सामान्यीकृत कार्य: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
गणित में, सामान्यीकृत फलन वे विषय सूची हैं जो फलन (गणित) की धारणा का विस्तार करती हैं। एक से अधिक मान्यता प्राप्त सिद्धांत हैं, उदाहरण के लिए वितरण का सिद्धांत (गणित)। सामान्यीकृत कार्य विशेष रूप से असतत कार्यों को सुचारू कार्यों की तरह बनाने और बिंदु आवेशों जैसे असतत भौतिक घटनाओं का वर्णन करने में उपयोगी होते हैं। वे बड़े पैमाने पर लागू होते हैं, मुख्यतः भौतिकी और [[ अभियांत्रिकी |अभियांत्रिकी]] में लागू होते हैं।
गणित में, सामान्यीकृत फलन वे विषय सूची हैं जो फलन (गणित) की धारणा का विस्तार करती हैं। एक से अधिक मान्यता प्राप्त सिद्धांत हैं, उदाहरण के लिए वितरण का सिद्धांत (गणित)। सामान्यीकृत कार्य विशेष रूप से असतत कार्यों को सुचारू कार्यों की तरह बनाने और बिंदु आवेशों जैसे असतत भौतिक घटनाओं का वर्णन करने में उपयोगी होते हैं। वे बड़े पैमाने पर लागू होते हैं, मुख्यतः भौतिकी और [[ अभियांत्रिकी |अभियांत्रिकी]] में लागू होते हैं।


कुछ दृष्टिकोणों की एक सामान्य विशेषता यह है कि वे प्रतिदिन के संख्यात्मक कार्यों के [[ऑपरेटर (गणित)|प्रचालक (गणित)]] दृष्टिकोण पर निर्माण करते हैं। प्रारंभिक इतिहास परिचालन कैलकुस पर कुछ विचारों से जुड़ा हुआ है, और कुछ दिशाओं में अधिक समकालिक विकास [[मिकियो सातो]] के विचारों से निकटता से संबंधित हैं, जिसे वे [[बीजगणितीय विश्लेषण]] कहते हैं। इस विषय पर महत्वपूर्ण प्रभाव [[आंशिक अंतर समीकरणों|आंशिक अवकलन समीकरणों]] के सिद्धांतों और [[समूह प्रतिनिधित्व]] सिद्धांत की तकनीकी आवश्यकताओं का रहा है।
कुछ दृष्टिकोणों की एक सामान्य विशेषता यह है कि वे प्रतिदिन के संख्यात्मक कार्यों के [[ऑपरेटर (गणित)|प्रचालक (गणित)]] दृष्टिकोण पर निर्माण करते हैं। प्रारंभिक इतिहास परिचालन कैलकुस पर कुछ विचारों से जुड़ा हुआ है और कुछ दिशाओं में अधिक समकालिक विकास [[मिकियो सातो]] के विचारों से निकटता से संबंधित हैं जिसे वे [[बीजगणितीय विश्लेषण]] कहते हैं। इस विषय पर महत्वपूर्ण प्रभाव [[आंशिक अंतर समीकरणों|आंशिक अवकलन समीकरणों]] के सिद्धांतों और [[समूह प्रतिनिधित्व]] सिद्धांत की तकनीकी आवश्यकताओं का रहा है।


== कुछ प्रारंभिक इतिहास ==
== कुछ प्रारंभिक इतिहास ==


उन्नीसवीं शताब्दी के गणित में, सामान्यीकृत कार्य सिद्धांत के दृष्टिकोण दिखाई दिए, उदाहरण के लिए, ग्रीन के कार्य की परिभाषा में, लाप्लास परिवर्तन में, और [[रीमैन]] के [[त्रिकोणमितीय श्रृंखला]] के सिद्धांत में, जो अनिवार्य रूप से एक [[पूर्णांक समारोह|पूर्णांक फलन]] की फूरियर श्रृंखला नहीं थे। वितरण के गुणन की समस्या, श्वार्ट्ज वितरण सिद्धांत की एक सीमा, गैर-रैखिक समस्याओं के लिए गंभीर हो जाती है। ये उस समय [[गणितीय विश्लेषण]] के असंबद्ध दृष्टिकोण थे।
उन्नीसवीं शताब्दी के गणित में, सामान्यीकृत कार्य सिद्धांत के दृष्टिकोण दिखाई दिए। उदाहरण के लिए, ग्रीन के कार्य की परिभाषा में, लाप्लास परिवर्तन में, और [[रीमैन]] के [[त्रिकोणमितीय श्रृंखला]] के सिद्धांत में, जो अनिवार्य रूप से एक [[पूर्णांक समारोह|पूर्णांक फलन]] की फूरियर श्रृंखला नहीं थे। वितरण के गुणन की समस्या, श्वार्ट्ज वितरण सिद्धांत की एक सीमा, गैर-रैखिक समस्याओं के लिए गंभीर हो जाती है। ये उस समय [[गणितीय विश्लेषण]] के असंबद्ध दृष्टिकोण थे।


इंजीनियरिंग में लाप्लास परिवर्तन के प्रकृष्ट उपयोग ने सांकेतिक विधियों के [[अनुमानी]] उपयोग को प्रेरित किया, जिसे परिचालन कैलकुलस कहा जाता है। चूंकि अलग-अलग श्रृंखलाओं का उपयोग करने वाले प्रामाणिकता दिए गए थे, इसलिए इन विधियों की [[शुद्ध गणित]] के दृष्टिकोण से निष्फल प्रतिष्ठा थी। वे सामान्यीकृत फलन विधियों के बाद के अनुप्रयोग के विशिष्ट हैं। परिचालन कैलकुलस पर एक प्रभावशाली पुस्तक 1899 का [[ओलिवर हीविसाइड]] का  विद्युत चुम्बकीय सिद्धांत थी।
इंजीनियरिंग में लाप्लास परिवर्तन के प्रकृष्ट उपयोग ने सांकेतिक विधियों के [[अनुमानी]] उपयोग को प्रेरित किया, जिसे परिचालन कैलकुलस कहा जाता है। चूंकि अलग-अलग श्रृंखलाओं का उपयोग करने वाले प्रामाणिकता दिए गए थे, इसलिए इन विधियों की [[शुद्ध गणित]] के दृष्टिकोण से निष्फल प्रतिष्ठा थी। वे सामान्यीकृत फलन विधियों के बाद के अनुप्रयोग के विशिष्ट हैं। परिचालन कैलकुलस पर एक प्रभावशाली पुस्तक 1899 का [[ओलिवर हीविसाइड]] का  विद्युत चुम्बकीय सिद्धांत थी।


