीक एक व्यक्ति सामान्य हो, और किसी भी सेट में सभी, एक व्यक्ति, या वास्तव में व्यक्ति सम्मिलित नहीं हैं? उत्तर n पर निर्भर करता है।

इसका समाधान केवल तभी होता है जब n का रूप q2 + q + 1 हो। यदि q अभाज्य घात है तो समाधान का अस्तित्व सिद्ध करना आसान नहीं है। यह अनुमान लगाया जाता है कि ये एकमात्र समाधान हैं। यह आगे दिखाया गया है कि यदि 1 या 2 मॉड्यूल ऑपरेशन 4 के सर्वांगसम q के लिए समाधान उपस्थित है, तो q दो स्क्वायर संख्याओ का योग है। यह अंतिम परिणाम, ब्रुक-रेज़र प्रमेय, परिमित क्षेत्रो पर आधारित रचनात्मक विधियों के संयोजन और द्विघात रूपो के अनुप्रयोग द्वारा सिद्ध होता है।

जब ऐसी संरचना उपस्थित होती है, तो इसे परिमित प्रक्षेपी तल कहा जाता है; इस प्रकार दिखा रहा है कि कैसे परिमित ज्यामिति और कॉम्बिनेटरिक्स प्रतिच्छेद करते हैं। जब q = 2, प्रक्षेपी तल को फ़ानो तल कहा जाता है।

इतिहास

संयोजन डिज़ाइन पुरातनता की तारीख है, लो शु स्क्वायर प्रारंभिक स्थायित्व स्क्वायर है। भारत में वराहमिहिर की पुस्तक बृहत् संहिता में मिश्रित डिज़ाइन का सबसे पहला डेटा योग्य अनुप्रयोग पाया जाता है, जिसे स्थायित्व स्क्वायर का उपयोग करके 16 विभिन्न पदार्थों से चुने गए 4 पदार्थों का उपयोग करके इत्र बनाने के उद्देश्य से 587 ईस्वी के आसपास लिखा गया था।[2]

18वीं शताब्दी से कॉम्बिनेटरिक्स के सामान्य विकास के साथ संयोजन डिज़ाइन उदाहरण के लिए 18वीं शताब्दी में लैटिन स्क्वायर और 19वीं शताब्दी में स्टेनर प्रणाली विकसित हुए थे। डिजाइन मनोरंजक गणित में, जैसे कि किर्कमैन की स्कूली छात्रा समस्या (1850), और व्यावहारिक समस्याओं में, जैसे कि राउंड-रॉबिन टूर्नामेंट का शेड्यूलिंग (समाधान 1880 के दशक में प्रकाशित) भी लोकप्रिय रहे हैं। 20वीं शताब्दी में प्रयोगों के लिए डिजाइन लागू किए गए थे, विशेष रूप से लैटिन स्क्वायर, परिमित ज्यामिति, और संघ योजनाएं, जो बीजगणितीय सांख्यिकी के क्षेत्र को उत्पन्न करती हैं।

मौलिक संयुक्त डिजाइन

संयोजन डिज़ाइन के विषय का क्लासिकल कोर ब्लॉक डिज़ाइन के आसपास बनाया गया है। (पीबीडी),[3] अन्य संयोजक डिजाइन इन मौलिक लोगों के अध्ययन से संबंधित हैं या विकसित किए गए हैं।