जब [[लेबेस्ग इंटीग्रल|लेबेस्ग समाकलन]] प्रस्तुत किया गया था, तो पहली बार गणित के केंद्र में सामान्यीकृत फलन की धारणा थी। लेबेस्ग के सिद्धांत में एक पूर्णांकीय फलन, किसी भी अन्य के समतुल्य है जो [[लगभग हर जगह]] समान है। इसका तात्पर्य यह है कि किसी दिए गए बिंदु पर इसका मूल्य (एक मायने में) इसकी सबसे महत्वपूर्ण विशेषता नहीं है। प्र[[कार्यात्मक विश्लेषण]] में एक समाकलनीय फलन की आवश्यक विशेषता का एक स्पष्ट सूत्रीकरण दिया जाता है, अर्थात् जिस तरह से यह अन्य कार्यों पर एक रेखीय प्रकार्य को परिभाषित करता है। प्रारंभिक इतिहास परिचालन कैलकुस पर कुछ विचारों से जुड़ा हुआ है ,यह [[कमजोर व्युत्पन्न|अशक्त अवकलज]] की परिभाषा की अनुमति देता है।
जब [[लेबेस्ग इंटीग्रल|लेबेस्ग समाकलन]] प्रस्तुत किया गया था, तो पहली बार गणित के केंद्र में सामान्यीकृत फलन की धारणा थी। लेबेस्ग के सिद्धांत में एक पूर्णांकीय फलन, किसी भी अन्य के समतुल्य है जो [[लगभग हर जगह]] समान है। इसका तात्पर्य यह है कि किसी दिए गए बिंदु पर इसका मूल्य (एक मायने में) इसकी सबसे महत्वपूर्ण विशेषता नहीं है। प्र[[कार्यात्मक विश्लेषण]] में एक समाकलनीय फलन की आवश्यक विशेषता का एक स्पष्ट सूत्रीकरण दिया जाता है, अर्थात् जिस तरह से यह अन्य कार्यों पर एक रेखीय प्रकार्य को परिभाषित करता है। प्रारंभिक इतिहास परिचालन कैलकुस पर कुछ विचारों से जुड़ा हुआ है और यह [[कमजोर व्युत्पन्न|अशक्त अवकलज]] की परिभाषा की अनुमति देता है।