  • बैलेंस्ड इन्कम्प्लीट ब्लॉक डिज़ाइन' या बीआईबीडी (सामान्यतः शॉर्ट ब्लॉक डिज़ाइन के लिए कहा जाता है) एक परिमित सेट 'X के b सबसेट (जिसे 'ब्लॉक' कहा जाता है) का संग्रह 'B' है। v तत्व, जैसे कि X का कोई भी तत्व ब्लॉक के समान संख्या r में समाहित है, प्रत्येक ब्लॉक में तत्वों की समान संख्या k है, और प्रत्येक जोड़ी अलग-अलग तत्व समान संख्या λ ब्लॉक में एक साथ दिखाई देते हैं। बीआईबीडी को 2-डिज़ाइन के रूप में भी जाना जाता है और प्राय: इसे 2-(v,k,λ) डिज़ाइन के रूप में दर्शाया जाता है। एक उदाहरण के रूप में, जब λ = 1 और b = v, हमारे पास एक प्रोजेक्टिव प्लेन है: X प्लेन का पॉइंट सेट है और ब्लॉक लाइन हैं।
  • सिमेट्रिक बैलेंस्ड इन्कम्प्लीट ब्लॉक डिज़ाइन या ब्लॉक डिज़ाइन सममितीय बीआईबीडी एसबीआईबीडी है जिसमें v  =  b (अंकों की संख्या ब्लॉकों की संख्या के बराबर होती है)। वे बीआईबीडी के सबसे महत्वपूर्ण और अच्छी तरह से अध्ययन किए गए उपस्क्वायर हैं। प्रोजेक्टिव प्लेन, बाइप्लेन और हैडमार्ड 2-डिज़ाइन सभी Sबीआईबीडी हैं। वे विशेष रुचि रखते हैं क्योंकि वे फिशर की असमानता (bv) के चरम उदाहरण हैं।
  • एक ब्लॉक समाधेय डिज़ाइन एक बीआईबीडी है जिसके ब्लॉक को सेट में विभाजित किया जा सकता है (जिसे समानांतर स्क्वायर कहा जाता है), जिनमें से प्रत्येक बीआईबीडी के पॉइंट सेट का विभाजन बनाता है। समांतर कक्षाओं के सेट को डिजाइन का रिज़ॉल्यूशन कहा जाता है। प्रसिद्ध 15 छात्रा समस्या का समाधान v  = 15, k  = 3 और λ = 1 के साथ बीआईबीडी का समाधान है।[4]
  • एक लैटिन रेक्टैंगगल एक r × n आव्यूह (गणित) है जिसकी प्रविष्टियां 1, 2, 3, ..., n (या 'का कोई अन्य सेट) के रूप में होती हैं। 'n अलग-अलग प्रतीक) जिसमें किसी भी पंक्ति या कॉलम में एक से अधिक बार कोई संख्या नहीं आती है जहां  r ≤ n है। एक n × n लैटिन आयत को लैटिन स्क्वायर कहा जाता है। अगर r < n, तो लैटिन रेक्टैंगगल बनाने के लिए n − r पंक्तियों को r × n लैटिन रेक्टैंगगल में जोड़ना संभव है स्क्वायर, हॉल के मेरिज प्रमेय का उपयोग करते हुए।[5]
क्रम n के दो लैटिन स्क्वायर को ऑर्थोगोनल कहा जाता है यदि दो स्क्वायरों में संबंधित प्रविष्टियों वाले सभी आदेशित जोड़े के सेट में n2 है विशिष्ट सदस्य (सभी संभव क्रमित जोड़े होते हैं)। एक ही क्रम के लैटिन स्क्वायरों का एक सबसेट ऑर्थोगोनल लैटिन स्क्वायर का सेट बनाता है | परस्पर ऑर्थोगोनल लैटिन स्क्वायर (एमओएलएस) यदि सेट में लैटिन स्क्वायर की प्रत्येक जोड़ी ओर्थोगोनल है। क्रम n के MOLS के सेट में अधिकतम n − 1 स्क्वायर हो सकते हैं। n − 1 MOLS क्रम n का सेट क्रम n (और इसके विपरीत) के प्रोजेक्टिव प्लेन के निर्माण के लिए उपयोग किया जा सकता है।
  • (v, k, λ) अंतर सेट एक समूह (गणित) G का उपसमुच्चय D है जैसे कि G के समूह का क्रम v है, D की प्रमुखता k है, और G के प्रत्येक अभिज्ञता तत्व को उत्पाद D को d1d2−1 रूप में व्यक्त किया जा सकता है। D के अवयव बिल्कुल λ तरीके से (जब G को गुणक संक्रिया के साथ लिखा जाता है)।[6]
यदि D एक अंतर सेट है, और G में g है, तो g D = {gd: d in D} भी एक अंतर सेट है, और इसे a कहा जाता है D का अनुवाद। एक अंतर सेट डी के सभी अनुवादों का सेट ब्लॉक डिज़ाइन सममित बीआईबीडी बनाता है। इस तरह के डिजाइन में 'वी' तत्व और 'वी' ब्लॉक होते हैं। डिज़ाइन के प्रत्येक ब्लॉक में k अंक होते हैं, प्रत्येक बिंदु k ब्लॉक में समाहित होता है। किसी भी दो ब्लॉक में बिल्कुल λ तत्व समान हैं और कोई भी दो बिंदु λ ब्लॉक में एक साथ दिखाई देते हैं। इस Sबीआईबीडी को D का विकास कहा जाता है।[7]
विशेष रूप से, यदि λ = 1, तो अंतर सेट प्रक्षेपी तल को जन्म देता है। समूह में निर्धारित (7,3,1) अंतर का एक उदाहरण (एक एबेलियन समूह योगात्मक रूप से लिखा गया है) उपसमुच्चय {1,2,4} है। इस अंतर सेट का विकास फ़ानो विमान देता है।
चूंकि प्रत्येक अंतर सेट एक एसबीआईबीडी देता है, पैरामीटर सेट को ब्रुक-रायसर-चावला प्रमेय को सैटिस्फाइ करना चाहिए, लेकिन प्रत्येक एसबीआईबीडी एक अंतर सेट नहीं देता है।
  • क्रम 'm' का हैडमार्ड आव्यूह एक m × m आव्यूह H है जिसकी प्रविष्टियाँ ±1 ऐसी हैं कि HH  = mIm, जहां H H और I का स्थानान्तरण है। m × m पहचान आव्यूहहै। एक हैडमार्ड आव्यूह को मानकीकृत रूप में रखा जा सकता है (अर्थात, समकक्ष हैडमार्ड आव्यूह में परिवर्तित) जहां पहली पंक्ति और पहली कॉलम प्रविष्टियां सभी +1 हैं। यदि क्रम m > 2 है तो m, 4 का गुणक होना चाहिए।
मानकीकृत रूप में क्रम 4a का हैडमार्ड आव्यूह दिया गया है, पहली पंक्ति और पहले कॉलम को हटाएं और प्रत्येक -1 को 0 में बदलें। परिणामी 0–1 आव्यूह 'M' सममित का आपतन आव्यूह है, 2 − (4a − 1, 2a − 1, a − 1) डिज़ाइन जिसे 'हैडमार्ड 2-डिज़ाइन' कहा जाता है।[8] यह निर्माण प्रतिवर्ती है, और इन मापदंडों के साथ सममित 2-डिज़ाइन की आपतन आव्यूह का उपयोग क्रम 4a के हैडमार्ड आव्यूह बनाने के लिए किया जा सकता है। जब a = 2 हम हैडमार्ड 2-डिज़ाइन के रूप में, अब तक परिचित, फानो प्लेन प्राप्त करते हैं।
  • पेरवाइज़ बैलेंस्ड डिज़ाइन (या पीबीडी) सेट 'X' है जो 'X' के सबसेट के परिवार के साथ है (जिसका आकार समान नहीं है और इसमें दोहराव हो सकता है) जैसे कि अलग-अलग तत्वों की हर जोड़ी X बिल्कुल λ ( धनात्मक पूर्णांक) सबसेट में समाहित है। समुच्चय X को उपसमुच्चय में से एक होने की अनुमति है, और यदि सभी उपसमुच्चय X की प्रतियां हैं, तो PBD को ट्रिवीअल कहा जाता है। X का आकार v है और परिवार में सबसेट की संख्या (बहुलता के साथ गिना जाता है) b है।
फिशर की असमानता पीबीडी के लिए है:[9] किसी भी नान-ट्रिवीअल पीबीडी के लिए, vb है
यह परिणाम प्रसिद्ध डी ब्रुइज़न-एर्डोस प्रमेय (आपतन ज्यामिति) को भी सामान्य करता है। एर्दोस-डी ब्रुइज़ प्रमेय: λ = 1 के साथ पीबीडी के लिए आकार 1 या आकार v, vb का कोई ब्लॉक नहीं है, समानता के साथ अगर और केवल अगर पीबीडी एक प्रोजेक्टिव प्लेन या नियर-पेंसिल है।[10]