1920 के दशक के अंत और 1930 के दशक के समय आगे के कदम उठाए गए, जो भविष्य के काम के लिए बुनियादी थे। [[डिराक डेल्टा समारोह|डिराक डेल्टा फलन]] को [[पॉल डिराक]] (उनकी [[वैज्ञानिक औपचारिकता]] का एक दृष्टिकोण ) द्वारा निर्भीकता से परिभाषित किया गया था; यह वास्तविक कार्यों की तरह घनत्व (जैसे चार्ज घनत्व) के रूप में सोचा जाने वाले माप (गणित) का शुद्ध मापन था। [[आंशिक अंतर समीकरण सिद्धांत|आंशिक अवकलन समीकरण सिद्धांत]] में काम कर रहे [[सर्गेई सोबोलेव]] ने आंशिक अवकलन समीकरणों के [[कमजोर समाधान|निष्क्रिय समाधान]] के साथ काम करने के लिए गणितीय दृष्टिकोण से सामान्यीकृत कार्यों के पहले पर्याप्त सिद्धांत को परिभाषित किया।<ref>{{Cite book |last1=Kolmogorov |first1=A. N. |url=https://www.worldcat.org/oclc/44675353 |title=कार्यों और कार्यात्मक विश्लेषण के सिद्धांत के तत्व|last2=Fomin |first2=S. V. |date=1999 |publisher=Dover |orig-date=1957 |isbn=0-486-40683-0 |location=Mineola, N.Y. |oclc=44675353}}</ref> उस समय संबंधित सिद्धांतों का प्रस्ताव करने वाले अन्य लोग [[सॉलोमन बोचनर]] और [[कर्ट फ्रेडरिक्स]] थे। [[लॉरेंट श्वार्ट्ज]] द्वारा सोबोलेव के काम को एक विस्तारित रूप में और विकसित किया गया था।<ref>{{cite journal | last1 = Schwartz | first1 = L | year = 1952 | title = Théorie des distributions | journal = Bull. Amer. Math. Soc. | volume = 58 | pages = 78–85 | doi = 10.1090/S0002-9904-1952-09555-0 | doi-access = free }}</ref>
1920 के दशक के अंत और 1930 के दशक के समय आगे के कदम उठाए गए, जो भविष्य के काम के लिए बुनियादी थे। [[डिराक डेल्टा समारोह|डिराक डेल्टा फलन]] को [[पॉल डिराक]] (उनकी [[वैज्ञानिक औपचारिकता]] का एक दृष्टिकोण ) द्वारा निर्भीकता से परिभाषित किया गया था; यह वास्तविक कार्यों की तरह घनत्व (जैसे चार्ज घनत्व) के रूप में सोचा जाने वाले माप (गणित) का शुद्ध मापन था। [[आंशिक अंतर समीकरण सिद्धांत|आंशिक अवकलन समीकरण सिद्धांत]] में काम कर रहे [[सर्गेई सोबोलेव]] ने आंशिक अवकलन समीकरणों के [[कमजोर समाधान|निष्क्रिय समाधान]] के साथ काम करने के लिए गणितीय दृष्टिकोण से सामान्यीकृत कार्यों के पहले पर्याप्त सिद्धांत को परिभाषित किया।<ref>{{Cite book |last1=Kolmogorov |first1=A. N. |url=https://www.worldcat.org/oclc/44675353 |title=कार्यों और कार्यात्मक विश्लेषण के सिद्धांत के तत्व|last2=Fomin |first2=S. V. |date=1999 |publisher=Dover |orig-date=1957 |isbn=0-486-40683-0 |location=Mineola, N.Y. |oclc=44675353}}</ref> उस समय संबंधित सिद्धांतों का प्रस्ताव करने वाले अन्य लोग [[सॉलोमन बोचनर]] और [[कर्ट फ्रेडरिक्स]] थे। [[लॉरेंट श्वार्ट्ज]] द्वारा सोबोलेव के काम को एक विस्तारित रूप में और विकसित किया गया था।<ref>{{cite journal | last1 = Schwartz | first1 = L | year = 1952 | title = Théorie des distributions | journal = Bull. Amer. Math. Soc. | volume = 58 | pages = 78–85 | doi = 10.1090/S0002-9904-1952-09555-0 | doi-access = free }}</ref>
Line 21: Line 21:
यह सिद्धांत बहुत सफल रहा और अभी भी व्यापक रूप से उपयोग किया जाता है, लेकिन मुख्य अवगुण से ग्रस्त है कि यह केवल रैखिक संचालन की अनुमति देता है। प्रारंभिक इतिहास परिचालन कैलकुस पर कुछ विचारों से जुड़ा हुआ है ,दूसरे शब्दों में, वितरण को गुणा नहीं किया जा सकता है (बहुत विशेष सन्दर्भों को छोड़कर): अधिकांश पारम्परिक फलन रिक्त स्थान के विपरीत, वे [[बीजगणित]] नहीं हैं। उदाहरण के लिए, डायराक डेल्टा फलन का वर्ग करना अर्थपूर्ण नहीं है। 1954 के आसपास श्वार्ट्ज के कार्य ने दिखाया कि यह एक आंतरिक कठिनाई थी।
यह सिद्धांत बहुत सफल रहा और अभी भी व्यापक रूप से उपयोग किया जाता है, लेकिन मुख्य अवगुण से ग्रस्त है कि यह केवल रैखिक संचालन की अनुमति देता है। प्रारंभिक इतिहास परिचालन कैलकुस पर कुछ विचारों से जुड़ा हुआ है ,दूसरे शब्दों में, वितरण को गुणा नहीं किया जा सकता है (बहुत विशेष सन्दर्भों को छोड़कर): अधिकांश पारम्परिक फलन रिक्त स्थान के विपरीत, वे [[बीजगणित]] नहीं हैं। उदाहरण के लिए, डायराक डेल्टा फलन का वर्ग करना अर्थपूर्ण नहीं है। 1954 के आसपास श्वार्ट्ज के कार्य ने दिखाया कि यह एक आंतरिक कठिनाई थी।


गुणन समस्या के कुछ समाधान प्रस्तावित किए गए हैं। एक बहुत ही सरल और सहज परिभाषा पर आधारित है जो यू द्वारा दिया गया एक सामान्यीकृत कार्य है। वी। ईगोरोव<ref name="YuVEgorov1990">
गुणन समस्या के कुछ समाधान प्रस्तावित किए गए हैं। एक बहुत ही सरल और सहज परिभाषा पर आधारित है जो यू द्वारा दिया गया एक सामान्यीकृत कार्य है। वी ईगोरोव<ref name="YuVEgorov1990">
{{cite journal
{{cite journal
| title =  A contribution to the theory of generalized functions
| title =  A contribution to the theory of generalized functions
Line 38: Line 38:
चूंकि यह क्वांटम यांत्रिकी के श्रोडिंगर सिद्धांत के समतुल्य होना आवश्यक है, जो समन्वय परिवर्तनों के अनुसार अपरिवर्तनीय है, इस गुण को पथ अभिन्न द्वारा साझा किया जाना चाहिए।
चूंकि यह क्वांटम यांत्रिकी के श्रोडिंगर सिद्धांत के समतुल्य होना आवश्यक है, जो समन्वय परिवर्तनों के अनुसार अपरिवर्तनीय है, इस गुण को पथ अभिन्न द्वारा साझा किया जाना चाहिए।


यह सामान्यीकृत कार्यों के सभी उत्पादों को ठीक करता है जैसा कि हेगन क्लेनर्ट एच द्वारा दिखाया गया है | क्लेनर्ट और ए. चेर्व्याकोव।<ref>
यह सामान्यीकृत कार्यों के सभी उत्पादों को ठीक करता है जैसा कि हेगन क्लेनर्ट एच द्वारा दिखाया गया है | उनका उपयोग एक बहुत ही सामान्य स्टोक्स प्रमेय तैयार करने के लिए किया जा सकता है।  क्लेनर्ट और ए. चेर्व्याकोव।<ref>
{{cite journal
{{cite journal
| title =  Rules for integrals over products of distributions from coordinate independence of path integrals
| title =  Rules for integrals over products of distributions from coordinate independence of path integrals
Line 79: Line 79:
}}</ref> और वे ई. रोज़िंगर, वाई. एगोरोव और आर. रॉबिन्सन द्वारा निर्माण प्रस्तावित किए गए हैं,।{{citation needed|date=December 2018}}
}}</ref> और वे ई. रोज़िंगर, वाई. एगोरोव और आर. रॉबिन्सन द्वारा निर्माण प्रस्तावित किए गए हैं,।{{citation needed|date=December 2018}}