अन्य मिश्रित डिजाइन

संयोजन डिजाइन की पुस्तिका (Colbourn & Dinitz 2007) में, दूसरों के बीच, 65 अध्याय हैं, जिनमें से प्रत्येक ऊपर दिए गए के अलावा संयोजन डिजाइन के लिए समर्पित है। एक आंशिक सूची नीचे दी गई है:

  • एसोसिएशन योजनाएं
  • एक बैलेंस्ड त्रिगुट डिजाइन BTD(V, B; ρ1, ρ2, R; K, Λ) B मल्टीसेट्स (ब्लॉक) में वी तत्वों की व्यवस्था है, प्रत्येक कार्डिनैलिटी K (KV), समाधान है:
  1. प्रत्येक तत्व R = ρ1 + 2ρ2 एक के साथ वास्तव में, ρ1 ब्लॉक और बहुलता दो बिल्कुल ρ2 ब्लॉक है।
  2. विशिष्ट तत्वों की प्रत्येक जोड़ी Λ बार प्रकट होती है (बहुलता के साथ गिना जाता है); यानी अगर mvb ब्लॉक b में तत्व v की बहुलता है, फिर अलग-अलग तत्वों v और w की प्रत्येक जोड़ी के लिए, .
उदाहरण के लिए, केवल दो गैर-समरूपी BTD(4,8;2,3,8;4,6)s (ब्लॉक कॉलम हैं) में से एक है:[11]
1 1 1 2 2 3 1 1
1 1 1 2 2 3 2 2
2 3 4 3 4 4 3 3
2 3 4 3 4 4 4 4
एक बीटीडी (जहां प्रविष्टियां ब्लॉक में तत्वों की बहुलताएं हैं) की आपतन आव्यूह का उपयोग टर्नरी त्रुटि-सुधार कोड बनाने के लिए किया जा सकता है, जिस तरह से बाइनरी कोड बीआईबीडी के आपतन आव्यूह से बनते हैं।[12]
  • बैलेंस्ड टूर्नामेंट डिजाइन ऑफ क्रम n (a BTD(n)) एक n × (2n − 1) सरणी में 2n-V के सभी अलग-अलग गैर-अव्यवस्थित जोड़ों की व्यवस्था है, सरणी ऐसी है कि
  1. V का प्रत्येक तत्व प्रत्येक कॉलम में ठीक एक बार दिखाई देता है, और
  2. प्रत्येक पंक्ति में V का प्रत्येक तत्व अधिक से अधिक दो बार प्रतीत होता है।
BTD(3) का उदाहरण इसके द्वारा दिया गया है
1 6 3 5 2 3 4 5 2 4
2 5 4 6 1 4 1 3 3 6
3 4 1 2 5 6 2 6 1 5
BTD(n) के कॉलम 2n शीर्षों K2n पर पूर्ण ग्राफ का 1-गुणनखंड प्रदान करते हैं।[13]
BTD(n)s का उपयोग राउंड-रॉबिन टूर्नामेंटों को शेड्यूल करने के लिए किया जा सकता है: पंक्तियां स्थानों का प्रतिनिधित्व करती हैं, कॉलम खेलने के दौर और प्रविष्टियां प्रतिस्पर्धी खिलाड़ी या टीम हैं।
  • तुला कार्य
  • कोस्टास सरणियाँ
  • क्रमगुणित डिजाइन
  • एक 'आवृत्ति स्क्वायर' ('F'-स्क्वायर) लैटिन स्क्वायर का उच्च क्रम सामान्यीकरण है। माना S = {s1,s2, ..., sm} अलग-अलग प्रतीकों का सेट हो और (λ1, λ2, ...,λm) धनात्मक पूर्णांकों का आवृत्ति सदिश हैं। क्रम n का आवृत्ति स्क्वायर n × n सरणी है जिसमें प्रत्येक प्रतीक si है, λi बार, i = 1,2,...,m, प्रत्येक पंक्ति और स्तंभ में हैं। क्रम n = λ1 + λ2 + ... + λm, एफ-स्क्वायर मानक रूप में होता है यदि पहली पंक्ति और कॉलम में sj की सभी आपतनएं i < j होती है।
एक आवृत्ति स्क्वायर F1 क्रम n सेट के आधार पर {s1,s2, ..., sm} आवृत्ति सदिश के साथ (λ1, λ2, ...,λm) और आवृत्ति स्क्वायर F2, क्रम n का भी, सेट {t1,t2, ..., tk} आवृत्ति सदिश के साथ (μ1, μ2, ...,μk) ओर्थोगोनल हैं यदि प्रत्येक क्रमित युग्म (si, tj) ठीक λiμj प्रकट होता है, कई बार जब F1 और F2 आरोपित हैं।
  • हॉल ट्रिपल सिस्टम (HTSs) स्टेनर सिस्टम हैं | स्टेनर ट्रिपल सिस्टम (STSs) (लेकिन ब्लॉक को लाइन्स कहा जाता है) इस गुण के साथ कि कि दो प्रतिच्छेद लाइनों द्वारा उत्पन्न उपसंरचना परिमित एफिन प्लेन AG(2,3) के समरूपता है।
कोई भी एफिन स्पेस AG(n,3) HTS का उदाहरण देता है। ऐसी HTS एफिन HTS है। नॉनफैसी एचटीएसएस भी मौजूद है।
एचटीएस के अंकों की संख्या 3m, किसी पूर्णांक m ≥ 2 के लिए है। नॉनफैसी HTS किसी भी m ≥ 4 के लिए मौजूद होते हैं और m = 2 या 3 के लिए मौजूद नहीं होते हैं।[14]
प्रत्येक स्टाइनर ट्रिपल सिस्टम स्टाइनर क्वैसिग्रुप के समतुल्य है और (सभी x और y के लिए स्क्वायरसम, क्रमविनिमेय (xy)y = x समाधान हैं । हॉल ट्रिपल सिस्टम एक स्टेनर क्वैसिग्रुप के बराबर है जो कि वितरणात्मक गुण है, अर्थात क्वैसिग्रुप में सभी a,x,y के लिए a(xy) = (ax)(ay) समाधान करता है। [15]