पहले प्रकरण में, सामान्यीकृत फलन के कुछ नियमितीकरण के साथ गुणन निर्धारित किया जाता है। दूसरे प्रकरण में, बीजगणित वितरण के गुणन के रूप में निर्मित होता है। दोनों सन्दर्भों पर नीचे चर्चा की गई है।
पहले प्रकरण में, सामान्यीकृत फलन के कुछ नियमितीकरण के साथ गुणन निर्धारित किया जाता है।  
 
दूसरे प्रकरण में, बीजगणित वितरण के गुणन के रूप में निर्मित होता है। दोनों सन्दर्भों पर नीचे चर्चा की गई है।


=== सामान्यीकृत कार्यों का गैर-क्रमविनिमेय बीजगणित ===
=== सामान्यीकृत कार्यों का गैर-क्रमविनिमेय बीजगणित ===
सामान्यीकृत कार्यों के बीजगणित को एक फलन के प्रक्षेपण की उचित प्रक्रिया के साथ बनाया जा सकता है <math>F=F(x)</math> इसके सहज होने के लिए
सामान्यीकृत कार्यों के बीजगणित को एक फलन के प्रक्षेपण की उचित प्रक्रिया के साथ बनाया जा सकता है <math>F=F(x)</math> इसके सहज होने के लिए
  <math>F_{\rm smooth}</math> और यह एकवचन है <math>F_{\rm singular}</math> भागों। सामान्यीकृत कार्यों का उत्पाद <math>F</math> और <math>G</math> रूप में प्रकट होता है
  <math>F_{\rm smooth}</math> और यह एकवचन है <math>F_{\rm singular}</math> भागों। सामान्यीकृत कार्यों का गुणनफल <math>F</math> और <math>G</math> रूप में प्रकट होता है


{{NumBlk|:|<math>
{{NumBlk|:|<math>
Line 93: Line 95:
ऐसा नियम मुख्य कार्यों के स्थान और ऑपरेटरों के स्थान दोनों पर लागू होता है जो मुख्य कार्यों के स्थान पर कार्य करते हैं।
ऐसा नियम मुख्य कार्यों के स्थान और ऑपरेटरों के स्थान दोनों पर लागू होता है जो मुख्य कार्यों के स्थान पर कार्य करते हैं।


गुणन की साहचर्यता प्राप्त की जाती है; और फलन साइनम को इस तरह से परिभाषित किया गया है, कि इसका वर्ग हर जगह एकता है (निर्देशांक की उत्पत्ति सहित)। ध्यान दें कि एकवचन भागों का गुणनफल ({{EquationNote|1}}); विशेष रूप से, <math>\delta(x)^2=0</math>. इस तरह की औपचारिकता में एक विशेष प्रकरण के रूप में सामान्यीकृत कार्यों (उनके उत्पाद के बिना) के पारंपरिक सिद्धांत सम्मिलित हैं। हालांकि, परिणामी बीजगणित गैर-क्रमविनिमेय है: सामान्यीकृत फलन सिग्नम और डेल्टा एंटीकॉम्यूट।<ref name="shirokovAlgebra1dim" />बीजगणित के कुछ अनुप्रयोगों का सुझाव दिया गया था।<ref name="goriaga">{{cite journal
गुणन की साहचर्यता प्राप्त की जाती है; और फलन साइनम को इस तरह से परिभाषित किया गया है, कि इसका वर्ग हर जगह एकता है (निर्देशांक की उत्पत्ति सहित)। ध्यान दें कि एकवचन भागों का गुणनफल ({{EquationNote|1}}); विशेष रूप से, <math>\delta(x)^2=0</math>. इस तरह की औपचारिकता में एक विशेष प्रकरण के रूप में सामान्यीकृत कार्यों (उनके गुणनफल के बिना) के पारंपरिक सिद्धांत सम्मिलित हैं। हालांकि, परिणामी बीजगणित गैर-क्रमविनिमेय है: सामान्यीकृत फलन सिग्नम और डेल्टा एंटीकॉम्यूट।<ref name="shirokovAlgebra1dim" />बीजगणित के कुछ अनुप्रयोगों का सुझाव दिया गया था।<ref name="goriaga">{{cite journal
|author=O. G. Goryaga
|author=O. G. Goryaga
|author2=Yu. M. Shirokov
|author2=Yu. M. Shirokov
Line 131: Line 133:
एन पर बहुपद पैमाने का उपयोग करके एक सरल उदाहरण प्राप्त किया जाता है,
एन पर बहुपद पैमाने का उपयोग करके एक सरल उदाहरण प्राप्त किया जाता है,


<math>s = \{ a_m:\mathbb N\to\mathbb R, n\mapsto n^m ;~ m\in\mathbb Z \}</math>. फिर किसी भी अर्ध-मानक बीजगणित (, पी) के लिए कारक स्थान होगा
<math>s = \{ a_m:\mathbb N\to\mathbb R, n\mapsto n^m ;~ m\in\mathbb Z \}</math>. फिर किसी भी अर्ध-मानक बीजगणित (E, P) के लिए कारक स्थान होगा


:<math>G_s(E,P)= \frac{
:<math>G_s(E,P)= \frac{
Line 148: Line 150:
जहां [[कनवल्शन|संवलन]] प्रक्रिया है, और
जहां [[कनवल्शन|संवलन]] प्रक्रिया है, और


:φ<sub>''n''</sub>(एक्स) = एन φ (एनएक्स)।
:φ<sub>''n''</sub>(X) = (NX)।


आज विभिन्न तरीकों का उपयोग किया जाता है। यह अंतःक्षेपण इस अर्थ में गैर-विहित है कि यह मोलिफायर φ की पसंद पर निर्भर करता है, जो C होना चाहिए<sup>∞</sup>, अभिन्न एक का और इसके सभी डेरिवेटिव 0 लुप्त होने पर हैं। एक कैनोनिकल अंतःक्षेपण  प्राप्त करने के लिए, इंडेक्सिंग सेट को 'N' × D('R') के रूप में , D('R') पर एक सुविधाजनक [[फिल्टर बेस]] के साथ (लुप्त हो जाने वाले क्षण (गणित) के कार्य क्रम Q तक )संशोधित किया जा सकता है.|
आज विभिन्न तरीकों का उपयोग किया जाता है। यह अंतःक्षेपण इस अर्थ में गैर-विहित है कि यह मोलिफायर φ की पसंद पर निर्भर करता है, जो C होना चाहिए<sup>∞</sup>, अभिन्न एक का और इसके सभी डेरिवेटिव 0 लुप्त होने पर हैं। उनका उपयोग एक बहुत ही सामान्य स्टोक्स प्रमेय तैयार करने के लिए किया जा सकता है। एक कैनोनिकल अंतःक्षेपण  प्राप्त करने के लिए, इंडेक्सिंग सेट को 'N' × D('R') के रूप में , D('R') पर एक सुविधाजनक [[फिल्टर बेस]] के साथ (लुप्त हो जाने वाले क्षण (गणित) के कार्य क्रम Q तक )संशोधित किया जा सकता है.|


=== शीफ संरचना ===
=== शीफ संरचना ===


अगर (E, P) कुछ सांस्थितिक स्पेस X पर अर्ध-मानक बीजगणित का (पूर्व-) [[शीफ (गणित)]] है, तो G<sub>s</sub>(E, P) के पास भी यह विशेषता होगी। इसका तात्पर्य यह यह है कि [[प्रतिबंध (गणित)]] की धारणा को परिभाषित किया जाएगा, जो सामान्यीकृत फलन w.r.t के [[समर्थन (गणित)]] को परिभाषित करने की अनुमति देता है। एक उपशीर्षक, विशेष रूप से:
अगर (E, P) कुछ सांस्थितिक स्पेस X पर अर्ध-मानक बीजगणित का (पूर्व-) [[शीफ (गणित)]] है, तो G<sub>s</sub>(E, P) के पास भी यह विशेषता होगी। इसका तात्पर्य यह यह है कि एक उपशीर्षक, विशेष रूप से: [[प्रतिबंध (गणित)]] की धारणा को परिभाषित किया जाएगा, जो सामान्यीकृत फलन w.r.t के [[समर्थन (गणित)]] को परिभाषित करने की अनुमति देता है।  
* उपशीर्षक {0} के लिए, किसी को सामान्य समर्थन मिलता है (सबसे बड़े उपसमुच्चय का पूरक जहां फलन शून्य है)।
* उपशीर्षक {0} के लिए, किसी को सामान्य समर्थन मिलता है (सबसे बड़े उपसमुच्चय का पूरक जहां फलन शून्य है)।
* सबशेफ ई के लिए (कैनोनिकल (स्थिर) अंतःक्षेपण  का उपयोग करके एम्बेड किया गया), एक को वह मिलता है जिसे एकवचन समर्थन कहा जाता है, अर्थात , मोटे तौर पर बोलना, सेट का बंद होना जहां सामान्यीकृत कार्य एक सुचारू कार्य नहीं है (= सी के लिए)<sup>∞</sup>).
* सबशेफ ई के लिए (कैनोनिकल (स्थिर) अंतःक्षेपण  का उपयोग करके एम्बेड किया गया), एक को वह मिलता है जिसे एकवचन समर्थन कहा जाता है, अर्थात , मोटे तौर पर (E= C के लिए)<sup>∞</sup>).बोलना, सेट का बंद होना जहां सामान्यीकृत कार्य एक सुचारू कार्य नहीं है ।


=== माइक्रोलोकल विश्लेषण ===
=== माइक्रोलोकल विश्लेषण ===

Revision as of 11:25, 18 May 2023

गणित में, सामान्यीकृत फलन वे विषय सूची हैं जो फलन (गणित) की धारणा का विस्तार करती हैं। एक से अधिक मान्यता प्राप्त सिद्धांत हैं, उदाहरण के लिए वितरण का सिद्धांत (गणित)। सामान्यीकृत कार्य विशेष रूप से असतत कार्यों को सुचारू कार्यों की तरह बनाने और बिंदु आवेशों जैसे असतत भौतिक घटनाओं का वर्णन करने में उपयोगी होते हैं। वे बड़े पैमाने पर लागू होते हैं, मुख्यतः भौतिकी और अभियांत्रिकी में लागू होते हैं।

कुछ दृष्टिकोणों की एक सामान्य विशेषता यह है कि वे प्रतिदिन के संख्यात्मक कार्यों के प्रचालक (गणित) दृष्टिकोण पर निर्माण करते हैं। प्रारंभिक इतिहास परिचालन कैलकुस पर कुछ विचारों से जुड़ा हुआ है और कुछ दिशाओं में अधिक समकालिक विकास मिकियो सातो के विचारों से निकटता से संबंधित हैं जिसे वे बीजगणितीय विश्लेषण कहते हैं। इस विषय पर महत्वपूर्ण प्रभाव आंशिक अवकलन समीकरणों के सिद्धांतों और समूह प्रतिनिधित्व सिद्धांत की तकनीकी आवश्यकताओं का रहा है।

कुछ प्रारंभिक इतिहास

उन्नीसवीं शताब्दी के गणित में, सामान्यीकृत कार्य सिद्धांत के दृष्टिकोण दिखाई दिए। उदाहरण के लिए, ग्रीन के कार्य की परिभाषा में, लाप्लास परिवर्तन में, और रीमैन के त्रिकोणमितीय श्रृंखला के सिद्धांत में, जो अनिवार्य रूप से एक पूर्णांक फलन की फूरियर श्रृंखला नहीं थे। वितरण के गुणन की समस्या, श्वार्ट्ज वितरण सिद्धांत की एक सीमा, गैर-रैखिक समस्याओं के लिए गंभीर हो जाती है। ये उस समय गणितीय विश्लेषण के असंबद्ध दृष्टिकोण थे।