  • माना S 2n तत्वों का समुच्चय है। एक 'हॉवेल डिज़ाइन', H(s,2n) (प्रतीक सेट S पर) एक s × s सरणी है जैसे:
  1. सरणी का प्रत्येक कक्ष या तो खाली है या इसमें S से अनियंत्रित जोड़ी है,
  2. प्रत्येक प्रतीक सरणी की प्रत्येक पंक्ति और स्तंभ में ठीक एक बार होता है, और
  3. प्रतीकों की प्रत्येक अनियंत्रित जोड़ी सरणी के अधिकतम एक सेल में होती है।
H(4,6) का एक उदाहरण है
0 4   1 3 2 5
2 3 1 4 0 5  
  3 5 2 4 0 1
1 5 0 2   3 4
H(2n − 1, 2n) भुजा का कक्ष स्क्वायर है, और इस प्रकार हॉवेल डिज़ाइन कक्ष स्क्वायरों की अवधारणा को सामान्य करता है।
हॉवेल डिज़ाइन की कोशिकाओं में प्रतीकों के जोड़े को 2n कोने पर नियमित ग्राफ़ के किनारों के रूप में माना जा सकता है, जिसे हॉवेल डिज़ाइन का अंतर्निहित ग्राफ़ कहा जाता है।
चक्रीय हॉवेल डिजाइनों का उपयोग डुप्लीकेट ब्रिज टूर्नामेंट में हॉवेल मूवमेंट के रूप में किया जाता है। डिज़ाइन की पंक्तियाँ गोलों का प्रतिनिधित्व करती हैं, कॉलम बोर्डों का प्रतिनिधित्व करते हैं, और विकर्ण तालिकाओं का प्रतिनिधित्व करते हैं।[16]
  • रेखीय स्थान (ज्यामिति)
  • (n,k,p,t)- लॉटो डिजाइन तत्वों का n-सेट V एक सेट के साथ है k का β-V (ब्लॉक) का तत्व सबसेट, ताकि किसी भी p-'V के सबसेट p के लिए, β में एक ब्लॉक B हो जिसके लिए |P ∩ B | ≥ t. L(n,k,p,t) किसी भी (n,k,p,t) में ब्लॉक की सबसे छोटी संख्या को लोट्टो डिजाइन दर्शाता है। निम्नलिखित एक (7,5,4,3)-लॉटो डिज़ाइन है जिसमें ब्लॉकों की सबसे छोटी संख्या संभव है:[17]
{1,2,3,4,7}       {1,2,5,6,7}       {3,4,5,6,7}।
लोट्टो डिजाइन किसी भी लॉटरी को मॉडल करता है जो निम्नलिखित तरीके से चलती है: व्यक्ति n नंबरों के एक सेट से चुने गए के नंबरों से युक्त टिकट खरीदते हैं। एक निश्चित बिंदु पर टिकटों की बिक्री बंद कर दी जाती है और p संख्याओं का एक समूह n संख्याओं से यादृच्छिक रूप से चुना जाता है। ये जीतने वाले नंबर हैं। यदि किसी बेचे गए टिकट में जीतने वाले नंबरों में से t या अधिक सम्मिलित हैं, तो टिकट धारक को पुरस्कार दिया जाता है। अधिक मैच वाले टिकट के लिए बड़े पुरस्कार जाते हैं। L(n,k,p,t) का मूल्य गैम्ब्लर और शोधकर्ताओं दोनों के लिए रुचि रखता है, क्योंकि यह टिकटों की सबसे छोटी संख्या है जिसे पुरस्कार की गारंटी के लिए खरीदा जाना आवश्यक है।
हंगेरियन लॉटरी (90,5,5,t)-लोट्टो डिजाइन है और L(90,5,5,2) = 100 यह ज्ञात है। पैरामीटर (49,6,6,t) वाली लॉटरी भी हैं दुनिया भर में लोकप्रिय है और यह L(49,6,6,2) = 19 ज्ञात है। यद्यपि सामान्य तौर पर, इन नंबरों की गणना करना और अज्ञात रहना मुश्किल है।[18]
ट्रांसिल्वेनियन लॉटरी में ऐसी ही डिजाइन की ज्यामितीय रचना दी गई है।
  • मैजिक स्क्वायर
  • (v,k,λ)'-मेंडेलसोहन डिजाइन, या MD(v,k,λ), एक ' v-सेट V और क्रम किए गए k का संग्रह β-V के अलग-अलग तत्वों के टुपल्स (जिसे ब्लॉक कहा जाता है), जैसे कि प्रत्येक क्रम किए गए जोड़े (x,y) के साथ xy के तत्वों का y λ ब्लॉक में चक्रीय रूप से आसन्न है। अलग-अलग तत्वों की आदेशित जोड़ी (x,y) ब्लॉक में चक्रीय रूप से आसन्न है यदि तत्व (...,x,y,...) या (y,...,x) ब्लॉक में दिखाई देते हैं। एक MD(v,3,λ) मेंडेलसोहन ट्रिपल MTS(v,λ) सिस्टम है। V = {0,1,2,3} पर MTS(4,1) का उदाहरण है:
(0,1,2)     (1,0,3)     (2,1,3)     (0,2,3)
किसी भी ट्रिपल सिस्टम को मेंडेलसन ट्रिपल सिस्टम में अनियंत्रित ट्रिपल {a,b,c} को क्रम किए गए ट्रिपल्स की जोड़ी के साथ बदलकर बनाया जा सकता है। (a,b,c) और (a,c,b), लेकिन जैसा कि उदाहरण से पता चलता है, इस कथन का विलोम सत्य नहीं है।
If (Q,∗) एक स्क्वायरसम अर्धसममित अर्धसमूह है, अर्थात, xx = x (स्क्वायरसम) और x ∗ ( yx) = y (सेमीसिमेट्रिक) सभी x के लिए, y Q में, माना β = {(x,y,xy): x, y in Q}. तब (Q, β) मेंडेलसोहन ट्रिपल सिस्टम MTS(|Q|,1) है। यह निर्माण प्रतिवर्ती है।[19]

ऑर्थोगोनल सरणियाँ

  • एक अर्ध-3 डिजाइन एक सममित डिजाइन (एसबीआईबीडी) है जिसमें प्रत्येक ट्रिपल ब्लॉक या तो x या y बिंदुओं में प्रतिच्छेद करता है, निश्चित x और y के लिए कहा जाता है ट्रिपल प्रतिच्छेदन संख्या (x < y)है। λ ≤ 2 के साथ कोई भी सममित डिज़ाइन x = 0 और y = 1 के साथ अर्ध-3 डिज़ाइन है। प्रोजेक्टिव ज्योमेट्री का पॉइंट-हाइपरप्लेन डिज़ाइन PG(n,q) के साथ x = (qn−2 − 1)/(q − 1) और y = λ = (qn−1 − 1)/(q − 1) अर्ध-3 डिज़ाइन है यदि अर्ध-3 डिज़ाइन के लिए y = λ है, तो डिज़ाइन PG(n,q) या प्रक्षेपी तल के लिए आइसोमोर्फिक है।[20]
  • t-(v,k,λ) डिजाइन D प्रतिच्छेदन संख्या x और y (x < y) के साथ 'अर्ध-सममित' है यदि प्रत्येक दो अलग-अलग ब्लॉक x या y बिंदुओं में छेड़छाड़ करते हैं। ये डिज़ाइन स्वाभाविक रूप से λ = 1 के साथ डिज़ाइन के दोहरे की जाँच में उत्पन्न होते हैं। एक गैर-सममित (b > v) 2-(v,k,1) डिज़ाइन x = 0 और y = 1 के साथ क्वासिमेट्रिक है। एक बहु ( सममित 2-(v,k,λ) डिजाइन के सभी ब्लॉकों को निश्चित संख्या में दोहराएं) x = λ और y = k के साथ क्वासिमेट्रिक है। हैडमार्ड 3-डिजाइन (ब्लॉक डिजाइन का विस्तार सममित डिजाइन हैडमार्ड 2-डिजाइन) अर्धसममित हैं।[21]
प्रत्येक क्वैसिमेट्रिक ब्लॉक डिजाइन दृढ़ता से नियमित ग्राफ (इसके ब्लॉक ग्राफ के रूप में) को जन्म देता है, लेकिन सभी एसआरजी इस तरह से उत्पन्न नहीं होते हैं।[22]
kxy (mod 2) के साथ क्वासिमेट्रिक 2-(v,k,λ) डिज़ाइन का आपतन आव्यूह बाइनरी सेल्फ-ऑर्थोगोनल त्रुटि सुधार कोड उत्पन्न करता है (जब k विषम हो तो बॉर्डर किया जाता है)।[23]
  • कक्ष स्क्वायर
  • एक गोलाकार डिज़ाइन (d − 1)-आयामी क्षेत्र में बिंदुओं का एक परिमित सेट X है, जैसे कि, कुछ पूर्णांक t के लिए, X पर औसत मान हर बहुपद का
अधिकतम t पर कुल डिग्री पूरे क्षेत्र पर f के औसत मूल्य के बराबर है, यानी, क्षेत्र के क्षेत्रफल से विभाजित f का अभिन्न अंग हैं।
  • तुरान प्रणाली
  • n प्रतीकों पर 'r × n टस्कन-के आयत' में r पंक्तियां और n कॉलम हैं:
  1. प्रत्येक पंक्ति n प्रतीकों का एक क्रमचय है और
  2. किसी भी दो अलग-अलग प्रतीकों a और b के लिए और प्रत्येक m के लिए 1 से k तक, अधिकतम एक पंक्ति होती है जिसमें b, a के दाईं ओर m कदम होता है।
यदि r = n और k = 1 इन्हें 'टस्कन स्क्वायर' कहा जाता है, जबकि यदि r = n और k = n - 1 वे 'फ्लोरेंटाइन स्क्वायर' हैं। एक 'रोमन स्क्वायर' टस्कन स्क्वायर है जो एक लैटिन स्क्वायर भी है (इन्हें पंक्ति पूर्ण लैटिन स्क्वायर के रूप में भी जाना जाता है)। 'वेटिकन स्क्वायर' एक फ्लोरेंटाइन स्क्वायर है जो लैटिन स्क्वायर भी है।
निम्नलिखित उदाहरण 7 प्रतीकों पर एक टस्कन-1 स्क्वायर है जो टस्कन-2 नहीं है:[24]
6 1 5 2 4 3 7
2 6 3 5 4 7 1
5 7 2 3 1 4 6
4 2 5 1 6 7 3
3 6 2 1 7 4 5
1 3 2 7 5 6 4
7 6 5 3 4 1 2