इंजीनियरिंग में लाप्लास परिवर्तन के प्रकृष्ट उपयोग ने सांकेतिक विधियों के अनुमानी उपयोग को प्रेरित किया, जिसे परिचालन कैलकुलस कहा जाता है। चूंकि अलग-अलग श्रृंखलाओं का उपयोग करने वाले प्रामाणिकता दिए गए थे, इसलिए इन विधियों की शुद्ध गणित के दृष्टिकोण से निष्फल प्रतिष्ठा थी। वे सामान्यीकृत फलन विधियों के बाद के अनुप्रयोग के विशिष्ट हैं। परिचालन कैलकुलस पर एक प्रभावशाली पुस्तक 1899 का ओलिवर हीविसाइड का विद्युत चुम्बकीय सिद्धांत थी।

जब लेबेस्ग समाकलन प्रस्तुत किया गया था, तो पहली बार गणित के केंद्र में सामान्यीकृत फलन की धारणा थी। लेबेस्ग के सिद्धांत में एक पूर्णांकीय फलन, किसी भी अन्य के समतुल्य है जो लगभग हर जगह समान है। इसका तात्पर्य यह है कि किसी दिए गए बिंदु पर इसका मूल्य (एक मायने में) इसकी सबसे महत्वपूर्ण विशेषता नहीं है। प्रकार्यात्मक विश्लेषण में एक समाकलनीय फलन की आवश्यक विशेषता का एक स्पष्ट सूत्रीकरण दिया जाता है, अर्थात् जिस तरह से यह अन्य कार्यों पर एक रेखीय प्रकार्य को परिभाषित करता है। प्रारंभिक इतिहास परिचालन कैलकुस पर कुछ विचारों से जुड़ा हुआ है और यह अशक्त अवकलज की परिभाषा की अनुमति देता है।

1920 के दशक के अंत और 1930 के दशक के समय आगे के कदम उठाए गए, जो भविष्य के काम के लिए बुनियादी थे। डिराक डेल्टा फलन को पॉल डिराक (उनकी वैज्ञानिक औपचारिकता का एक दृष्टिकोण ) द्वारा निर्भीकता से परिभाषित किया गया था; यह वास्तविक कार्यों की तरह घनत्व (जैसे चार्ज घनत्व) के रूप में सोचा जाने वाले माप (गणित) का शुद्ध मापन था। आंशिक अवकलन समीकरण सिद्धांत में काम कर रहे सर्गेई सोबोलेव ने आंशिक अवकलन समीकरणों के निष्क्रिय समाधान के साथ काम करने के लिए गणितीय दृष्टिकोण से सामान्यीकृत कार्यों के पहले पर्याप्त सिद्धांत को परिभाषित किया।[1] उस समय संबंधित सिद्धांतों का प्रस्ताव करने वाले अन्य लोग सॉलोमन बोचनर और कर्ट फ्रेडरिक्स थे। लॉरेंट श्वार्ट्ज द्वारा सोबोलेव के काम को एक विस्तारित रूप में और विकसित किया गया था।[2]


श्वार्ट्ज वितरण

इस तरह की अवधारणा की प्राप्ति, जिसे कई उद्देश्यों के लिए निश्चित रूप से स्वीकार किया जाना था, लॉरेंट श्वार्ट्ज द्वारा विकसित वितरण (गणित) का सिद्धांत था। इसे सांस्थितिक सदिश स्थान के लिए दोहरी जगह के आधार पर सैद्धांतिक सिद्धांत कहा जा सकता है। अनुप्रयुक्त गणित में इसका मुख्य प्रतिद्वंद्वी सहज सन्निकटन ('जेम्स लाइटहिल' स्पष्टीकरण) के अनुक्रमों का उपयोग करना है, जो अधिक तदर्थ है। यह अब संशोधक सिद्धांत के रूप में सिद्धांत में प्रवेश करता है।[3]

यह सिद्धांत बहुत सफल रहा और अभी भी व्यापक रूप से उपयोग किया जाता है, लेकिन मुख्य अवगुण से ग्रस्त है कि यह केवल रैखिक संचालन की अनुमति देता है। प्रारंभिक इतिहास परिचालन कैलकुस पर कुछ विचारों से जुड़ा हुआ है ,दूसरे शब्दों में, वितरण को गुणा नहीं किया जा सकता है (बहुत विशेष सन्दर्भों को छोड़कर): अधिकांश पारम्परिक फलन रिक्त स्थान के विपरीत, वे बीजगणित नहीं हैं। उदाहरण के लिए, डायराक डेल्टा फलन का वर्ग करना अर्थपूर्ण नहीं है। 1954 के आसपास श्वार्ट्ज के कार्य ने दिखाया कि यह एक आंतरिक कठिनाई थी।

गुणन समस्या के कुछ समाधान प्रस्तावित किए गए हैं। एक बहुत ही सरल और सहज परिभाषा पर आधारित है जो यू द्वारा दिया गया एक सामान्यीकृत कार्य है। वी ईगोरोव[4] (नीचे दी गई पुस्तक सूची में डेमिडोव की पुस्तक में उनका लेख भी देखें) जो सामान्यीकृत कार्यों पर और उनके बीच मनमाना संचालन की अनुमति देता है।

गुणन समस्या का एक अन्य समाधान क्वांटम यांत्रिकी के पथ अभिन्न सूत्रीकरण द्वारा निर्धारित होता है।

चूंकि यह क्वांटम यांत्रिकी के श्रोडिंगर सिद्धांत के समतुल्य होना आवश्यक है, जो समन्वय परिवर्तनों के अनुसार अपरिवर्तनीय है, इस गुण को पथ अभिन्न द्वारा साझा किया जाना चाहिए।