n प्रतीकों पर एक टस्कन स्क्वायर n हैमिल्टनियन निर्देशित पथों में n कोने के साथ पूर्ण ग्राफ के अपघटन के बराबर है।[25]
दृश्य छापों के क्रम में, फ्लैश कार्ड अगले द्वारा दिए गए छाप पर कुछ प्रभाव डाल सकता है। n × n टस्कन-1 स्क्वायर की पंक्तियों के अनुरूप n अनुक्रमों का उपयोग करके इस पूर्वाग्रह को रद्द किया जा सकता है।[26]
  • t − (v,K,λ) प्रकार का t-वार बैलेंस्ड डिज़ाइन (या t BD) v-सेट X है, X (जिसे ब्लॉक कहा जाता है) के सबसेट के एक परिवार के साथ जिसका आकार सेट K में है, जैसे कि प्रत्येक t- X के अलग-अलग तत्वों का सबसेट ठीक λ ब्लॉक में समाहित है। अगर K t और v के बीच धनात्मक पूर्णांकों का एक सेट है, तो t BD उचित है। यदि कुछ k के लिए X के सभी k-उपसमुच्चय ब्लॉक हैं, तो t BD साधारण डिज़ाइन है।[27]
ध्यान दें कि सेट X = {1,2,...,12} पर आधारित 3-{12,{4,6},1) डिज़ाइन के निम्नलिखित उदाहरण में, कुछ जोड़े चार बार दिखाई देते हैं (जैसे 1,2) जबकि अन्य पांच बार (उदाहरण के लिए 6,12) दिखाई देते हैं।[28]
1 2 3 4 5 6            1 2 7 8      1 2 9 11      1 2 10 12      3 5 7 8      3 5 9 11      3 5 10 12      4 6 7 8      4 6 9 11      4 6 10 12
7 8 9 10 11 12      2 3 8 9      2 3 10 7      2 3 11 12      4 1 8 9      4 1 10 7      4 1 11 12      5 6 8 9      5 6 10 7      5 6 11 12
                             3 4 9 10      3 4 11 8      3 4 7 12      5 2 9 10      5 2 11 8      5 2 7 12      1 6 9 10      1 6 11 8      1 6 7 12
                             4 5 10 11      4 5 7 9      4 5 8 12      1 3 10 11      1 3 7 9      1 3 8 12      2 6 10 11      2 6 7 9      2 6 8 12
                             5 1 11 7      5 1 8 10      5 1 9 12      2 4 11 7      2 4 8 10      2 4 9 12      3 6 11 7      3 6 8 10      3 6 9 12
  • वेट मेट्रिक्स, हैडमार्ड मेट्रिक्स का सामान्यीकरण, जो शून्य प्रविष्टियों की अनुमति देता है, कुछ कॉम्बिनेटरिक डिजाइनों में उपयोग किया जाता है। विशेष रूप से, कुछ परीक्षणों में कई वस्तुओं के व्यक्तिगत भार का अनुमान लगाने के लिए प्रयोगों का डिजाइन है।[29]
  • यूडेन स्क्वायर k × v आयताकार सरणी (k < v) v प्रतीकों का है जैसे कि प्रत्येक प्रतीक ठीक एक बार दिखाई देता है प्रत्येक पंक्ति में और किसी भी कॉलम में दिखाई देने वाले प्रतीक सममित (v, k, λ) डिज़ाइन का एक ब्लॉक बनाते हैं, जिसके सभी ब्लॉक इस तरह से होते हैं। यूडेन स्क्वायर एक लैटिन आयत है। नाम में स्क्वायर शब्द एक पुरानी परिभाषा से आया है जिसमें स्क्वायर सरणी का उपयोग किया गया था।[30] 4 × 7 यूडेन स्क्वायर का उदाहरण दिया गया है:
1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
5 6 7 1 2 3 4
सात ब्लॉक (कॉलम) क्रम 2 बाइप्लेन (एक सममित (7,4,2)-डिजाइन) बनाते हैं।

यह भी देखें

टिप्पणियाँ

  1. Stinson 2003, pg.1
  2. Hayashi, Takao (2008). "Magic Squares in Indian Mathematics". Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures (2 ed.). Springer. pp. 1252–1259. doi:10.1007/978-1-4020-4425-0_9778.
  3. Stinson 2003, pg. IX
  4. Beth, Jungnickel & Lenz 1986, pg. 40 Example 5.8
  5. Ryser 1963, pg. 52, Theorem 3.1
  6. When the group G is an abelian group (or written additively) the defining property looks like d1 –d2 from which the term difference set comes from.
  7. Beth, Jungnickel & Lenz 1986, pg. 262, Theorem 1.6
  8. Stinson 2003, pg. 74, Theorem 4.5
  9. Stinson 2003, pg. 193, Theorem 8.20
  10. Stinson 2003, pg. 183, Theorem 8.5
  11. Colbourn & Dinitz 2007, pg. 331, Example 2.2
  12. Colbourn & Dinitz 2007, pg. 331, Remark 2.8
  13. Colbourn & Dinitz 2007, pg. 333, Remark 3.3
  14. Colbourn & Dinitz 2007, pg. 496, Theorem 28.5
  15. Colbourn & Dinitz 2007, pg. 497, Theorem 28.15
  16. Colbourn & Dinitz 2007, pg. 503, Remark 29.38
  17. Colbourn & Dinitz 2007, pg. 512, Example 32.4
  18. Colbourn & Dinitz 2007, pg. 512, Remark 32.3
  19. Colbourn & Dinitz 2007, pg. 530, Theorem 35.15
  20. Colbourn & Dinitz 2007, pg. 577, Theorem 47.15
  21. Colbourn & Dinitz 2007, pp. 578-579
  22. Colbourn & Dinitz 2007, pg. 579, Theorem 48.10
  23. Colbourn & Dinitz 2007, pg. 580, Lemma 48.22
  24. Colbourn & Dinitz 2007, pg. 652, Examples 62.4
  25. Colbourn & Dinitz 2007, pg. 655, Theorem 62.24
  26. Colbourn & Dinitz 2007, pg. 657, Remark 62.29
  27. Colbourn & Dinitz 2007, pg. 657
  28. Colbourn & Dinitz 2007, pg. 658, Example 63.5
  29. Raghavarao & Padgett 1988, pg. 305-308
  30. Colbourn & Dinitz 2007, pg. 669, Remark 65.3

संदर्भ