यह सामान्यीकृत कार्यों के सभी उत्पादों को ठीक करता है जैसा कि हेगन क्लेनर्ट एच द्वारा दिखाया गया है | उनका उपयोग एक बहुत ही सामान्य स्टोक्स प्रमेय तैयार करने के लिए किया जा सकता है। क्लेनर्ट और ए. चेर्व्याकोव।[5] परिणाम वही है जो आयामी नियमितीकरण[6] से प्राप्त किया जा सकता है।


सामान्यीकृत कार्यों के बीजगणित

सामान्यीकृत कार्यों के बीजगणित के कई दूसरों के बीच यू. एम शिरोकोव[7] और वे ई. रोज़िंगर, वाई. एगोरोव और आर. रॉबिन्सन द्वारा निर्माण प्रस्तावित किए गए हैं,।[citation needed]

पहले प्रकरण में, सामान्यीकृत फलन के कुछ नियमितीकरण के साथ गुणन निर्धारित किया जाता है।

दूसरे प्रकरण में, बीजगणित वितरण के गुणन के रूप में निर्मित होता है। दोनों सन्दर्भों पर नीचे चर्चा की गई है।

सामान्यीकृत कार्यों का गैर-क्रमविनिमेय बीजगणित

सामान्यीकृत कार्यों के बीजगणित को एक फलन के प्रक्षेपण की उचित प्रक्रिया के साथ बनाया जा सकता है इसके सहज होने के लिए

 और यह एकवचन है  भागों। सामान्यीकृत कार्यों का गुणनफल  और  रूप में प्रकट होता है

 

 

 

 

(1)

ऐसा नियम मुख्य कार्यों के स्थान और ऑपरेटरों के स्थान दोनों पर लागू होता है जो मुख्य कार्यों के स्थान पर कार्य करते हैं।

गुणन की साहचर्यता प्राप्त की जाती है; और फलन साइनम को इस तरह से परिभाषित किया गया है, कि इसका वर्ग हर जगह एकता है (निर्देशांक की उत्पत्ति सहित)। ध्यान दें कि एकवचन भागों का गुणनफल (1); विशेष रूप से, . इस तरह की औपचारिकता में एक विशेष प्रकरण के रूप में सामान्यीकृत कार्यों (उनके गुणनफल के बिना) के पारंपरिक सिद्धांत सम्मिलित हैं। हालांकि, परिणामी बीजगणित गैर-क्रमविनिमेय है: सामान्यीकृत फलन सिग्नम और डेल्टा एंटीकॉम्यूट।[7]बीजगणित के कुछ अनुप्रयोगों का सुझाव दिया गया था।[8][9]


वितरण का गुणन

वितरण के गुणन की समस्या, श्वार्ट्ज वितरण सिद्धांत की एक सीमा, गैर-रैखिक समस्याओं के लिए गंभीर हो जाती है।

आज विभिन्न तरीकों का उपयोग किया जाता है। सबसे सरल यू द्वारा दिए गए सामान्यीकृत फलन की परिभाषा पर आधारित है। वी। ईगोरोव।[4]साहचर्य अवकल बीजगणित के निर्माण के लिए एक अन्य दृष्टिकोण J.-F पर आधारित है। कोलंबो का निर्माण: कोलंबो बीजगणित देखें। ये कारक स्थान हैं

मध्यम मोडुलो नगण्य कार्यों का जाल, जहां संयम और नगण्यता परिवार के सूचकांक के संबंध में वृद्धि को संदर्भित करता है।

उदाहरण: कोलंबो बीजगणित

एन पर बहुपद पैमाने का उपयोग करके एक सरल उदाहरण प्राप्त किया जाता है,

. फिर किसी भी अर्ध-मानक बीजगणित (E, P) के लिए कारक स्थान होगा

विशेष रूप से, (E, P)=('C',|.|) के लिए (कोलंबो की) सामान्यीकृत संख्या प्राप्त होती है (जो असीम रूप से बड़ी और असीम रूप से छोटी हो सकती है और फिर भी कठोर अंकगणित की अनुमति देती है, जो गैर-मानक विश्लेषणों के समान है) . के लिए (E, P) = (C('R'),{Pk}) (जहां Pkत्रिज्या k की गेंद पर k से कम या उसके बराबर क्रम के सभी डेरिवेटिव का सर्वोच्च है) कोलंबो बीजगणित प्राप्त होता है |कोलंबो का सरलीकृत बीजगणित।

श्वार्ट्ज वितरण का अंतःक्षेपण

इस बीजगणित में अंतःक्षेपण के माध्यम से सभी वितरण T का D' सम्मिलित है |

J(T) = (φn ∗ T)n+ N,

जहां संवलन प्रक्रिया है, और

φn(X) = Nφ (NX)।

आज विभिन्न तरीकों का उपयोग किया जाता है। यह अंतःक्षेपण इस अर्थ में गैर-विहित है कि यह मोलिफायर φ की पसंद पर निर्भर करता है, जो C होना चाहिए, अभिन्न एक का और इसके सभी डेरिवेटिव 0 लुप्त होने पर हैं। उनका उपयोग एक बहुत ही सामान्य स्टोक्स प्रमेय तैयार करने के लिए किया जा सकता है। एक कैनोनिकल अंतःक्षेपण प्राप्त करने के लिए, इंडेक्सिंग सेट को 'N' × D('R') के रूप में , D('R') पर एक सुविधाजनक फिल्टर बेस के साथ (लुप्त हो जाने वाले क्षण (गणित) के कार्य क्रम Q तक )संशोधित किया जा सकता है.|

शीफ संरचना

अगर (E, P) कुछ सांस्थितिक स्पेस X पर अर्ध-मानक बीजगणित का (पूर्व-) शीफ (गणित) है, तो Gs(E, P) के पास भी यह विशेषता होगी। इसका तात्पर्य यह यह है कि एक उपशीर्षक, विशेष रूप से: प्रतिबंध (गणित) की धारणा को परिभाषित किया जाएगा, जो सामान्यीकृत फलन w.r.t के समर्थन (गणित) को परिभाषित करने की अनुमति देता है।

  • उपशीर्षक {0} के लिए, किसी को सामान्य समर्थन मिलता है (सबसे बड़े उपसमुच्चय का पूरक जहां फलन शून्य है)।
  • सबशेफ ई के लिए (कैनोनिकल (स्थिर) अंतःक्षेपण का उपयोग करके एम्बेड किया गया), एक को वह मिलता है जिसे एकवचन समर्थन कहा जाता है, अर्थात , मोटे तौर पर (E= C के लिए)).बोलना, सेट का बंद होना जहां सामान्यीकृत कार्य एक सुचारू कार्य नहीं है ।

माइक्रोलोकल विश्लेषण

फूरियर परिवर्तन (अच्छी तरह से) सघन रूप से समर्थित सामान्यीकृत कार्यों के लिए परिभाषित किया गया है, कोई भी वितरण के लिए उसी निर्माण को लागू कर सकता है, और सामान्यीकृत कार्यों के लिए लार्स होर्मेंडर के वेव फ्रंट सेट को भी परिभाषित कर सकता है।

गणितीय विलक्षणता के तरंग प्रसार के विश्लेषण में इसका विशेष रूप से महत्वपूर्ण अनुप्रयोग है।

अन्य सिद्धांत

इनमें सम्मिलित हैं: जन मिकुसिंस्की का संवलन कोटिएंट सिद्धांत, संवलन बीजगणित के अंशों के क्षेत्र पर आधारित है जो अभिन्न डोमेन हैं; और अतिप्रकार्य के सिद्धांत, विश्लेषणात्मक कार्य के सीमा मूल्यों पर आधारित (उनकी प्रारंभिक अवधारणा में), और अब शीफ सिद्धांत का उपयोग कर रहे हैं।

सामयिक समूह

ब्रुहाट ने परीक्षण कार्यों की एक श्रेणी प्रस्तुत की, श्वार्ट्ज-ब्रुहट कार्य, जैसा कि वे अब ज्ञात हैं, स्थानीय रूप से सघन समूहों के एक वर्ग पर हैं जो कई गुना से परे हैं जो विशिष्ट कार्य डोमेन हैं। अनुप्रयोग ज्यादातर संख्या सिद्धांत में हैं, विशेष रूप से एडेलिक बीजगणितीय समूह के लिए। आंद्रे वेइल ने इस भाषा में टेट की थीसिस को पुनः लिखा, आइडल समूह पर जीटा वितरण (संख्या सिद्धांत) की विशेषता; और इसे एल-फलन के स्पष्ट सूत्र पर भी लागू किया है।

सामान्यीकृत खंड

एक और तरीका जिसमें सिद्धांत को विस्तारित किया गया है वह एक सरल सदिश बंडल के सामान्यीकृत वर्गों के रूप में है। यह श्वार्ट्ज पैटर्न पर है, परीक्षण वस्तुओं के लिए दोहरी वस्तुओं का निर्माण, एक बंडल के चिकने खंड जिनमें सघन समर्थन है। सबसे विकसित सिद्धांत दे राम धाराओं का है, जो अलग-अलग रूपों के लिए दोहरी है। ये प्रकृति में होमोलॉजिकल हैं, जिस तरह से विभेदक रूप डॉ कहलमज गर्भाशय को जन्म देते हैं। उनका उपयोग एक बहुत ही सामान्य स्टोक्स प्रमेय तैयार करने के लिए किया जा सकता है।

यह भी देखें

पुस्तकें

संदर्भ

  1. Kolmogorov, A. N.; Fomin, S. V. (1999) [1957]. कार्यों और कार्यात्मक विश्लेषण के सिद्धांत के तत्व. Mineola, N.Y.: Dover. ISBN 0-486-40683-0. OCLC 44675353.
  2. Schwartz, L (1952). "Théorie des distributions". Bull. Amer. Math. Soc. 58: 78–85. doi:10.1090/S0002-9904-1952-09555-0.
  3. Halperin, I., & Schwartz, L. (1952). Introduction to the Theory of Distributions. Toronto: University of Toronto Press. (Short lecture by Halperin on Schwartz's theory)
  4. 4.0 4.1 Yu. V. Egorov (1990). "A contribution to the theory of generalized functions". Russian Math. Surveys. 45 (5): 1–49. Bibcode:1990RuMaS..45....1E. doi:10.1070/rm1990v045n05abeh002683. S2CID 250877163.
  5. H. Kleinert and A. Chervyakov (2001). "Rules for integrals over products of distributions from coordinate independence of path integrals" (PDF). Eur. Phys. J. C. 19 (4): 743–747. arXiv:quant-ph/0002067. Bibcode:2001EPJC...19..743K. doi:10.1007/s100520100600. S2CID 119091100.
  6. H. Kleinert and A. Chervyakov (2000). "Coordinate Independence of Quantum-Mechanical Path Integrals" (PDF). Phys. Lett. A 269 (1–2): 63. arXiv:quant-ph/0003095. Bibcode:2000PhLA..273....1K. doi:10.1016/S0375-9601(00)00475-8.
  7. 7.0 7.1 Yu. M. Shirokov (1979). "Algebra of one-dimensional generalized functions". Theoretical and Mathematical Physics. 39 (3): 291–301. Bibcode:1979TMP....39..471S. doi:10.1007/BF01017992. S2CID 189852974.
  8. O. G. Goryaga; Yu. M. Shirokov (1981). "Energy levels of an oscillator with singular concentrated potential". Theoretical and Mathematical Physics. 46 (3): 321–324. Bibcode:1981TMP....46..210G. doi:10.1007/BF01032729. S2CID 123477107.
  9. G. K. Tolokonnikov (1982). "Differential rings used in Shirokov algebras". Theoretical and Mathematical Physics. 53 (1): 952–954. Bibcode:1982TMP....53..952T. doi:10.1007/BF01014789. S2CID 123078052.